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We present an investigation of the magnetic structure for iron-based superconductors (FeSCs)
when inversion symmetry is broken, such as in substrate-supported monolayers or in the presence of
a c-axis electric field. We perform group-, mean-field-, and density-functional-theoretic analyses on
a model system of monolayer iron selenide (FeSe) on a strontium titanate (SrTiO3(001)) substrate.
Our group- and mean-field-theoretic calculations are more generally applicable to thin films of the
rest of the 11 (e.g., FeSe) family of iron-based superconductors, as well as to thin films of the 111
(e.g., LiFeAs) and 1111 (e.g., LaOFeAs) families, as these all belong to the same space group. We
find that in systems with a collinear antiferromagnetic phase in bulk, when inversion symmetry
is broken the transition is instead into a “spin vortex crystal” phase, and that a further phase
transition can occur at a lower temperature in some circumstances. The spin vortex crystal is a C4

symmetric magnetic phase which is related to this parent C2 symmetric collinear antiferromagnetic
(stripe) phase which is ubiquitous among the iron-based superconductors.

I. INTRODUCTION

Following their discovery, there has been much inter-
est in iron-based superconductors (FeSCs), which have a
rich phase diagram showing nematic, magnetic, and su-
perconducting orders1–4. In particular, monolayer iron
selenide (FeSe) shows an as of yet unexplained enhance-
ment in superconducting critical temperature to high
temperatures5–8. Since magnetic fluctuations compete
with superconductivity, a description of the supercon-
ducting pairing mechanism relies critically on an under-
standing of the magnetic fluctuations9. While most of the
iron-based superconductors exhibit an antiferromagnetic
stripe order2, bulk FeSe appears to be paramagnetic10.
This has led others to investigate various magnetic con-
figurations to compete with the C2 stripe order (al-
ternatively, collinear or single-q), particularly C4 (al-
ternatively, tetragonal or double-q) orders, which have
been given various labels; orthomagnetic (OM) and spin
charge order (SCO)11–14, C4 spin density wave (SDW)15,
spin vortex crystal (SVC) and charge-spin density wave
(CSDW)16–18. The orthomagnetic order is equivalent to
the spin vortex crystal, while the spin charge order is
equivalent to the charge-spin density wave. In this paper,
we use the terminology spin vortex crystal and charge-
spin density wave. We also will use single- and double-q
as broader descriptors. The wavevectors q used in de-
scribing the single- and double-q states are expressed
differently in the 1- and 2-Fe unit cell descriptions of
FeSe, but join the corresponding Brillouin zone center to
the point on the Brillouin zone boundary around which
electron pockets are typically found.

Inversion symmetry breaking can be accomplished by
looking at thin films supported by substrates or in an
electric field directed along the c-axis. We consider, then,
the effect that inversion symmetry breaking has on the
different magnetic structures introduced above. In par-
ticular, we find that when an inversion symmetric bulk
crystal has a stripe antiferromagnetic ground state, the

same material with broken inversion symmetry will in-
stead transition into the spin vortex crystal, with a pos-
sible second magnetic transition at lower temperatures.
While bulk FeSe does not show long-range magnetic or-
der, the magnetic ground state of monolayer FeSe has
not yet been determined, and it is possible that the spin
vortex state will be observed in FeSe. However, since
many of the iron-based superconductors share the same
crystal symmetries with FeSe, it may be possible to ob-
serve the spin vortex crystal in many thin-films grown on
a substrate or in a c-axis electric field.

By considering the space group symmetry of substrate
supported monolayer FeSe, we investigate the effects of
inversion symmetry breaking (thin films or under elec-
tric field) on the magnetic states in the 11 (FeSe), 111
(LiFeAs), and 1111 (LaOFeAs) families of iron-based su-
perconductors, all of whose bulk crystal structures have
P4/nmm symmetry. We show that two-dimensional irre-
ducible representations of the group are split upon break-
ing inversion symmetry, the result of which is the stabi-
lization of a spin vortex crystal order. This is further
supported by mean-field calculations, which confirms a
transition from a paramagnetic state into a spin vortex
crystal, but which finds there can be an additional transi-
tion to a magnetic state intermediary between the stripe
antiferromagnet and the spin vortex crystal. We also
perform zero-temperature density-functional calculations
on free-standing and substrate supported monolayers of
iron-selenide, where we find that the spin vortex crystal
is more stable on the substrate, but not identified as the
ground state.

The spin vortex crystal phase is also intrinsically in-
teresting as it has the same structure as a magnetic
skyrmion lattice. Lone skyrmions and skyrmion lattices
are often found in materials lacking inversion symmetry
and possessing strong spin-orbit coupling19, and are a
topic of interest in spintronics20–22, as well as in study-
ing the anomalous hall effect23. The spin vortex crys-
tal structure is a Néel antiferroskyrmion, where adja-
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cent skyrmion sites have opposite chirality, and where
the skyrmion radius is on the order of 1.8 Å (i.e., half a
lattice spacing of a 2-Fe unit cell).

This work begins by describing each of the magnetic
structures in Sec. II; there are three energetically distinct
single-q structures – two with moments perpendicular to
the c-axis, one with moments parallel to the c-axis; each
having two degenerate modes – and for each degenerate
pair of single-q states, there is a corresponding pair of
double-q states, themselves being superpositions of the
single-q states.

Sec. III gives a brief overview of the group structure,
following the work of Cvetkovic and Vafek24, and the
representations to which each of the magnetic states be-
long. We then discuss how breaking inversion symmetry,
as our model system does, causes some irreducible repre-
sentations to become reducible, resulting in formerly de-
generate magnetic states becoming non-degenerate with
different transition temperatures.

In Sec. IV we investigate a Ginzburg-Landau free en-
ergy for the magnetic ground state, and we show that
some single-q ground states, those with moments per-
pendicular to the c-axis, are forced to become double-
q states when inversion symmetry is broken, and that
the splitting in transition temperatures between states
can lead to there being two magnetic transitions. Vari-
ous reports12,16,25,26 have done similar mean field calcu-
lations, but for bulk crystals with inversion symmetry,
while this work considers the case with inversion symme-
try no longer present.

Then, Sec. V details density-functional calculations for
the different magnetic structures. To verify the stabiliza-
tion of the spin vortex crystal, we compare calculations
on free-standing (inversion symmetric) monolayer FeSe
with those for FeSe on a titanium dioxide (TiO2(001))
substrate. We observe the spin vortex crystal to be
metastable and find an estimate on the strength of the
spin-orbit coupling.

Finally, Sec. VI presents some considerations for fur-
ther experiments. We discuss some of the limitations of
density-functional calculations and the viability of find-
ing the spin vortex phase in FeSe itself; instead, other
pnictides/chalcogenides present better candidates for ob-
serving this phase.

II. MAGNETIC STRUCTURES

It has been shown that single electron spin-
orbit coupling in iron-based superconductors is
strong27(approximately 10.7 meV), and neutron scatter-
ing experiments suggest that this single electron spin-
orbit coupling reveals itself in the magnetic excitation
spectrum; a spin-space anisotropy exists to around 6–
8 meV28,29. Additionally, our density-functional-theory
calculations, discussed in Sec. V, indicate a preferred
spin direction which is approximately 1.5 meV/Fe lower
in energy than either orthogonal direction. In light of
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FIG. 1. The two dimensional crystal structure of FeSe, the
model system for our investigation. The trilayer structure
consists of a central plane of Fe (red, circles) atoms, puck-
ered by Se above (yellow, upward triangles) and below (green,
downward triangles). The 1-Fe (dashed line) and 2-Fe (solid
line) unit cells, projected in two dimensions, are highlighted
with corresponding Brillouin zones (inset, upper left). The
lattice constant for the 2-Fe unit cell is a, while for the 1-Fe
square unit cell the lattice constant is a√

2
(the 2-Fe unit cell

is sometimes referred to as the
√

2×
√

2 cell for this reason).
The wavevectors q1 and q2 are the same vectors regardless
of the choice of unit cell. However, while they are written as
q1 = (π, 0), q2 = (0, π) in the 1-Fe unit cell, they are written
as q1 = (π, π), q2 = (π,−π) for the 2-Fe unit cell, which is
the choice we make for this paper. The points X and Y in the
1-Fe unit cell are mapped to equivalent M points in the 2-Fe
unit cell. Also pictured are the symmetry operations used as
group generators for P4/nmm.

this, we can consider a theory of magnetism in which
the SU(2) spin rotation symmetry is not present, and
we will later consider order parameters where this is the
case.

The single- and double-q structures are so called be-
cause the moments on the iron sites can be described by
a plane wave of spin density with one or two non-zero
magnetic ordering vectors, respectively. That is, for the
double-q structure we can write the magnetic moment
M(r) on an iron site as

M(r) = M1e
iq1·r + M2e

iq2·r , (1)

where the ordering vectors q1 and q2 are equivalent but
not equal. Some impose certain conditions on the relation
between M1 and M2 but do not otherwise fix M1 in any
particular direction, but that will not be the case here.
Nevertheless, we will use this as a starting point and
impose the restrictions due to spin-orbit coupling later.

The single-q state can be described by taking M2 = 0,
which leaves only a single wave vector q1 to describe the
wave, which gives rise to a stripe phase. In the spin
vortex crystal, M1 is perpendicular to M2, while in the
charge-spin density wave phase, M1 and M2 are parallel
or anti-parallel. In the case of the iron-based supercon-
ductors, the wave vectors are often written q = (π, 0) or
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FIG. 2. The parallel stripe phases, (a) and (b), and the re-
lated spiral spin vortex phases, (c) and (d). The spin vortex
structure can be generated by taking the sum and difference
of the stripe phases. The moments on the iron sites (red, cir-
cles) are indicated by arrows, while the upper (yellow, upward
triangle) and lower (green, downward triangle) pnictogen lat-
tices do not carry moments.

q = (0, π) (the X and Y points, respectively), in the Bril-
louin zone for the 1-Fe unit cell, shown in dashed lines in
Fig. 1. For this paper, we use the crystallographic 2-Fe
unit cell, shown in solid lines in Fig. 1. In the Brillouin
zone for the 2-Fe unit cell, the wave vectors (π, 0) and
(0, π) of the 1-Fe unit cell are instead written as (π, π)
and (−π, π) (equivalent M points), as indicated in Fig. 1.
While much work has been done with reference to the 1-
Fe unit cell, Nica et al.30 showed the importance of the
glide-plane symmetry in allowing the unfolding from a
1-Fe unit cell to a 2-Fe unit cell; this symmetry, and the
double degeneracy on the Brillouin zone boundary which
allows the unfolding, is absent upon inversion breaking.

We shall now describe the different magnetic struc-
tures of interest in this paper. The literature has largely
treated the spin vortex crystal state as a single magnetic
configuration where the moments on nearest-neighbor
iron sites are orthogonal to each other. However, in
light of the documented role of spin-orbit coupling, it
is helpful to better distinguish all of the magnetic states
under consideration. Of the twelve magnetic structures
we describe, Fig. 2 shows the first four: the two con-
jugate “parallel” stripe antiferromagnetic orders (EXM2

;

EYM2
) which have the iron site moments directed parallel

to the direction of the stripe, and the two “spiral” spin

(a) EX
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(b) EY
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(c) B1,M (d) A2,M

FIG. 3. The perpendicular stripe phases, (a) and (b), and
the related hedgehog spin vortex phases, (c) and (d). The
spin vortex structure can be generated by taking the sum
and difference of the stripe phases. For these phases, the
moments on the upper (yellow, upward triangle) and lower
(green, downward triangle) selenium atoms, are indicated by
arrows and directed along the c-axis, perpendicular to the
page.

vortex crystal states (A1,M; B2,M), which are taken as
the sum or difference of the two parallel stripes. We are
labeling these states as spiral spin vortex crystal states
because the moments on the iron atoms exhibit the same
magnetic structure as a spiral magnetic skyrmion. When
inversion symmetry is present, the spiral spin vortex crys-
tal states are also degenerate. However, we shall show in
Sec. III that breaking inversion symmetry lifts this degen-
eracy, and further that the spin vortex crystal becomes
the stable configuration.

Fig. 3 shows the next set of related states: the two
conjugate “perpendicular” stripe antiferromagnetic or-
ders (EXM1

; EYM1
), which have in plane moments directed

perpendicular to the direction of the stripe on the iron
sites, and the two “hedgehog” spin vortex crystal states
(B1,M; A2,M), which are taken as the sum or difference of
the two perpendicular stripes. Note that in Fig. 3 there
are induced moments on the pnictogen/chalcogen sites,
whereas in Fig. 2 these induced moments are not present.
These moments are required by symmetry, as was shown
to be the case by Cvetkovic and Vafek24. The induced
moments could be potentially seen by a local probe, and
would appear as an out of plane canting of magnetic mo-
ments near, but away from, an iron site. The similarity
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FIG. 4. The c-axis stripe phases, (a) and (b), and the related
charge-spin density wave phases, (c) and (d). The charge-spin
density waves can be generated by taking the sum and differ-
ence of the stripe phases. The charge-spin density wave should
not be confused with a Néel antiferromagnet; the charge-spin
density wave is a double-q spin density wave with q at M,
whereas the Néel antiferromagnet (checkerboard order) is a
single-q spin density wave with q at Γ.

to the hedgehog skyrmion structure is more apparent due
to the presence of moments on the pnictogen/chalcogen
sites.

We also have stripe phases with moments on the iron
sites directed out of the plane, shown in Fig. 4, with
their corresponding double-q states. Again, there are
two conjugate “c-axis” stripe phases (EXM3

; EYM3
), and the

C4 symmetric states which accompany them have been
called charge-spin density waves16 (EYM; EXM). We shall
show in Sec. III that contrary to both of the in-plane
stripe phases, the c-axis stripe phases remain degenerate
even after inversion symmetry is broken.

We also note that in principle, there can be some arbi-
trary linear combination of conjugate single- or double-q
states which produces a generally mixed state with mo-
ments deviating from the single-q state by some angle
θ, an example of which is shown in Fig. 5 which mixes
the perpendicular stripe phases. The resulting states are
C2 symmetric, and we refer to them collectively as the
“mixed” state.

θ

θ

θ

θ

FIG. 5. An example of the in-plane canted moments in a
mixed state. This can result if stripe (or vortex) phases are
unevenly mixed — here we have an uneven mixing of the
B1,M and A2,M hedgehog spin vortex crystal; equivalently,
and uneven mixing of the EX

M1
and EY

M1
perpendicular stripe

antiferromagnetic phase.

III. GROUP STRUCTURE

The space group to which the 11, 111, and 1111 fam-
ilies of iron-based superconductors belong is P4/nmm.
As shown in Fig. 1, P4/nmm has three group generators;
{σX | 12 1

2}, a mirror plane through the origin (center of
the unit cell) perpendicular to the X axis followed by a
translation by (a2 ,

a
2 , 0); {σx|00}, a mirror plane through

the origin, perpendicular to the x axis with no additional
translation; and {σz| 12 1

2}, a mirror plane through the ori-
gin, perpendicular to the z axis, followed by a translation
by (a2 ,

a
2 , 0). It is this last element, {σz| 12 1

2}, which gen-
erates the inversion symmetry, and it is this last element
which is removed when we consider a monolayer on a sub-
strate. Note that the specific translations depend upon
the choice of origin; indeed, P4/nmm is non-symmorphic,
meaning no choice of origin can eliminate translations
from every group element (that is, all of the generators).
However, when inversion symmetry is broken, the result-
ing group is P4mm, which is symmorphic.

The stripe and spin vortex crystal orders are described
by representations of P4/nmm at the M-point, summa-
rized in table I. The parallel stripes belong to the over-
all symmetry EM2

; if we take the structure depicted in
Fig. 2a, and perform the group operation {σX | 12 1

2}, the
structure is unchanged. However, the result of {σx|00}
is the structure in figure 2b. Similarly, one can verify
that the perpendicular stripes in Fig. 3a–3b belong to
EM1

, while the c-axis stripes in Fig. 4a–4b belong to EM3
.

While an EM4
order could be supported, there would not

be any moments on the iron sites. A word of reminder:
spins transform as axial vectors — pseudovectors — ac-
quiring an additional sign change under improper rota-
tions, unlike the arrows used to represent the spins.

When we break inversion, that is, when we remove the
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PM {σX | 12
1
2
} {σx|00} {σz| 12

1
2
}

EM1

[
−1 0
0 −1

] [
0 1
1 0

] [
−1 0
0 1

]
EM2

[
1 0
0 1

] [
0 1
1 0

] [
−1 0
0 1

]
EM3

[
1 0
0 −1

] [
0 1
1 0

] [
−1 0
0 1

]
EM4

[
−1 0
0 1

] [
0 1
1 0

] [
−1 0
0 1

]
TABLE I. Irreducible representations at the M point for the
group generators. The basis used treats the single-q phases
depicted in Sec. II as basis functions; the double-q phases
act as basis functions for a rotated basis in their respective
representations.

generator {σz| 12 1
2}, we notice that the transformation

U1 =
1√
2

(
1 1
−1 1

)
(2)

diagonalizes the remaining representations for EM1
and

EM2
, meaning absent inversion symmetry the represen-

tations are reducible - and the states they describe are
no longer degenerate. However, EM3

and EM4
remain

irreducible, although they do become equivalent under

U2 =

(
0 1
1 0

)
. (3)

This is a result of transitioning from a non-symmorphic
group to a symmorphic one, which forces the represen-
tations at the M-point become those of the point group
C4V, as shown in table II, which is the same point group
representation as for the Γ-point. The formerly irre-
ducible representations EM1

and EM2
now reduce to the

representations A2,M ⊕ B1,M and A1,M ⊕ B2,M respec-
tively. Because of the change of basis represented by U1,
the spiral spin vortex phase in Fig. 2c belongs to the
A1,M representation, while the conjugate phase, 2d, be-
longs to the B2,M representation, and the hedgehog spin
vortex phase in Fig. 3c belongs to the B1,M representa-
tion, while the conjugate phase, 3d, belongs to the A2,M

representation.

P̃M {σX | 12
1
2
} {σx|00}

A1,M 1 1

A2,M −1 −1

B1,M −1 1

B2,M 1 −1

EM

[
−1 0
0 1

] [
0 1
1 0

]
TABLE II. Irreducible representations at the M point lacking
inversion symmetry for the group generators.

It is perhaps interesting to note that a number
of experiments have found evidence of the C4 sym-

metric charge-spin density wave in hole doped Ba122
compounds31–36. The space group of BaFe2As2, and in-
deed the 122 family, is I4/mmm, which is symmorphic,
and we have seen that P4/nmm becomes symmorphic
upon inversion symmetry breaking, stabilizing the C4

symmetric spin vortex crystal.

IV. MEAN-FIELD THEORY

Now that we have a identified the magnetic structures
under discussion, and the group representations to which
they belong, we shall provide a Ginzburg-Landau analy-
sis which respects the symmetries present. Before we be-
gin, however, we should note recent works16,18,26, which
use a free energy functional

F [Mi] = a(M2
1 +M2

2 ) +
u

2
(M2

1 + M2
2 )2

−g
2

(M2
1 −M2

2 )2 + 2w(M1 ·M2)2 (4)

This expression is for the free energy of a spin density
wave S(r) = M1e

iQ1·r + M2e
iQ2·r where M1 and M2

belong to an EM representation, but remain globally rota-
tionally invariant. In this work, we are chiefly concerned
with the evolution from either of the two in-plane stripe
phases to the spin vortex crystal with spin-orbit coupling,
which gives order parameters ηX and ηY that transform
as EXMi

and EYMi
, respectively, but which are no longer

invariant to continuous rotations. That is, rather than
investigate competition between the single- and double-q
phases, we assume that the ground state prior to inver-
sion breaking is one of the stripe phases. Therefore, our
analysis does not strictly apply to iron-based supercon-
ductors which do not show stripe ordering in their bulk
magnetic structure. In particular, this means the the-
ory is of limited applicability to FeSe itself. However,
early calculations of magnetism in LaOFeAs — which
does show bulk stripe antiferromagnetism — found an
unspecified spin vortex crystal upon increasing the Fe-
As layer distance37, suggesting this is a good candidate
to observe the spin vortex crystal experimentally.

The free energy for the representations at the M-point,
when inversion symmetry is present, is given by

f = α(η2X + η2Y ) + β1(η2X + η2Y )2 + β2η
2
Xη

2
Y , (5)

where ηX and ηY transform as EXMi
and EYMi

, respectively,

and α = α0(t−tc), with α0 > 0 and t, tc are dimensionless
temperatures. This has the same form as the free energy
in equation (4) for the case that M1 ·M2 = 0, with

u = 2β1 + β2

2 and g = β2

2 . To see the effects of inversion
breaking, consider Table I. In particular, we note that
under {σz| 12 1

2},

ηX → −ηX
ηY → +ηY .
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When inversion symmetry is broken, {σz| 12 1
2} is no longer

present, and the free energy describing states with EM1
or

EM2
symmetry has additional terms carrying the product

ηXηY , which are clearly not allowed with inversion sym-
metry present – or for states with EM3

or EM4
symmetry,

as such terms are precluded by {σX | 12 1
2}. The resulting

free energy is:

f̃ =α(η2X + η2Y ) + β1(η2X + η2Y )2 + β2η
2
Xη

2
Y

+ α̃ηXηY + β3ηXηY (η2X + η2Y ) . (6)

Compared to equation (5), we have f̃ = f + α̃ηXηY +
β3ηXηY (η2X + η2Y ). Since the transformation matrix U1

given in equation (2) diagonalizes both EM1
and EM2

,
we make the substitution η± = 1√

2
(ηX ± ηY ) to recast

equation (6) as

f̃ = α+η
2
+ + α−η

2
− + β+η

4
+ + β−η

4
− + βmη

2
+η

2
− . (7)

We can take α+ = α0(t−1) and α− = α0(t−1+δ) and we
have scaled temperature so that t+c = 1. Requiring that
the free energy be bounded below introduces the restric-
tions β± > 0 and either βm > 0 or −2

√
β+β− < βm < 0.

It can be shown that δ = (T+
c − T−c )/T+

c = −α̃/α0;
without loss of generality, we assume α̃ < 0, that is,
δ > 0. This is not a minor point; the transition tempera-
ture for the magnetic state is split by breaking inversion
symmetry because spin vortex crystal states which were
formally part of the same 2D irreducible representation
(e.g., EM1

) now belong to different 1D irreducible rep-
resentations (e.g., A2,M and B1,M), which means absent
fine tuning they will have different transition tempera-
tures. It is on this basis which we can make the claim
the spin vortex crystal is stabilized, as some spin vortex
crystal phase must order prior to the other.

It is useful to introduce the parameters

x =
βm
2β+

ξ =

√
β−
β+

.

In terms of these, x < −ξ < 0 is prohibited, as it is
equivalent to βm < −2

√
β+β−. We find that the system

experiences a second order transition from the paramag-
netic state into a spin vortex crystal state (A1,M or B1,M

under the assumption δ > 0) below t = 1, and a further
second order transition into the mixed state at

tmc = 1−
(

1

1− x

)
δ . (8)

In the mixed state, because the order parameters grow
at different rates, the magnetic phase progresses from
the initial spin vortex crystal toward the conjugate spin
vortex crystal. We can find that the magnitude of each
order parameter is equal along the line

ts = 1−
(

1 + x

1− ξ2
)
δ ,

T+
c

T−
c

SVC I

SVC II

Paramagnet

Mixed
x

T

FIG. 6. T -x phase diagram representative of ξ < 1 − δ. By
assumption, without loss of generality, the system initially or-
ders in a spin vortex crystal state (A1,M spiral or B1,M hedge-
hog). The system experiences a second order transition into
the ordered but low symmetry “mixed” phase below the line

tmc = 1−
(

1
1−x

)
δ. The dashed line in the mixed region is the

line along which both order parameters have the same mag-
nitude, i.e., it is the stripe phase, which is of measure zero.
At x = ξ there is a triple point, and the system experiences
a first order transition to the conjugate spin vortex crystal
(B2,M spiral or A2,M hedgehog) below the triple point tem-
perature. If ξ ≥ 1 − δ, the triple point temperature is less
than or equal to zero and the transition to the conjugate spin
vortex crystal is completely suppressed.

which is shown as the dashed line in the mixed state in
Fig. 6. Since this intersects with the transition tmc at
x = ±ξ, for ξ ≥ 1− δ the conjugate vortex is suppressed
and the stripe phase is absent from a region of the mixed
state. For ξ < 1 − δ, there can also be a transition into
the conjugate vortex state. Depending on the value of
x, this is second order from the mixed state, or first or-
der from the initial spin vortex crystal; e.g., if the first
transition is into the A1,M spiral spin vortex crystal, the
second transition is into the B2,M spiral spin vortex crys-
tal. Fig. 6 shows a representative diagram for ξ = 0.5,
δ = 0.4 (ξ < 1− δ) in the x-T plane, while Fig. 7 shows
a T = 0 diagram in the x-ξ plane with δ = 0.4.

The parameter ξ can in some sense be thought of as
the strength of the mixed state; treating ξ as a free pa-
rameter, in the limit ξ → 0 we see that the mixed state
vanishes and that the conjugate vortex state orders at
T−c (t = 1 − δ in reduced temperature). Notably, we
see that the stripe phase is almost never going to be the
ground state.

As noted previously, when the ground state magnetic
structure of the inversion symmetric parent compound
belongs to the EM3

representation, breaking inversion
symmetry does not lift the degeneracy of this magnetic
state. However, it does allow for additional mixing terms
which modify the transition temperature because the rep-
resentations EM3 and EM4 become equivalent under the
transformation noted in equation 3. If we assume without
loss of generality that EM3 orders, then when inversion
symmetry is present, we can write the free energy as

f3 = α(η2X3
+ η2Y3

) + β1(η2X3
+ η2Y3

)2 + β2η
2
X3
η2Y3

, (9)
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SVC I

SVC II

Mixed

x

ξ

FIG. 7. Zero temperature phase diagram in the x-ξ plane,
for δ = 0.4. At large values of ξ the conjugate vortex state is
suppressed and the primary vortex state orders to zero tem-
perature. The dashed line in the mixed region represents the
stripe phase; below the line x = −ξ the fourth order mean-
field theory is no longer applicable.

where ηX3 and ηY3 transform as the upper and lower com-
ponents of EM3 , respectively. We note then, that a term
of the form ηX3ηY4 +ηX4ηY3 is forbidden by {σz| 12 1

2}, but
not by the other generators. So, upon breaking inversion
symmetry, we get the modified free energy:

f̃3 = f3 + αm(ηX3
ηY4

+ ηX4
ηY3

) + α̃(η2X4
+ η2Y4

) .

Minimizing this free energy with respect to ηX4
and ηY4

modifies the term α; the result is

f3 =

(
α− α2

m

4α̃

)
(η2X3

+η2Y3
)+β1(η2X3

+η2Y3
)2+β2η

2
X3
η2Y3

.

The critical temperature for the transition is given by
setting the quadratic coefficient to zero.

V. DENSITY-FUNCTIONAL THEORY

Density-functional theory calculations were performed
using the Vienna Ab initio Simulation Package.38,39 The
exchange correlation functional is approximated by the
generalized gradient approximation as parametrized by
Perdew, Burke and Ernzerhof,40 and the pseudopoten-
tials were constructed by the projector augmented wave
method.41,42 A 33×33 Monkhorst-Pack k-mesh was used
to sample the surface BZ and a plane-wave energy cut
off of 400 eV was used for structural relaxation and elec-
tronic structure calculations.

We performed non-collinear magnetic calculations with
spin-orbit coupling included for ideal freestanding mono-
layer FeSe based on the well relaxed structure. We
considered a number of magnetic orders: three single-
q states, parallel (Fig. 2a), perpendicular (Fig. 3a), and
c-axis stripes (Fig. 4a); and three double-q states, the
two hedgehog spin vortex states (Fig. 3c, 3d) and a spi-
ral spin vortex state (Fig. 2c). Our calculations find
that the three single-q states are energetically different,
with the perpendicular stripe phase having the lowest

X

Y

FIG. 8. Magnetization in an FeSe monolayer supported by
TiO2(001). The moments, slightly amplified for clarity, are
canted by about 1.5◦ compared to those for the freestanding
FeSe layer. The DFT calculations did not investigate the pos-
sibility of moments on Selenium (yellow) atoms. The mixed
state observed here matches that as shown in Fig. 5.

energy; about 1.6 meV/Fe and 1.5 meV/Fe lower than
the parallel and c-axis stripes, respectively. Addition-
ally, the hedgehog spin vortex states are energetically
favored over the spiral spin vortex state, again by about
1.6 meV/Fe, which is not surprising as the hedgehog spin
vortex belongs to the same representation as the perpen-
dicular stripes when inversion symmetry is present. The
spin vortex crystal phases are locally stable and approx-
imately 63 meV/Fe higher than the stripe phases on the
freestanding FeSe.

To model inversion symmetry breaking, we place the
monolayer FeSe on a titanium dioxide single layer. Ti-
tanium dioxide is chosen here because it has a small lat-
tice mismatch with FeSe, so that the unit cell for the
system has the same in plane lattice constants as free-
standing FeSe. Our calculations find that the substrate
has a tendency to stabilize the spin vortex phase, that is,
the energy differences between the stripe phases and the
spin vortex phases are significantly decreased to about 45
meV/Fe. We also observe a small energy difference be-
tween the hedgehog spin vortex crystal and its conjugate
hedgehog state, as expected since the two states belong
to separate representations when inversion symmetry is
broken. Additionally, the substrate has noticeable effects
on the spin vortex structure; for the freestanding mono-
layer, DFT calculations for the spin vortex structure find
a local minimum for the hedgehog spin vortex, however,
for the supported monolayer the local minimum exhibits
a canting of about 1.5◦ away from the hedgehog spin vor-
tex phase, shown in Fig. 8, in accordance with the mixed
phase exhibited in Fig. 5.

The mean-field analysis indicates that the canting an-
gle observed in our DFT measurements should be a func-
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tion of temperature, but DFT is done at zero tempera-
ture and we do not observe temperature evolution of the
mixed state for that reason. Furthermore, DFT also does
not find the finite temperature window over which the
pure spin vortex crystal exists. We also note that at zero
temperature, there is a broad region which allows the
mixed phase, as indicated in Fig. 7, however, much de-
pends on the material dependent parameters identified
earlier, and we cannot tell from the DFT calculations
which spin vortex state would order first, nor where on
the zero temperature x-ξ diagram we would expect the
system to be.

VI. CONSIDERATIONS FOR EXPERIMENT

Our DFT calculations still predict a ground state
of stripe antiferromagnetism, but a number of caveats
should be borne in mind. To begin, DFT calculations can
sometimes predict the wrong magnetic ground state, as
in the case of chromium43, however, the empirical ground
state is identified by DFT as at least being metastable.
Indeed, in the case of bulk FeSe, the lowest energy
magnetic order is stripe antiferromagnetism, contrary to
experimental evidence of paramagnetism persisting to
low temperatures. Next, DFT calculations which use
a Néel antiferromagnetic structure produce band struc-
tures which have the best agreement with experimentally
observed band structures, although it is not energetically
favored44. Additionally, DFT calculations of magnetic
states in iron-based superconductors are highly sensitive
to structural and calculational details45. Under those
considerations, we suggest that the exact numbers re-
ported here are less important than the facts that the rel-
ative energy difference between the stripe and spin vortex
phases decreases significantly when inversion symmetry

is broken, and that the spin vortex phases are locally
stable.

While our analysis used monolayer FeSe on a SrTiO3

substrate as our model system, we acknowledge that it is
not a strong candidate to observe the effect, due to the
paramagnetic behavior of the bulk material. The spin
vortex crystal is still a possibility in monolayer FeSe, but
we expect that materials which clearly show stripe anti-
ferromagnetism in the bulk to be the best candidates to
observe the spin vortex crystal upon breaking inversion
symmetry. Ultra-thin films of LaOFeAs or NaFeAs, for
example, subject to a c-axis electric field should transi-
tion into the spin vortex crystal phase from the param-
agnetic phase, and may have a further transition at lower
temperatures still.

VII. CONCLUSIONS

Thus, we have determined that, for iron-based super-
conductors which in the bulk both belong to P4/nmm,
namely the 11, 111, and 1111 families of iron-based super-
conductors, and exhibit a collinear in-plane stripe phase,
the spin vortex crystal is unavoidable for a finite temper-
ature window when inversion symmetry is broken. As
such, the spin vortex crystal should be found in 2D ma-
terials or under application of electric fields. Further-
more, in many compounds we expect there to be two
magnetic transitions as we approach low temperatures.
The parametrization x which we have used will be mate-
rial dependent, and may depend on such things as doping
or pressure. However, for a given material we expect that
upon lowering temperature a transition to the spin vor-
tex crystal will occur, which will either persist to zero
temperature or experience a second transition.

This work supported by the National Science Founda-
tion grant DMR-1335215.
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