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A model of a clean two-band s-wave superconductor with cylindrical Fermi surfaces, different
Fermi velocities v1,2, and a general 2 × 2 coupling matrix Vαβ is used to study the order param-
eter distribution in vortex lattices. The Eilenberger weak coupling formalism is used to calculate
numerically the spatial distributions of the pairing amplitudes ∆1 and ∆2 of the two bands for
vortices parallel to the Fermi cylinders. For generic values of the interband coupling V12, it is shown
that, independently of the couplings Vαβ , of the ratio v1/v2, of the temperature, and the applied
field, the length scales of spatial variation of ∆1 and of ∆2 are the same within the accuracy of our
calculations. The only exception from this single length-scale behavior is found for V12 ≪ V11, i.e.,
for nearly decoupled bands.

PACS numbers: 74.20.-z, 74.25.Uv

I. INTRODUCTION

Just at the dawn of the theory of multiband supercon-
ductors, it was established that near the critical tempera-
ture Tc the length scales of spatial variation of the pairing
amplitudes of the bands, are in fact the same, notwith-
standing differences in zero-T BCS coherence lengths
ξ0,α ∝ vα/Tc (α is the band index and vα is the Fermi
velocity)1. This result has been “rediscovered” in the
recent debate on the proper form of Ginzburg-Landau
(GL) theory of two-band superconductors2,3. The debate
was triggered by extensive studies of multiband MgB2

which prompted the formulation of two order-parameter
GL energy functionals to allow for different length scales
ξ1 6= ξ2 associated with the two underlying bands, see
Refs. 4,5 and references therein.
There are different definitions of the coherence length

in literature. To avoid misunderstanding we note upfront
that in this work we consider the spatial distributions of
pair-potentials within vortex lattices, in which the natu-
ral length scales of pair potentials is the size of the vortex
core, ξ(c). We define this size via the relation

|∆m,α|
ξ
(c)
α

=
d|∆α|
dr

∣

∣

∣

r→0
, α = 1, 2 (1)

along a radius r from a vortex center. Here α is the band
index, ∆m,α is the maximum value of the pair potential
within the vortex lattice (in hexagonal lattices of interest
here it is reached at the center of the equilateral vortex
triangle). In one band materials, ξ(c) and the coherence
length ξ are of the same order, whatever definition of ξ

is adopted. We also note that ξ
(c)
α differ from lengths

governing asymptotic behavior of ∆α at r → ∞ studied
in Ref. 5 because within vortex lattices in finite fields r is

restricted by the finite unit cell size. Also, ξ
(c)
α differ from

somewhat artificial “healing lengths” of Ref. 6, although

these lengths and ξ
(c)
α are of the same order.

While it is established that near Tc, where the GL-
expansion is justified, any superconductor with finite in-
terband coupling is governed by a single superconduct-
ing order parameter with one coherence length, this does
not have to be true away from Tc. Novel behavior is
expected especially in cases with different Fermi veloci-
ties of the bands and for very weak interband coupling;
this requires to turn to microscopic descriptions of su-
perconductors applicable at all temperatures. Calcula-
tions of this kind showed6,7 that away from Tc and for a
very weak interband coupling the length scales ξ1 and ξ2
are indeed not equal, in particular for low temperatures
and at small magnetic fields. The work on the two-band
Extended GL formalism also showed different bands co-
herence lengths depending on material parameters; this
formalism, however, cannot be extended all the way to
T = 08.

However, there are several reasons why in real mate-
rials the interband coupling is not weak. First, the ever
present Coulomb repulsion will inevitably give rise to off-
diagonal matrix elements in band-representation, even-
though the usual renormalization of the Coulomb pseu-
dopotential tends to reduce interband interactions more
strongly than intraband couplings9. For MgB2 the latter
effect is rather moderate9: the bare interband Coulomb
interaction is about half of the bare intraband interac-
tion; renormalizations only reduce this ratio by another
factor of 2, yielding interband Coulomb interactions that
are approximately 25% of the intraband couplings. Sec-
ond, the matrix elements of the electron-lattice coupling
within and between electronic bands are for the impor-



2

tant optical phonon branches a priori of the same or-
der of magnitude. Even for MgB2, where the Raman
spectrum10 suggests existence of a Leggett-mode along
with comparatively weak interband coupling, a careful
analysis of the inter- and intra-band interactions reveals
that the former is still about 20% of the larger and sim-
ilar to the smaller of the intraband interactions9,11–14.
In other systems, such as the recently discussed iron-
based superconductors, it is even argued that the inter-
band coupling is the dominant source of pairing, see e.g.
Refs.15,16.

Further support for comparatively large interband cou-
pling comes from an analysis of recent Scanning Tunnel-
ing Microscopy (STM) measurements of the density of
states (DOS) distribution within the vortex lattice at low
temperatures in several two-band compounds17,18. For
a single-band material one can construct a phenomeno-
logical model to relate the measured zero-bias DOS dis-
tribution N(r) to the pairing amplitudes |∆(r)| in the
lattice unit cell17. This procedure is readily extended to
a two-band situation, for which N(r) depends on both

ξ
(c)
1 and ξ

(c)
2 . The fit to the STM data for NbSe2 and for

NbSe1.8S0.2 showed that ξ
(c)
1 ≈ ξ

(c)
2 at T = 0.15K≪ Tc.

The same procedure has been applied to the novel su-
perconductor CaKFe4As4 with Tc ≈ 35K and the zero-
field tunneling spectrum having clearly two-gap features,

again with the result ξ
(c)
1 ≈ ξ

(c)
2 at sub-Kelvin tempera-

tures and at all fields examined18.

These theoretical considerations and observations mo-
tivated us to re-examine the question of the relative val-

ues of ξ
(c)
1 and ξ

(c)
2 in two-band superconductors within

a microscopic approach that covers a broad temperature
and magnetic field regime. In particular, the analysis of
the STM-data suggests that the emergence of one com-
mon length-scale is a much more robust phenomenon
than one would expect for moderately coupled multiband
system. Thus, we aim at clarifying the issue of when the
coupling between two superconducting bands becomes
sufficiently strong to give rise to a common length scale
and under what conditions two separate length scales of
the band-order parameters emerge.

To this end, we use a “brute-force” numerical proce-
dure of solving Eilenberger equations for a vortex lattice
in the two-band case developed in studies of MgB2

19, and
estimate temperature and magnetic field dependences of
the vortex core sizes. We consider a weak-coupling model
of a two-band superconductor with two Fermi surface
parts having different Fermi velocities and study the spa-
tial variation of the pairing amplitudes ∆1,2(r) of the two
bands within the vortex lattice unit cell. While we ana-
lyze this model over a wide range of parameters, we do
not focus on a specific application for a particular ma-
terial. Rather, we intend to clarify general properties of
the spatial dependence of ∆1,2(r). Substantially differ-
ent values of the Fermi velocities notwithstanding, the
coherence lengths proportional to the vortex core sizes
defined in Eq. (1) turn out nearly the same for all choices

of coupling constants Vαβ examined (α, β = 1, 2) except
the case of nearly decoupled condensates V12/V11 < 0.1.
For V12 ≪ V11 our results agree with previous

calculations6–8. However, as soon as V12/V11 ≥ 0.1, we

obtain ξ
(c)
1 ≈ ξ

(c)
2 , insensitive to details of coupling Vαβ ,

temperature, and field.

II. APPROACH

We consider two-band system with two cylindrical
Fermi surfaces (α = 1, 2) both oriented parallel to the
same crystal axis (the c -axis) and with Fermi velocities
vα(k) = vα(cosφ, sinφ). k is the Fermi momentum and
φ the corresponding azimuth. The magnetic field is ap-
plied along c as well, i.e. the field is parallel to the axis
of the cylinder. For simplicity, the bands normal densi-
ties of states are assumed the same: N0,1 = N0,2 = N0

(the total DOS per spin N(0) = 2N0). This assumption
will not affect any of our results qualitatively and can
easily be dropped. It still allows for distinct values of the
Fermi velocities of the bands. We set v2 = 3v1 to assure
substantially different coherence lengths in the limit of
fully decoupled bands. The 2× 2 coupling matrix Vαβ is
assumed symmetric: V12 = V21.
Our approach is based on the quasiclassical version of

the weak-coupling BCS theory for anisotropic Fermi sur-
faces and order parameters20. This theory is formulated
in terms of Eilenberger functions f, f+ and g (Gor’kov’s
Green’s functions averaged over the energy):

(2ω + vα ·Π)fα = 2∆αgα , (2)

g2α = 1− fαf
+
α , α = 1, 2. (3)

Here Π = ∇+2πiA/φ0 with vector potential A and flux
quantum φ0. ω = πT (2n + 1) are fermionic Matsubara
frequencies with integer n; hereafter ω and T are mea-
sured in energy units, i.e. ~ = kB = 1. The equation
for f+ is obtained from Eq. (2) by taking the complex
conjugate and replacing v → −v.
The pairing amplitudes satisfy the self-consistency re-

lations:

∆α(r) = 4πTN0

∑

β, ω

Vαβ〈f(ω,k, r)〉β , (4)

where the sum over positive Matsubara frequencies is
extended up to ωD, the analog of Debye frequency for
electron-phonon mechanism; 〈f(ω,k, r)〉β stands for the
average over the Fermi cylinder of the band β. The con-
tribution of the α-band to the current density is

Jα(r) = −4π|e|N0T Im
∑

ω>0

〈vg(ω,k, r)〉α , (5)

and the total current density is

J = J1 + J2 = ∇× (∇×A) c/4π . (6)

The vector potential is taken in the form A(r) = (B×
r)/2+Ã(r), where the magnetic induction B = (0, 0, B)
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is the field averaged over the vortex lattice cell and Ã(r)
represents the variable part of the field which is periodic
in the vortex lattice and has zero spatial average. The
unit vectors of the triangular vortex lattice are chosen
as u1 = (a0, 0, 0) and u2 = (12a0,

√
3a0/2, 0), where the

intervortex spacing is a0 = (2φ0/
√
3B)1/2. We use peri-

odic boundary conditions for the unit cell of the vortex
lattice and take into account the order parameter phase
winding around each vortex21.
Throughout the paper, we employ Eilenberger units

for the first band if it would have been single (V12 =
V22 = 0): R1 = ~v1/2πTc,1 is taken as a unit length
(R1 ≈ 0.88 ξ01 where ξ01 is the zero-T BCS coherence
length of the “bare” first band). Fermi velocities are
normalized to v1, the magnetic field is measured in units
of B1 = φ0/2πR

2
1 and the current density in cB1/4πR1,

the energy unit is πTc,1, and Tc,1 is the transition tem-
perature in the single-band limit. In these units, Eqs. (2)
and (5) take the form:

(ω + vα ·∇)fα = ∆αgα − ivα · [(B × r)/2 + Ã]fα , (7)

Jα(r) = −2T

κ2
1

∑

ω>0

〈v Im g(ω,k, r)〉α . (8)

Hereafter we keep the same notation for dimensionless
quantities as for their dimensional counterparts; we will
indicate explicitly if common units are needed.
The quantity κ1 = φ0Tc,1/π~

2v21
√
2N0 has the same

order of magnitude as the GL parameter for one-band
isotropic case, κGL = 3φ0Tc/~

2v2
√

7ζ(3)N(0). However,
κ1 does not have the meaning of the penetration-depth-
to-coherence-length ratio for the two-band system2,3,
rather it is a convenient dimensionless material parame-
ter.
The dimensionless self-consistency equations take the

form:

∆α(r) = 2tN0V11

∑

β, ω

Vαβ

V11
〈f(ω,k, r)〉β , (9)

πe−γTc,1 = 2ωD exp(−1/N0V11) , t = T/Tc,1 (10)

where γ is the Euler constant. In our calculations we
set the cutoff frequency ωD = 40Tc,1 and κ1 = 4. The
numerical procedure is outlined in Appendix A.
The profiles of the pairing amplitudes |∆α(r)| in real

space are fitted by a 5th-order polynomial near the vortex
center along the nearest neighbor vortex direction. We

estimate the vortex core size ξ
(c)
α from

∆α(r) = ∆m,α
r

ξ
(c)
α

+O(r2) , j = 1, 2 (11)

near the vortex center. ∆m,α is the maximum value of
|∆α(r)| within the unit cell.

III. V12 OF THE SAME ORDER AS V11

First, we present our results for V12 = 0.32V11. In order
to see the effect of the coupling in the second band, we

0

0.5

|∆1|

|∆2|

0 1 2 3 4r0

0.3

|∆2| / |∆1|

V22 =0

V22 =0.32V11

(a)

(b)

FIG. 1. (Color online) (a) Pairing amplitudes |∆1(r)| and
|∆2(r)| (in units πTc,1) vs distance r (in units of R1 =
~v1/2πTc,1) from the vortex center to the midpoint between
nearest neighbor vortices. In this calculation, V12/V11 = 0.32,
t = T/Tc,1 = 0.5, and B = 0.1 (in units φ0/2πR

2
1). Solid

lines are for V22 = 0, dashed lines are for V22/V11 = 0.32. (b)
Nearly constant ratios |∆2(r)|/|∆1(r)| imply the same length
scales for both pairing amplitudes.

consider two cases: V22 = 0 and V22 = 0.32V11.

The profiles of |∆1(r)| and |∆2(r)| are shown in
Fig. 1(a). Near the vortex center, both |∆1(r)| and
|∆2(r)| recover over the same lengths; this is seen
most directly in panel (b) where nearly constant ratios
|∆2(r)|/|∆1(r)| are shown. In the presence of finite in-
traband coupling of the second band V22, the ampli-
tude of the pair potential of this band increases, with
|∆2(r)|/|∆1(r)| ∼ 0.4, as expected. The spatial depen-
dence of the two pair potentials is however the same.

Temperature dependences of the core radii ξ
(c)
α and

of the maximum value ∆m,α are given in Fig. 2. While
∆m,α are slightly smaller than those in zero field (dotted
line) as they should, the T -dependence of ∆m,α is similar
to that at zero field. Nearly constant ratios ∆m,2/∆m,1

are ≈ 0.3 for V22 = 0 and ≈ 0.4 for V22 = 0.34V11.
As the temperature increases, this ratio changes little:
from 0.291 to 0.295 for V22 = 0, and from 0.406 to 0.392
for V22 = 0.32V11, respectively. Within our analysis we
also reproduce Kramer-Pesch shrinking of the vortex core
sizes ξ(c) on cooling22–24, see Fig. 2(c,d). Thus, we obtain

ξ
(c)
2 ≈ ξ

(c)
1 in the whole temperature range. While it

is expected that ξ
(c)
2 /ξ

(c)
1 → 1 for T → Tc, our finding

of numerically very similar length scales over a broad
temperature regime is rather surprising.

The field dependencies of the pairing amplitudes and
deduced length scales are shown in Fig. 3. As expected,
the ∆m,α are suppressed upon increasing the magnetic
field, see Fig. 3(a). As shown in Fig. 3(b,c), after a slow

decrease at low B’s, the core radii ξ
(c)
α are once again

nearly constant over a wide range of field values. Most

importantly however, we find at all fields that ξ
(c)
1 ≈ ξ

(c)
2 ,
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0

1
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(c)
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V22 = 0
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(c)
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(a)
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(
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FIG. 2. (Color online) (a) Temperature dependence of max-
imum values ∆m,α of pairing amplitudes |∆α(r)| at B = 0.1
for V22 = 0 and V12 = 0.32 V11. Zero-field |∆α| are shown by
dotted lines. (b) The same as (a) for V22 = 0.32V11 . (c,d) T

dependences of core sizes ξ
(c)
α , and (e) of ξ

(c)
2 /ξ

(c)
1 for B = 0.1.

Temperature T is in units of Tc,1.

see panel (d) of Fig. 3. As B approaches the upper critical

field Hc2, ξ
(c)
2 /ξ

(c)
1 → 1, see Fig. 3(d). This conclusion

agrees with the two-band theory of Hc2
25, where it has

been shown that near the second order phase transition
at Hc2, the two pairing amplitudes satisfy the system of
equations −ξ2Π2∆α = ∆α with the same ξ.

IV. DECOUPLING LIMIT V12 ≪ V11

Next we analyze the regime of almost decoupled band.
In this limit, the two superconducting condensates are
nearly independent. The vortex core radii can be differ-
ent and dependent on the characteristics of the bands6,7.

We assume that the second band has pairing interac-
tion V22 = 0.85V11. This gives superconducting tran-

0

0.5

1

∆m,1

∆m,2

V22 = 0

V22 = 0.32V11

V22 = 0

V22 = 0.32V11

0

1

ξ1
(c)

V22 = 0

V22 = 0.32V11

0

1

ξ2
(c)

V22 = 0

V22 = 0.32V11

0 0.5 B
0

1

2 ξ2
(c)

V22 = 0.32V11

V22 = 0

ξ1
(c)

/

(a)

(b)

(
)

(d)

FIG. 3. (Color online) (a) Magnetic field dependence of ∆m,α,

α = 1, 2. (b,c) B dependence of the core sizes ξ
(c)
α and (d)

the ratio ξ
(c)
2 /ξ

(c)
1 . Inputs: t = 0.5, V12 = 0.32V11 , solid lines

are for V22 = 0, dashed lines for V22 = 0.32V11.

0

0.5 |∆1|

|∆2|
Β = 0.01

Β = 0.1

0 5 10r
0

0.2 |∆2| / |∆1|
Β = 0.01

Β = 0.1

(a)

(b)

FIG. 4. (Color online) (a) |∆1(r)| and |∆2(r)| vs distance
r from the vortex center to the midpoint between nearest
neighbor vortices. (b) |∆2(r)|/|∆1(r)|. Input parameters are
V12 = 0.01V11, V22 = 0.85V11 , and t = 0.5; solid lines are for
B = 0.1, dashed lines are for B = 0.01.
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FIG. 5. (Color online) (a) Temperature dependence of ∆m,α

at B = 0 (dotted lines), B = 0.03 (dashed lines), and B = 0.1

(solid lines). (b) T dependence of the vortex core radii ξ
(c)
1

and ξ
(c)
2 , and (c) the ratio ξ

(c)
2 /ξ

(c)
1 . V12 = 0.01V11 and V22 =

0.85V11.

sition temperature Tc,2 ∼ 0.51Tc,1 and the upper crit-
ical field Hc2,2 ∼ 0.025 at T = 0.1Tc,1 in the second
band, when the interband coupling is absent, V12 = 0.
Hereafter, we study the vortex core size when a weak
interband coupling exists as V12 = 0.01V11. The result-
ing |∆α(r)| are presented in Fig. 4(a). At a low field
B = 0.01 (dashed lines), the recovery of |∆2(r)| with in-
creasing r is indeed slow compared to |∆1(r)|, and as a

result we find that ξ
(c)
2 > ξ

(c)
1 . This behavior can also

be seen in the r dependence of the ratio |∆2(r)|/|∆1(r)|,
which is no longer constant, but decreases near the vor-
tex core, see Fig. 4(b). For higher field, B = 0.1 (see the
solid lines in Fig. 4), |∆1(r)| within the core region does
not change substantially compared to the low-field case,
whereas |∆2(r)| is suppressed strongly, as the intervortex
distance is too short for the recovery of |∆2(r)|. In other
words, since the “effective Hc2” of the bare second band
is small due to a larger coherence length (v2 = 3v1 and
∆2 is small), superconductivity of the second band is eas-
ily suppressed by magnetic fields. Hence, at high fields,
the contribution to superconductivity of the second band
is weak.

The corresponding temperature dependence of the
nearly decoupled band regime is shown in Fig. 5. ∆m,1

has the typical T -dependence of the BCS theory. How-

0

0.5 ∆m,1

∆m,2

0

1

2

3

4

5

ξ1
(c)

ξ2
(c)

0 0.2 0.4B
0

1

2

3 ξ2
(c)/ ξ1

(c)

(a)

(b)

(
)

FIG. 6. (Color online) (a) The field dependence of ∆m,α.

(b) B-dependence of core radii ξ
(c)
1 and ξ

(c)
2 , and (c) the ratio

ξ
(c)
2 /ξ

(c)
1 . Input parameters: t = 0.5, V12 = 0.01V11 and V22 =

0.85V11.

ever, ∆m,2(T ) is different. At low T , the superconductiv-
ity of the second band is enhanced, since it is caused here
by V22 = 0.85V11. ForB = 0, ∆2 is very small at elevated
temperatures. Above the intrinsic transition tempera-
ture of the decoupled second band, superconductivity of
this band is only induced by the weak interband coupling
V12, an observation that was made already shortly after
the formulation of the BCS-theory26. With increasing B,
the enhancement of ∆m,2 at low T disappears and prac-
tically vanishes at B = 0.1. The B-dependence of the
pairing amplitudes are shown in Fig. 6. ∆m,2 decreases
rapidly at low B reflecting small effective Hc2,2 of the
second band, and remains small at higher B due to weak

coupling V12. In the high B range, ξ
(c)
1 ≈ ξ

(c)
2 . This

combination of field and temperature variation of nearly
decoupled bands may serve as a tool to identify whether
one is indeed in this limit.

We note that the Kramer-Pesch shrinking of ξ
(c)
2 on

cooling is weak compared to that of ξ
(c)
1 , see Fig. 5(b).

Thus, the ratio ξ
(c)
2 /ξ

(c)
1 increases upon lowering T . On

the other hand, at higher T and for fields approaching

Hc2, ξ
(c)
2 /ξ

(c)
1 → 1 (again in agreement with Ref.25).
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FIG. 7. (Color online) (a) ξ
(c)
α vs interband coupling V12/V11

for V22 = 0.83 V11 at t = 0.2 and B = 0.03. (b) Ratios

ξ
(c)
2 /ξ

(c)
1 and ∆m,2/∆m,1 vs V12/V11 for the same parameters

as (a).

V. DISCUSSION

The issue of the spatial variation of the superconduct-
ing order parameter in multiband systems is interesting
and relevant, in particular because of an increasing num-
ber of physical systems that clearly display multiband be-
havior in their superconducting properties. In addition
to the description of the variation of the order param-
eter near vortex cores, the DOS distribution is related
to ∆(r) and is measurable. Recent STM low-T data, in-
terpreted within a phenomenological model, suggest that

ξ
(c)
1 ≈ ξ

(c)
2

17. While such a behavior (we call it “length-
scales locking”) is to be expected in the immediate vicin-
ity of the transition temperature, it is not obvious away
from Tc. Thus, a microscopic analysis of this question is
timely and relevant. It shows that, within the accuracy

of our numerical routine, ξ
(c)
1 ≈ ξ

(c)
2 if the interband cou-

pling is of the same order as intraband ones. This conclu-
sion turns out to be valid at all temperatures and fields.
In agreement with other microscopic calculations6,7, we
find this rule is violated for a very weak interband cou-
pling when the system is close to the limit of nearly de-
coupled condensates. The peculiar field and temperature
dependence of such nearly decoupled bands can easily be
used to test, for a given material, whether the coupling
between bands is weak or only moderate.

To make this statement more quantitative, we show

in Fig. 7 the ratio ξ
(c)
2 /ξ

(c)
1 as a function of the interband

coupling V12/V11 at fixed t = T/Tc,1 = 0.2 and B = 0.03.
One sees that this ratio exceeds the value of 2 only when
roughly V12/V11 < 0.1. As discussed above, MgB2 can be
very well described by V12/V11 ≈ 0.2 (see Refs.9,11–14).

Thus, we conclude that this systems is not in the regime
where two distinct characteristic length scales emerge.

In conclusion, by solving the quasi-classical Eilenberger
equations, we analyzed the spatial variation of the pairing
amplitudes within the vortex lattice of a two band super-
conductor over a wide range of temperatures and mag-
netic fields. Near the superconducting transition tem-
perature Tc(B) at a field B, it is established1–3,25 that
the emergence of one order parameter in a two-band sys-
tem naturally implies that the spatial variation of this
order parameter is governed by a single length scale.
Away from Tc (and generally from the curve Hc2(T )) it
is however expected that for a sufficiently weak coupling
between the bands, distinct characteristic length scales
for the respective pairing amplitudes emerge. Here we
showed that such decoupling of the length scales occurs
for values of the interband pairing interaction V12 that are
less than one order of magnitude of the largest intraband
coupling. For larger values of the interband coupling a

common temperature and field variation of the length ξ
(c)
1

and ξ
(c)
2 of the pairing amplitudes sets in. What is most

surprising about these results is that these two length
scales not only follow a common T -dependence, they are

practically identical in their magnitude, ξ
(c)
1 ≈ ξ

(c)
2 . In

other words, we observe a robust length scale locking of
moderately coupled multiband superconductors. What-
ever difference might there be in the values of the length
scales of the uncoupled system, our analysis shows that
this difference is most likely to disappear everywhere be-
low Hc2(T ) (see also Appendix B).

In this work we considered only clean two-band sys-
tems. Usually, the impurity scattering is expected to
cause isotropization of superconducting characteristics.
Hence, we do not expect scattering to amplify differences

of the length scales ξ
(c)
α . Still, as discussed in Ref. 16,

interband scattering can cause the superconductivity to
become gapless with two bands acquiring substantially
different DOSs in superconducting state. The question

of how this difference affects ξ
(c)
α remains to be addressed.

Also, our work does not cover all possible differences in
band parameters which may lead to measurable differ-

ences in ξ
(c)
1 and ξ

(c)
2 . For example, if one of the bands is

shallow and nearly empty29, the ratio of Fermi velocities
might be large enough to overcome the locking effect.
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FIG. 8. (Color online) Solving the first-order ordinary dif-
ferential Eq. (A2) along the trajectory r

′ = r + sv̂α for a at
s = 0. Real and imaginary part of a are shown for start posi-
tions s0 = −8.2 (A), −16.4 (B) and −32.7 (C). It is seen, that
a converges to the same solution at s = 0. Input parameters
are φ = 1.25◦ for k, α = 1, ω = πT and V22 = 0 in the case
of Fig. 1. r is near the midpoint (−a0/2, 0) between nearest
neighbor vortices.

Appendix A: Numerical method

We briefly summarize the numerical approach to solve
the coupled Eilenberger equations Eqs. (2). For the nu-
merical analysis, it is more convenient to employ instead
of the function f and g the functions a and b defined via

f =
2a

1 + ab
, f+ =

2b

1 + ab
, g =

1− ab

1 + ab
(A1)

and transform the system (2)-(3) to Ricatti differential
equations,

v ·∇a =
(

∆−∆∗a2
)

− (ω + iv ·A)a, (A2)

−v ·∇b =
(

∆∗ −∆b2
)

− (ω + iv ·A)b, (A3)

for each band α27. Unlike the original Eqs. (2), the
equations for a and b are decoupled. The Ricatti
equations are then solved by numerical integration along
trajectories parallel to the vector v28. Choosing length
|s0| of these trajectories in Fig. 8, we confirm that the
solution does not change when this length is increased.
We iterate the set of equations until self-consistent
results are obtained.

Appendix B: Simple example of lengths locking

Consider the simplest possible coupling with all com-
ponents of Vαβ equal to V0:

Vαβ = V0 (δαβ + σαβ) , σαβ =

{

0 1
1 0

}

. (B1)

Then, the self-consistency relations,

∆α(r) = 4πTN0

ωD
∑

β,ω>0

Vαβ〈f(ω, r)〉β

= 4πTN0V0

ωD
∑

β, ω>0

(〈f〉α + σαβ〈f〉β) , (B2)

translate to

∆1(r) = 4πTN0V0

ωD
∑

ω>0

(〈f〉1 + 〈f〉2) ,

∆2(r) = 4πTN0V0

ωD
∑

ω>0

(〈f〉2 + 〈f〉1) . (B3)

Thus, ∆1(r) = ∆2(r) exactly for any Fermi velocities,

any T and H . In particular, this means ξ
(c)
1 = ξ

(c)
2 .

It is worth noting that this conclusion follows from
the self-consistency equations without actually solving
Eilenberger equations for fα. It is readily shown that for
the coupling matrix of the form (B1) the same result can
be obtained for unequal normal band DOS’.
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