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Abstract  

Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free 

nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent 

diffractive imaging using an x-ray free electron laser. The formation of strongly deformed 

droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained 

diffraction images. The analysis of the images shows that, in addition to previously described 

axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the 

diffraction images indicates that the shapes of rotating superfluid droplets are very similar to 

their classical counterparts, giving direct access to the droplet angular momenta and angular 

velocities. The analyses of the radial intensity distribution and appearance statistics of the 

anisotropic images confirm the existence of oblate metastable superfluid droplets with large 

angular momenta beyond the classical bifurcation threshold. 
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1. Introduction 

 Starting with Newton, the equilibrium shapes of rotating classical bodies held together by 

gravitation have attracted great interest [1]. It has been shown that the shapes of rotating liquid 

droplets held together by capillary forces belong to the same class of solutions and can serve as 

laboratory scale emulations of astronomical objects [2]. Liquid drop models have also been 

applied to predict the shapes of rotating atomic nuclei [3]. Equilibrium shapes of classical 

rotating droplets have been extensively studied theoretically [2, 4-7] and experimentally [7-8]. A 

droplet that is spherical at rest acquires an oblate axially symmetric shape upon rotation and, 

with increasing angular momentum, turns into a two-lobed figure that is elongated perpendicular 

to the rotational axis, as discussed in more detail in Section 4. This paper extends the study of 

equilibrium shapes of rotating liquids from classical, viscous droplets to viscosity-free, 

superfluid droplets. Classical rigid body rotation (RBR) is not feasible in a superfluid droplet, 

which instead rotates through the emergence of a collection of quantum vortices [9-12]. Each 

vortex is characterized by a quantized velocity circulation κ = h/M, which is the ratio of Planck’s 

constant, h, and the mass of the 4He atom, M. Thus, the velocity field in a superfluid droplet 

deviates considerably from that in RBR, which may have an impact on the droplet shape and 

stability. Furthermore, viscous energy dissipation in classical droplets facilitates shape 

transformations whereby the total angular momentum is conserved but the total kinetic energy is 

reduced. Negligible viscosity, therefore, may cause some unique shapes of superfluid droplets, 

which are of particular interest. Vortices in helium droplets have been considered theoretically 

[13-15] and were searched for experimentally by levitating superfluid 4He droplets in 

inhomogeneous magnetic fields [16]. It was also observed that charged droplets in a rotating 
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electric field develop pronounced deformations that were ascribed to the excitation of capillary 

waves travelling along the droplet's equator [17].  

 Very recently we have shown that swiftly rotating 4He droplets of sub-micrometer size 

may be produced from a cryogenic jet expansion into vacuum and that the droplet shapes can be 

studied via scattering of radiation from an x-ray free-electron laser (XFEL) [18]. X-ray 

diffraction imaging of Xe doped He droplets revealed Bragg spots, confirming the existence of 

quantum vortex lattices that led to the condensation of 100-200 Xe clusters in a periodic array 

[18]. Positions and shapes of individual vortices could be deduced from diffraction images 

without Bragg spots by using a recently developed phase retrieval algorithm [19-20]. It was also 

found that about 50% of the droplets produce anisotropic diffraction patterns that can be 

described by concentric elliptic rings.  Such elliptic diffraction patterns were ascribed to pseudo-

spheroidal shapes of rotating droplets with aspect ratios (AR) up to AR = 1.5. In addition, 

approximately 1% of the diffraction images exhibit streaks, i.e., pronounced intensity anomalies 

radiating away from the image center, see Fig. 1 (f-j) [18]. These images cannot be described by 

elliptical diffraction contours and exhibit very high aspect ratios of 1.5 < AR < 2.3. In Ref. [18] 

we assigned such images to superfluid droplets that remain axially symmetric beyond their 

classical stability range, in agreement with the predicted extended range of stability in rotating 

inviscid droplets [4] and recent DFT calculations [21]. However, the question remained whether 

prolate superfluid droplets may exist as well for a sufficiently high degree of rotational 

excitation. Here, we report on a new set of single-shot x-ray coherent diffractive imaging 

experiments to clarify these questions. The existence of prolate droplet shapes is unambiguously 

demonstrated by the observation of diffraction images with curved streaks, and the appearance of 

streaks in images with small aspect ratios. A Fourier Transform based reconstruction of the 
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droplets' contours reveals the existence of pronounced dimples, characteristic for prolate droplet 

shapes at high angular momenta. On the other hand, the formation of oblate helium nanodroplets 

beyond the stability range of their classical counterparts was confirmed by diffraction images 

with elliptical contours having aspect ratio > 1.5. The abundance statistics of different classes of 

strongly deformed droplets in the beam is in agreement with the presence of both strongly 

deformed oblate as well as prolate droplets in the beam. The diffraction images can be well 

described by employing equilibrium shapes of either axially symmetric oblate or triaxial prolate 

classical droplets. It follows that the shapes of rotating sub-micron superfluid droplets are very 

similar to those of their classical counterparts, giving access to the droplets’ angular momenta 

and angular velocities.  

2. Experimental 

 The experiments were performed at the Atomic, Molecular and Optical Sciences 

beamline (AMO) of the Linac Coherent Light Source (LCLS). In contrast to our previous 

experiments (run 1), [18] which employed radiation with λ = 0.826 nm (hν = 1.5 KeV), the latest 

experiments (run 2) were performed at λ = 1.46 nm (hν = 850 eV).  The x-ray beam in 

experimental run 2 also had a smaller nominal focus size of ≈ 2 μm as compared to ≈ 5 μm in 

experimental run 1 [18]. As a result, diffraction signals at larger scattering angles could be 

detected, revealing additional information on the three-dimensional shapes of the droplets. These 

latest experiments utilized the new "LAMP" soft x-ray end station [22-23]. Experiments with 

beams of helium nanodroplets have been extensively documented elsewhere [24-27]. Helium 

droplets with radii R = 300 – 1000 nm (NHe = 109 – 1011) were produced upon fragmentation of 

liquid 4He expanding continuously into vacuum through a 5 μm diameter nozzle at a temperature 

of 5 K and a backing pressure of 20 bar [24, 28-29]. The droplets rapidly cool down via 
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evaporation and became superfluid at T < 2.17 K.  As previously observed [18], the droplets 

have considerable angular momentum, which likely originates from inhomogeneous flow of 

helium through the nozzle during the expansion [30]. After travelling across a distance of ≈ 700 

mm from the nozzle within approximately 4 ms, the droplets traversed the focus of the XFEL 

beam (pulse energy Epulse ≈ 0.7 mJ, repetition rate 120 Hz). The duration of the x-ray laser pulses 

(60 fs) is much shorter than the typical droplet rotational period (> 100 ns) and the probability to 

find a droplet within the tight focus of the x-ray beam at any given time is less than 10-3. Thus, 

every diffraction image represents the instantaneous configuration of a single helium droplet.  

The images were recorded using two pn-CCD detectors comprising about one million 75×75 

µm2 pixels each that were placed at distances of ≈ 370 mm (front) and ≈ 735 mm (rear) from the 

interaction center [31-33]. Each detector consisted of two (75×37.5 mm2) CCD panels that were 

separated by 32.8 mm and 1.5 mm gaps for the front and rear detectors, respectively, to let the 

primary x-ray beam pass.  

3. Results 

 Figure 1 shows some characteristic diffraction images from He droplets obtained with the 

rear pnCCD detector, which are displayed in a logarithmic scale. The images are analyzed in 

terms of the aspect ratio of the diffraction contours, AR, which is the inverse of the aspect ratio 

of the droplet's projections onto the detector plane, see Ref. [18] and its supplementary materials 

(SM). The values for the AR as well as the corresponding major and minor semi-axis of the 

droplet's projections obtained from the images in Fig. 1 are summarized in Table 1. The 

complete collection of images discussed in this work and the results of the corresponding data 

analysis are presented in section S1 in SM. Fig. 1 a) shows an image with noticeable ellipticity of 

the diffraction contours, corresponding to an aspect ratio of AR = 1.105. 
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 Panels b)-e) show strongly distorted images with AR in the range of 1.3 to 1.6. Fig. 1 f) -j) show 

even stronger distorted diffraction images with AR in the range of 1.6 to 1.9.  These images also 

reveal some pronounced streaks, i.e., regions of high intensity along the direction of the long axis 

in the diffraction image, which extend well beyond the continuous diffraction contours. Large 

AR and streaks in the diffraction images indicate some pronounced deformations of the droplets, 

which are the focus of the present paper.  Panels f) – h) and j) show all four streaked events, from 

a total of 447 images obtained from bare helium droplets during experimental run 2. This ≈1% 

abundance of streaked images has also been observed during experimental run 1 [18]. The 

number of images obtained from experimental run 2 is smaller than the one obtained from run 1 

due to a shorter acquisition time. Panel i) shows a streaked event for Xe doped droplets. 

Fig. 1. Diffraction images from He droplets obtained with the rear pn-CCD (1024×1024 pixels) 
detector.  The logarithmic intensity color scale is shown on the left. Images (f-j) in the bottom row 
contain streaks, whereas images (a-e) in the upper row exemplify patterns with large aspect ratios 
devoid of any streaks. The blank horizontal stripe results from the gap between the upper and lower 
plates of the pn-CCD detector. Both pn-CCD plates have a rectangular cut next to the gap to 
accommodate the primary x-ray beam. The vertical stripes in a), b), c) and h) are caused by imperfect 
data readout for strong diffraction images. The empty regions near the top and bottom edges of the 
images, which are especially noticeable in panels a), b), and c), are the shadows of the front pn-CCD 
plates. All images were obtained from bare He droplets except in panel i), which was obtained upon 
doping with Xe atoms as described in the text. 
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Scattering contributions from the Xe content lead to additional substructures in the diffraction 

pattern as can be seen in the middle of the upper and lower half-images.  

 While differently shaped droplets may exhibit very similar 2D projections in the detector 

plane, the probability to observe, for example, a specific aspect ratio (AR) of the projection can 

vary significantly. Therefore, we analyze the statistical distribution of ARs for different classes 

of diffraction images as illustrated in Fig. 2.  Fig. 2 shows a histogram of the abundance vs AR 

for streaked diffraction contours of experimental runs 1 and 2 (red bars). It also contains the 

frequency count for all images with AR > 1.3 that do not exhibit well defined streaks, such as in 

Fig. 1 a)-e) (blue bars). In the following, these data will be referred to as "large AR events". 

 

About 98% of the obtained images have 1<AR<1.3. The data in Figs. 2-4 contain the results of 

all relevant measurements from experimental runs 1 and 2 for which aspect ratios could be 

determined. It is seen that the streaked images concentrate in the range 1.6 < AR < 2.1 and the 

largest observed aspect ratio is AR = 2.39.  Only two streaked images were obtained with AR< 

1.6. In contrast, the probability of large AR events devoid of any streaks is distributed almost 

homogeneously across a narrower range of 1.35≤AR≤1.85. The different abundance distributions 

Fig. 2. Abundance of streaked (red) and large AR (blue) events as a function of their aspect ratios. The 
data includes measurements with bare droplets as well as weakly Xe-doped droplets (NHe/NXe > 1500). 
In total, 3140 diffraction images of bare and Xe-doped He droplets were obtained during the two 
experimental runs.  
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of streaked and large AR events indicate that the strongly deformed helium droplets in the beam 

belong to two distinct classes of shapes.  

 This conclusion is further supported by the detailed analysis of the intensity distributions 

within the scattering patterns. The appearance of a streak along a particular direction indicates 

that the scattering object may not be described by a spheroid. For a fixed azimuthal angle of a 

diffraction image, the scattering intensity scales as the negative power, α, of the scattering angle, 

θ, i.e., αθ −∝I , see section S2 of the SM. Along azimuthal angles away from the long axes of 

the images, the fits described in section S2 consistently gave α ≈ 4 as expected for a spheroid or 

an ellipsoid. However, along the long axis of the diffraction images, exponents α in the range of 

3 – 4 were found, signifying a considerable deviation of the droplets from ellipsoidal shapes as 

will be discussed in the following. 

Fig. 3 shows the values of α along the long axis of the images analyzed in Fig. 2. Data 

points from images with visible streaks are shown as red circles, whereas the data points from 

large AR events are shown as blue circles. Open circles signify He droplets with a low level of 

Xe doping, while solid circles correspond to pure droplets. Evidently, data points from bare and 

slightly Xe doped droplets follow the same trends within the scatter of the data. The large AR 

events concentrate in the upper part of Fig. 3, and vary across a range of α = 4 ± 0.2. On the 

other hand, the streaked events are concentrated more toward the center of Fig. 3 with α = 3.2 - 

3.7. These different distributions again indicate the existence of the two different classes of 

shapes, such as oblate and prolate, as it will be further discussed in Section 5.1. 
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 Fig. 4 shows the correlation between semi-major axis, b, and semi-minor axis, a, for 

streaked images with discernible diffraction rings. It can be seen that streaks are associated with 

droplets with semi-minor and semi-major axes in the range of 200 - 400 nm and 400 - 700 nm, 

respectively. The average aspect ratio is <AR>=1.86 as indicated by a linear fit to the data (red 

line).  This rather tight concentration of sizes and aspect ratios of strongly deformed droplets in 

the beam remains to be explained.  In comparison, an ample amount of weakly deformed 

droplets with average radii in the range of R = 100 - 300 nm and R = 500 - 1500 nm has been 

observed (not shown). Additionally, five images with streaks (see section S1 in SM) were 

observed for droplets with semi-minor axes beyond 1000 nm. However the semi-major axes of 

these droplets could not be determined, since the distance between diffraction contours becomes 

comparable to the detector pixel size toward the corresponding azimuthal angles. 

 

 

Fig. 3. Correlation between the decay exponent α of the q-dependent scattering intensity and the AR 
for streaked (red) and large AR images (blue). The solid pink curve corresponds to the expected trend 
for axisymmetric classical rotating droplets imaged edge on. The data points measured with weakly 
Xe doped droplets are marked by open circles.
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Table 1. Parameters obtained from the diffraction images in Fig. 1: a and b are the semi-minor and semi-
major axes, respectively, of the droplet projections onto the diffraction plane; AR = b/a, α is the power of 
the intensity dependence vs scattering angle along the streaks; θMAX is the maximum scattering angle at 
which a discernible scattering signal was recorded. The total number of the recorded photons is also 
listed. 

Image 

in Fig. 1 

Run number 

as in SM 

b(nm) a(nm) AR α θMAX (rad) 
Number of 

photons 

(a) 162 3392 419.6 379.6 1.105 3.982 0.032 4.661 × 106 

(b) 155 1536 471.6 351.9 1.340 3.985 0.038 4.314 × 106 

(c) 160 3152 503.8 372.6 1.352 3.849 0.034 3.081 × 106 

(d) 160 3680 395.6 243.8 1.623 3.909 0.027 4.761 × 105 

(e) 157 7728 469.3 331.2 1.417 4.062 0.020 3.134 × 105 

(f) 157 3312 366 229 1.597 3.662 0.039 8.453 × 105 

(g) 162 4432 553 331 1.671 3.470 0.030 3.172 × 105 

(h) 158 2464 452 236 1.920 3.192 0.129 2.07 × 106 

(i) 174 4512 550 308 1.787 3.495 0.045 1.459 × 106 

(j) 162 2352 660 398 1.659 3.702 0.032 8.502 × 105 

 

Fig. 4. Correlation between semi-major - b and semi-minor - a axis for images with streaks. The solid 
line represents a linear fit to the data points, b = <AR>·a, giving <AR> = 1.86 ± 0.05. The data points 
in red correspond to AR < 1.6, and are not included in the linear fit calculation. 
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 The diffraction image in Fig. 1 (h) is particularly intense and extends to sufficiently large 

scattering angles such that it is also detectable with the front CCD detector. It must stem from an 

event for which the imaged droplet was very close to the focus of the XFEL beam. Fig. 5 shows 

a composite image which was obtained by combining the data from the front and back detectors 

upon appropriate scaling. The data from the rear detector (same as that in Fig. 1 (h)) are 

contained within the red rectangle. The streak in Fig. 5 exhibits a noticeable curvature. In 

comparison, most of the other recorded streaks appear as straight stripes within the accuracy of 

the experiment. The average curvature,  ߯ ൌ  ௱ః௱௦  , of the streak in Fig. 5  is χ = 0.90 rad×m-1, 

where Δߔ is the angular deviation of the streak from a straight line along its length Δs.  An 

additional distinction of the image in Fig. 5 is that it exhibits nodes (weak intensity region) 

between the streak and the diffraction rings, i.e. a discontinuity of the diffraction pattern, while 

most of the other observed streaks merge smoothly into the ring patterns at small scattering 

angles. Moreover, two satellite streaks emerge with increasing scattering angles in Fig. 5. 

Fig. 5. Extended diffraction image derived by combining the rear detector data of Fig. 1 (h) (within red 
rectangle) with the appropriately scaled image from the front detector (outside the red rectangle). The 
logarithmic intensity color scale is shown on the left.  
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4. Shapes of classical rotating droplets 

 For the purpose of assigning the observed diffraction images to particular droplet shapes 

it is instructive to review the deformations of rotating classical droplets. The equilibrium shape 

of a droplet rotating as rigid body is defined by the balance between capillary forces from surface 

tension and centrifugal forces. The stability diagram and corresponding representative shapes for 

axially symmetric (D∞h) and two-lobed (D2h) branches are shown in Fig. 6 [2, 4-7]. In Fig. 6 the 

reduced angular momentum, Λ, and reduced angular velocity, Ω, are given by: 

L
R

⋅
⋅⋅⋅

=Λ
78

1
ρσ

,    (1) 

ω
σ

ρ ⋅
⋅
⋅=Ω

8

3R

,    (2) 

where L and ω are the angular momentum and angular velocity, respectively, in absolute units, σ 

is the surface tension of the liquid, ρ is the density of the liquid and R is the radius of a spherical 

droplet with the same volume as the distorted droplet. Fig. 6 shows that, initially, upon 

increasing Λ, the equilibrium shape of the droplet evolves from spherical to oblate axially 

symmetric.  At large Λ, the shapes show considerable flattening in the polar regions and even 

depressions at Λ>2.03. However, beyond Λ ≈ 1.2 the axially symmetric shapes become unstable 

with respect to two-lobed deformations. At Λ > 1.2 stable shapes are described by the lower 

branch representing prolate triaxial droplets, which resemble elongated pills at 1.2 < Λ < 1.6, 

dumb-bell shapes at Λ > 1.6 and eventually become unstable against fission at Λ>2. 
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Fig. 6. Stability diagram for rotating droplets in equilibrium as a function of the reduced angular velocity, 
Ω, and the reduced angular momentum, Λ, see eqs. (1, 2). The upper branch corresponds to oblate 
axisymmetric shapes, whereas the lower branch to prolate two-lobed shapes. The bifurcation point is 
located at Λ = 1.2,  Ω = 0.56 with AR = 1.48. 

 Cross sections containing the rotation axis of axially symmetric droplets at various values 

of Λ are shown in Fig. 7 a), as calculated from equations in Ref. [4]. The droplets along the two-

lobed branch are triaxial bodies having D2h symmetry (a principal C2 axis, two C2 rotational axes 

perpendicular to the principal axis, a horizontal mirror plane perpendicular to the principal axis, 

and two vertical planes of symmetry). The equilibrium shapes of the prolate droplets at 1.2 < Λ < 

2 were calculated numerically [5-6]. The cross sections for the prolate shapes are shown in Fig. 7 

b) and c). The rotation axis is aligned perpendicular to the figure plane in Fig. 7 b) and it is 

vertically aligned in the figure plane in Fig. 7 c). The longest semi-major axis (“long axis”) of 

the triaxial shape is aligned horizontally in both Figs. 7 b) and c). The numerical data for the 

calculated oblate cross sections [4] and prolate [5-6] three dimensional surfaces are described in 

section S3 in SM and tabulated in the deposited EXCEL file. The droplets are characterized by 
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the distance between the center of mass and the droplet’s surface along the three mutually 

perpendicular directions; a is the distance along the rotation axis, c is the distance along the long 

axis, whereas b is the intermediate distance. Corresponding aspect ratios, AR, (c/a, b/a and c/b) 

are shown in Fig. 8 a. The axially symmetric shape is characterized by a single AR of b/a. Fig. 8 

b) illustrates the ratios of the droplet volume to the cube of the long half axis (given as multiples 

of 4π/3) for axially symmetric oblate and two-lobed prolate shapes. The results in Fig. 8 a) and 

b) enable attaining the values of angular momentum, L, and angular velocity, ω, of the droplets 

from the observed shapes. 

 

 

Fig. 7. Calculated cross sections of rotating classical droplets for various reduced angular momenta Λ 
as indicated. The angular momentum is aligned along the short a-axis. The panels correspond to 
axisymmetric oblate shapes a), and two-lobed prolate shapes in the equatorial plane b) and in the 
plane containing the rotational axis and the long axis c). Note the different scales in a) and b, c). All 
droplets have the same volume of 4π/3. 
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5. Discussion 

 The shape analysis for superfluid droplets presented here is based on small angle 

scattering data. The corresponding scattering theory is discussed in section S4 of the SM. It 

follows that at small angles the diffraction from a spheroid consists of elliptical rings with 

constant intensities along each specific ring. Whether a spheroidal droplet is oblate or prolate 

cannot be determined from small angle scattering experiments as the diffraction images yield 

only information on the projection of the droplet onto the detector plane. Accordingly, the 

reported image aspect ratios (AR > 1) correspond to lower bounds of the actual droplet AR 

values. 

 In experimental runs 1 and 2, approximately 98% of the obtained diffraction images from 

bare He droplets exhibit round or elliptical patterns with AR < 1.3 [18]. Those patterns were 

assigned to spherical or oblate spheroidal droplets. This assignment is in agreement with the 

range of stability of axisymmetric droplet shapes, whereas droplets having angular momenta 

Fig. 8. a) Calculated aspect ratio, AR, vs. reduced angular momentum Λ for classical axially 
symmetric oblate (red) and two-lobed prolate (green, blue, brown) droplet shapes. The color codes 
indicate the following aspect ratios: red: b/a; green: c/a; blue: c/b; brown: b/a. b) Ratio of the droplet 
volume to the cube of the c-axis for prolate shapes and b-axis for oblate shapes in units of 4π/3. Red: 
axially symmetric oblate shapes; blue: two-lobed prolate shapes.  
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beyond the bifurcation point of Λ ≈ 1.2 have aspect ratios exceeding 1.48. Note that droplet 

shape oscillations are expected to decay long before the droplets reach the x-ray beam and are 

therefore unlikely candidates for the detected deviations from spherical droplet shapes. In the SM 

of Ref. [18] we estimated that the shape oscillations excited upon the creation of the droplets 

decay within a drift distance of about 1 mm from the nozzle due to viscous energy dissipation.  

At T < 0.9 K, the mean free path of phonons exceeds the radii of droplets relevant to this work.  

Under these conditions, the concept of viscosity is no longer applicable and energy dissipation is 

caused by interaction of ballistic phonons with surface ripplons. In the molecular regime, the 

lifetime of surface ripplons is given by: [34] 

4

2
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where Q is the ripplon wavevector, and s the velocity of sound. In the droplet, Q can be 

expressed in terms of the oscillation mode multipole number l: [35] 
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Thus, the lifetime of droplet’s shape oscillation is: 
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For example, for a droplet with R = 300 nm and T = 0.4 K, the oscillation lifetime is τ2 = 6×10-4 

s, which is negligible compared to the time-of-flight of 4 ms to reach the interaction volume. 

5.1 X-ray scattering from strongly deformed He droplets   

 The droplets at the focus of this work produce non-elliptic diffraction contours with 

pronounced intensity anomalies, most dramatically manifested in streaks, such as in Fig. 1 (f) – 
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(j). The diffraction intensities αθ −∝I  decrease more slowly with increasing scattering angle θ 

along the streaks as compared to the rest of the diffraction images.  Eqs.  (S4.2 and S4.3) in 

section S4 in SM entails that, for a spheroid, the diffraction intensity scales with the scattering 

angle to the negative power of α = 4 (Porod’s law), which is in agreement with the experimental 

observations. The same dependence is observed in the images with strongly deformed diffraction 

contours for azimuthal angles away from the long axis. However, for these images, the values of 

α are significantly smaller along the major axis of the diffraction image, as illustrated in Fig. 3.  

Along the streaks, the values of α vary between ~3.2 and ~3.7, signifying a considerable 

deviation of the droplet shapes from an ellipsoid. In general, a streak in the diffraction pattern 

emerges when rays originating from a group of points on the droplet surface possess the same 

path length difference. Examples for such groups of points are two opposite flat surfaces of a 

cylinder perpendicular to its axis or from two lines of points on the opposite sides of a cylinder 

parallel to its axis, where the values of α are 2 and 3, respectively.  

 The shapes of the droplets are related to their diffraction patterns via an inverse Fourier 

transformation, see eqs. (S4.2, S4.3) in SM section S4. For small scattering angles, θ, the phase 

difference acquired due to the extension of the object along the x-ray beam, z, is described by: 

λ
θπϕ

2⋅⋅=Δ z
Z

        (6) 

For a characteristic length of z = 500 nm and a scattering angle θ < 0.02 rad (as in most of our 

images) ΔφZ < 0.14·π which is small and the form factor in eq. (S4.3) in SM is well 

approximated by the two-dimensional Fourier transform of the projection of the density onto the 

detector plane. Therefore, we use an inverse two-dimensional Fourier transform of the diffraction 
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amplitudes in order to obtain the corresponding droplet shapes, as described in detail in the 

section S5 in SM.  

 

 

Fig. 9. Droplet contours obtained by inverse Fourier transformation of the diffraction images in Fig. 1 a), 
g) and h) are outlined by red squares in panels a), b) and d), respectively. Panel c) shows the inverse 
Fourier transform of the diffraction image in Fig. 2 C of Ref. [18]. Violet curves are calculated contours 
for axially symmetric shapes with the same aspect ratio as found experimentally. The green contour in c) 
is the result of a calculation for a two-lobed shape with Λ = 1.3 and a 9O tilt of the rotation axis relative to 
the detector plane, whereas the one in d) is the result of a calculation for a two-lobed shape with Λ = 1.5 
and a 45O tilt. 
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The shapes obtained from the diffraction images in Fig. 1 a), g) and h) are outlined by red 

squares in Fig. 9 a), b) and d), respectively. Fig. 9 c) shows the shape obtained from the streaked 

diffraction image in Ref. [18]. Unfortunately, only the contours and not the entire density 

distribution of the droplets could be obtained from the diffraction data due to the lack of signals 

at very small scattering angles, which fall into the central hole of the detector. The droplet 

contour in Fig. 9 a) has an elliptic shape in agreement with the elliptic diffraction contours in 

Fig. 1 a). The contours in Fig. 9 b), c) are no longer elliptic and show pronounced regions of low 

curvature, where the opposite sides of the contours run nearly parallel. This behavior is 

consistent with the observed streaks as discussed earlier.  Finally, the contour in Fig. 9 d) 

exhibits noticeable depressions within the parallel surfaces.  

 The violet curves in Fig. 9 a), b), c), and d) show the results of calculations [4] for axially 

symmetric oblate rotating droplets, such as those shown in Fig. 7 a), with the experimentally 

determined aspect ratios of AR =1.10, 1.67, 1.93 and 1.92, respectively. The contours represent 

edge-on views of the droplets, i.e., with the axis of rotation in the figure plane. More diffraction 

images and reconstructed shapes are presented in section S1 in SM. Fig. 9 a) shows a good 

correspondence between the experimental and calculated contours, which have approximately 

elliptic shapes. The distorted experimental contours in Fig. 9 b), c) are also in good agreement 

with the calculations. Experimental and calculated contours in Fig. 9 d), however, exhibit 

considerable differences in that the calculated contour does not show any depression. The 

depression in the droplet manifests itself in the appearance of multiple diffraction streaks as 

discussed in relation to Fig. 5. Besides the recently recorded image in Fig. 5, only one additional 

image of the run 1 with AR = 2.39 had similar nodes (see image 104 59657 in SM section S1), 

indicating a very small abundance of droplets with depressions in the beam. Previously, [18] we 
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assigned contours such as in Fig. 9 c)  to axially symmetric shapes imaged edge on based on the 

close resemblance to the expected shapes. However, axially symmetric shapes develop 

depressions only at very large Λ > 2.1, and the aspect ratio for such droplets exceeds ≈2.5, see 

Fig. 8 a). Accordingly, axially symmetric droplets are unlikely candidates for the contour 

observed in Fig. 9 d), which has an aspect ratio of 1.92.    

 We must therefore consider shapes along the two-lobed family in more detail. The 

presence of such shapes in the beam is consistent with the observation of the curved streak in 

Fig. 5. In the two-dimensional approximation, diffraction by a homogenous body of any shape 

gives rise to centro-symmetric diffraction images. The curved streak, therefore, signifies a 

departure from the two-dimensional approximation and indicates that the phase acquired along z-

direction cannot be neglected (see eq. (6)) [36]. Diffraction images from tilted axially symmetric 

shapes obtained by three dimensional Fourier transforms are presented in section S6 in SM. It 

follows that diffraction with curved streaks could not be produced from an oblate axisymmetric 

shape at any tilt angle.  On the other hand, curved diffraction streaks may naturally originate 

from prolate shapes that are tilted such that the x-ray beam is not contained in any of the object’s 

planes of symmetry.  

 In order to gain more insight into the diffraction that can arise from two-lobed shapes, a 

large number of diffraction images have been calculated for each of the representative two-lobed 

shapes illustrated in Figs. 7 b), c).  For this purpose the shapes were tilted around a or b axis and 

three dimensional Fourier transforms were calculated and presented in section S7 in SM. The 

calculations indicate that the triple streak as observed in Fig. 5 is consistent with droplets marked 

by small depressions and a reduced angular momentum of Λ = 1.50 ± 0.05. Shapes with Λ < 1.5 

have no depression and produce a single streak. Shapes with Λ >1.5 have a large depression and 
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produce multiple streaks or even X-shaped streaks in the diffraction patterns, which were not 

observed in this work.  The closest match with the experimental diffraction image is produced by 

a two-lobed droplet shape with Λ = 1.50, with c = 550 nm and a = 230 nm tilted out of plane 

around the a axis by π/4. Fig. 10 shows a comparison of the measured and the simulated 

diffraction images, demonstrating very good agreement. The corresponding contour is shown by 

green curve in Fig. 9 d), which is in very good agreement with the experimental contour. Fig. 9 

c) also shows the contour of the prolate droplet having the same AR with Λ = 1.30, which is 

tilted around the a axis by 90. It is seen that the contours from axially symmetric oblate and 

prolate droplets both represent the experimental contour in Fig. 9 c) equally well. Therefore the 

contours alone could not be used to discriminate between the oblate and prolate droplets. 

 

5.2 Oblate and prolate shapes of rotating droplets  

 The curved streaks in Figs. 5 and 10 a) provide direct evidence for the existence of 

prolate shapes in the droplet beam. However, at the wavelengths used in the LCLS experimental 

Fig. 10. Panel a) reproduces the image from Fig. 5. Panel b) shows a simulated diffraction 
image obtained from a two-lobe shape in panel c) with Λ = 1.5, c = 550 nm and a = 230 nm 
tilted out of plane around the a axis by π/4. X-ray beam enters perpendicular to the plane of 
the figure. See the text for more details.  
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run 1 and 2 (λ = 1.46 and 0.826 nm) the vast majority of images, such as in Fig. 1, appear centro-

symmetric. In particular, most of the streaks do not exhibit any curvature within the accuracy of 

the measurements. Note that this may reflect our inability to accurately determine streak 

curvatures at small scattering angles. The limited 3D shape information provided by the vast 

majority of the recorded small angle scattering data results in a significant uncertainty regarding 

the shapes of most droplets associated with streaked diffraction patterns. The results in sections 

S6 and S7 of the SM show that in addition to the axially symmetric oblate droplets, the 

diffraction images with single streaks (without side maxima, such as in Fig 5 and 10 a) ) could 

also originate from prolate shapes with 1.3 < Λ < 1.5. Contours such as in Fig. 9 (c, d) would 

then be reproduced if one takes into account a possible tilt of the prolate shapes relative to the 

detector plane. Therefore, we need to reevaluate our previous assignment of the streaked 

diffraction images to axially symmetric oblate shapes [18]. Here, we analyze the appearance 

statistics of streaked images, which may contain information on the abundance of oblate and 

prolate shapes in the beam.  The analysis is based on the fact that the appearance probability of 

streaks differs for oblate and prolate shapes at different tilt angles, which translates into different 

probabilities for the observation of streaks as a function of the shape aspect ratio.  In the case of 

oblate axially symmetric shapes, streaks are only observed for very high aspect ratios and only if 

a droplet is imaged (nearly) edge-on with a tilt angle of no more than ≈10-15o. As a result, no 

streaks are expected for oblate droplets producing diffraction images with AR < 1.6. Vice versa, 

images with large AR devoid of any streaks will result from tilted axially symmetric oblate 

shapes.  For prolate shapes, however, streaks may be observed at tilt angles as large as 80°, even 

in images with a small AR ≈ 1.1, as documented in section S7 in the SM. 
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Fig. 11. Probability to observe streaked images with a certain aspect ratio for randomly 
orientated prolate droplets with Λ = 1.3, 1.4 or 1.5 (yellow). The three values of Λ have been 
assigned the same probability. The experimentally observed streaked events (red) are the same as 
in Fig. 2, but sorted into larger bin sizes of 0.2. 

 

 Upon tilting a prolate droplet around the a axis, its projection aspect ratio in the detector 

plane changes from its maximum value (when the droplet is viewed perpendicular to its long axis 

as in Fig. 7 c) to nearly 1 when the droplet is viewed along its long axis.  Fig. 11 shows the 

calculated probability to observe a streaked image with an aspect ratio between 1.0 and 2.6  

(binned into intervals of 0.2) for randomly oriented two-lobed droplets with Λ = 1.3, 1.4 or 1.5 

(yellow).  All three values of Λ have been assigned the same probability. From Fig. 11 it is seen 

that there is a considerable probability of ~31% to find a diffraction pattern with a streak and a 

small AR < 1.6 (based on the estimate that the vast majority of diffraction patterns from 

randomly oriented prolate droplets contain streaks, see section S7 in SM). This prediction may 

be compared with the experimental results in Fig. 11 (red).  If all of the streaked images would 

stem from prolate droplets, the total of 14 streaked images with AR > 1.6 should be 

complemented by about 6 streaks with AR < 1.6, whereas only 2 are observed.  Although the 

number of counts is relatively modest, this discrepancy indicates that prolate shapes alone cannot 
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account for all of the experimental deficiency of small AR events in streaked images.  

Consequently, in addition to prolate shapes, the distribution may contain axisymmetric oblate 

shapes, as we have previously postulated [18]. 

 

Fig. 12. Calculated values of decay exponent α versus AR for axially symmetric droplets imaged 
edge on (pink curve) and for two-lobed shapes imaged along their semi-axes a, b, and c (see Fig. 
7 b), c) for axis orientations). The calculated two-lobed shapes have Λ= 1.23, 1.26. 1.3, 1.35, 1.4, 
1.5, 1.6, 1.7 in order of increasing AR. Points corresponding to the same shapes are connected 
with lines, i.e., each triangle corresponds to one shape imaged along three different axes. 

 

 Another important piece of information on the abundance of different shapes is provided 

by analyzing the power dependence of the diffraction intensity along the streaks as quantified by 

the decay exponents, α, in Fig. 3. Fig. 12 summarizes the calculated values of α for prolate and 

oblate shapes with various ARs and orientations with respect to the x-ray beam. Square symbols 

show (AR, α) pairs calculated for shapes with Λ= 1.23, 1.26, 1.3, 1.35, 1.4, 1.5, 1.6, 1.7 and 2.0 

as shown in Fig. 7 b), c).  For each shape, three differently colored squares indicate three 

different orientations of the shape with respect to the x-ray beam: orange - long axis, c, parallel 

to the x-ray beam; green – intermediate axis, b, parallel to the x-ray beam; brown –short 

(rotation) axis, a, parallel to the x-ray beam.  The lines in Fig. 12 connect data points for shapes 
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with the same value of Λ = 1.23, 1.26, 1.3, 1.35, 1.4, 1.5. The resulting triangles approximately 

delimit the locus of (AR, α) points that may be obtained from a given shape with a particular Λ 

and at an arbitrary orientation with respect to the X-ray beam. Data points for Λ = 1.6, 1.7, and 

2.0 are shown for additional reference but not connected by lines, since no indication for 

corresponding droplet shapes were detected experimentally (see below). The continuous pink 

curves in Figs. 3 and 12 indicate the computed (AR, α) relationship for classical axisymmetric 

shapes placed with their short axis perpendicular to the X-ray beam (edge on) with Λ varying 

from 0 to 2. As discussed earlier, upon a 10-15o tilt of the axially symmetric oblate shapes, the 

streaks in the diffraction patterns disappear, the values of α approach 4 (as indicated by the 

horizontal pink dashed line in Figs. 3 and 12) and the AR decreases. Therefore the (AR, α) points 

for axially symmetric shapes at arbitrary orientations fill the space between the pink continuous 

curve and the pink dashed line at α = 4. In contrast, Fig. 12 shows that the (AR, α) points for 

prolate shapes reside mainly below the pink continuous curve. These differences can be utilized 

to classify the observed diffraction events into axially symmetric oblate or two-lobed prolate 

droplets. 

 A closer inspection of Fig. 3 shows that a number of (AR, α) values for streaked events 

are well below the axisymmetric curve and are consistent with values expected for two-lobed 

shapes having Λ in the range 1.26  - 1.5. At larger Λ = 1.6 and 1.7 (unconnected squares in Fig. 

12), the droplets have some pronounced depressions, leading to multiple streaks in the diffraction 

patterns, see section S7 in the SM. Such diffraction images, however, were not recorded 

experimentally, suggesting that the probability for formation of droplets with Λ > 1.5 in the 

presented experiments is very low. On the other hand, Fig. 3 indicates a large number of events 

with AR in the range of 1.5 - 1.85 and α ≈ 4 within an uncertainty of about ±0.2. These points are 
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located significantly higher in the (AR, α) correlation plot than the range expected for prolate 

shapes. The ARs of these events are beyond those of stable, axially symmetric shapes with Λ = 

1.2, AR = 1.48 (see Fig. 6). Therefore, these points indicate the existence of axially symmetric 

shapes with Λ = 1.2 - 1.5, which are beyond the stability range of classical rotating droplets as 

discussed previously [18]. Finally, the origin of the points in Fig. 3 with AR > 1.9 remains 

uncertain. These points are located far away from the range expected to contain two-lobed 

shapes. However, the absence of large aspect ratio events in Fig. 3 with AR > 1.9 makes axially 

symmetric shapes unlikely candidates for these points.  

 As discussed in Section 5.1, the full three-dimensional shapes of the imaged droplets 

could not be reconstructed from the small angle scattering data presented in this work.  

Therefore, oblate droplets may also deviate from axial symmetry, the extent of these deviations, 

however, cannot be quantified. More accurate information on the droplet shapes could be 

obtained from measurements at large scattering angles, where the deviation of the diffraction 

images from centro-symmetric patterns may be used to quantify the droplet's shape.  This, 

however, would require using a much longer wavelength of radiation of about 12 nm (100 eV) to 

assure sufficiently strong scattering at large angles.  This long wavelength regime is not available 

at LCLS, but is common at the FLASH and FERMI free electron lasers [37-38]. A recent XFEL 

based wide angle x-ray scattering study of Ag nano-particles enabled the reconstruction of their 

three-dimensional shapes [36]. Very recently, wide angle scattering from He droplets in the 

XUV regime has been studied [39].  

The good agreement between the experimental and calculated droplet contours in Fig. 9 

and diffraction patterns in Fig. 10 indicates that the classical calculations give a reasonable 

representation of the shapes of superfluid helium droplets. From the shapes, the angular velocity, 
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ω, and the angular momentum, L, of the droplets can be estimated using eqs. (1,2) and Figs. 6, 8. 

For example, the diffraction pattern in Fig. 10 likely stems from a prolate shape with Λ ≈ 1.5 and 

a semi-major axis a ≈ 550 nm as discussed earlier. The resulting values of ω, L, as well as other 

parameters of the droplet are presented in the second column of the Table 2. For comparison, the 

same parameters have been calculated for axially symmetric droplets of the same volume 

rotating with Λ=1.5 (unstable) and Λ=1.2 (boundary stable/unstable).  Table 2 also lists the 

values of L in units of ħ per droplet as well as per He atom in the droplet.  These estimates show 

that the rotating droplet is marked by a very large angular momentum of ≈58 ħ per single He 

atom and thus must contain a large number of quantum vortices. Obtaining the precise number of 

vortices, NV, in a droplet of a given shape and angular momentum requires sophisticated 

calculations that are beyond the current state-of-the-art [21, 40-42]. Therefore, we estimate NV 

based on a two-dimensional model. Within this model, the number density of vortices is 

κ
ω⋅= 2

Vn
 
and the number of vortices can be estimated as NV = nV·A, where A is the area of the 

equatorial cross section of the droplet, see Table 2. This expression likely underestimates NV 

because vortices near the equator are shorter than those in the interior, and thus carry smaller 

angular momentum [13, 15].   
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Table 2. Parameters of a prolate shape with Λ = 1.5 and axisymmetric oblate shapes with Λ = 1.2 
and Λ = 1.5 having the same volume of 1.63×108 nm3 (NHe = 3.56×109,  Rspherical= 339 nm). 

 Λ = 1.5 (prolate) Λ = 1.2 (oblate) Λ = 1.5 (oblate) 
Half major axis (nm) 550 372 387 
Moment of inertia (kg.m2) 4.061 × 10-30 1.846 × 10-30 2.050 × 10-30 
L (ħ) 2.064 × 1011 1.651 × 1011 2.064 × 1011 
L (ħ)/NHe 58 46 58 
ω (rad/s) 1.028 × 107 1.245 ×107 1.409 × 107 
Number of vortices 122 108 133 
Equatorial area (nm2) 5.939 × 105 4.347 × 105 4.705 × 105 

  

 In general, in the presence of a large number of vortices, the equilibrium shapes of 

rotating superfluid droplets are expected to resemble classical droplets rotating at the same ω 

due to the similarities of the velocity fields far away from the vortex cores. For example, the 

shape of a rotating superfluid in a cylindrical container adopts a parabolic shape similar to that of 

a classically rotating liquid [10-11]. However, the question remains how accurately the classical 

shapes and the obtained classical ω describe rotating superfluid droplets. The relation between 

kinetic energy and angular momentum is different for classical droplets executing RBR and 

superfluid droplets containing a collection of vortices, which will most likely result in some 

differences of the droplets’ shapes. For example, a droplet with R = 340 nm containing a single 

central rectilinear vortex will have an AR = 1.0022 [15]. For comparison, a classical droplet with 

same angular momentum will have a smaller AR = 1.00024.  This effect can be rationalized in 

terms of the filament tension; in order to minimize the lengths of the filaments, superfluid 

droplets adopt somewhat flatter shapes in the polar regions. Evidently, the distortions of droplets 

relevant to this work and containing a single vortex are negligible and currently below the 

detection limit of the method (~1 %). The deviations between classical and superfluid droplet 
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shapes for droplets containing multiple vortices, cannot be estimated in a straightforward 

manner, because the shape and the configuration of vortices are interrelated. It would be 

desirable to obtain the shapes of superfluid droplets and the corresponding vortex configurations 

as a function of L and NHe in order to assemble the stability diagram for superfluid droplets, as 

has been established for their classical counterparts (see Fig. 6). Our measurements [18] indicate 

that in axially symmetric pseudo-spheroidal droplets vortices form an equilateral triangular 

lattice similar to those observed in Bose-Einstein condensates [12, 43]. In the future, similar 

measurements may help evaluating the arrangement of vortices in strongly deformed helium 

droplets. 

5.3 Formation of rotating droplets in the free jet 

 In this Section, we will discuss possible origins of the angular momentum and shape 

deformations in helium droplets. The droplets are produced upon expansion of liquid helium at 

T0 = 5 K and P0 = 20 bar into vacuum through a nozzle with a nominal diameter of d = 5 μm and 

a channel length of 2 μm.  During the expansion of the fluid through the nozzle its temperature 

and pressure drop and the liquid is accelerated from rest to about 170 m/s as experimentally 

determined [29]. If the fluid phase persists while reaching the vacuum, a jet is formed that boils 

vigorously giving rise to the formation of droplets. Estimates based on the rate of evaporative 

cooling show that a droplet with a 500 nm radius passes the superfluid phase transition within 

less than ≈1 μs and continues to cool to ~0.4 K [44-45] well before reaching the X-ray focal 

point after about 4 ms time-of-flight. During the passage of the fluid helium through the nozzle it 

interacts with the channel walls and acquires vorticity, which is eventually transferred to the 

droplets. The precise form of the vorticity field in the nozzle is unknown. For example, it is 

conceivable that classical vortices are formed during the expansion. The magnitude of the 



31 
 

vorticity may also depend on the unknown microscopic structure of the nozzle channel, which is 

manufactured (Plano) by mechanical drilling and may have some roughness on a sub-micron 

scale. While different nozzles were used during experimental runs 1 and 2, similar abundances 

for large AR and streaked events have been observed, indicating that the microscopic details of 

the nozzle channel may not play a dominant role. Thus, the order of a magnitude of the droplets’ 

angular velocity may be estimated based on the nozzle diameter of 5 μm and the measured 

terminal droplet velocity. Assuming that the fluid at the center of the nozzle moves with v =170 

m/s whereas it is at rest at the walls, the average velocity gradient gives an upper boundary for 

the droplet's angular velocity of about ω = v/d ≈ 3×107 s-1. The angular momentum of a spherical 

droplet of radius R is L = (8/15)×π×ρ×R5×ω = 9×10-2×R(nm)5 (ħ).  This value can be compared 

with the critical angular momentum for disintegration of the droplets [6] LCRIT ≈ 

2×(8×σ×ρ×R7)1/2 = 410×R(nm)7/2 (ħ). It follows that droplets with R > 300 nm cannot sustain the 

maximum vorticity and will undergo fission. Here, we have used the density ρ = 145 kg/m3 [46] 

and surface tension σ = 3.54×10-4 N/m [46] of liquid helium at low temperatures. The relevant 

temperature in the nozzle expansion is likely about 4 K with a smaller σ = 1.1×10-4 N/m [46], 

which will further reduce the estimated value of R. As discussed previously [29], at T0≈ 5 K the 

fluid may separate into large droplets and a dense gas inside the nozzle, which continues to 

expand along the nozzle channel.  Thus, if the droplets are produced before exiting from the 

nozzle, collisions with walls may contribute to the calculus of the droplet's angular momentum. 

It follows that the observed vorticity in a droplet is the result of a complex process that may 

include fission and collisions of the droplets.  

 The spontaneous formation of vortices during the rapid superfluid transition in bulk 

liquid He has attracted considerable attention as a model of the creation of cosmic strings during 
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the early expansion of the Universe. [47]  This so-called Kibble-Zurek mechanism was later 

supported by experiments in superfluid 3He, see [48-49] and references therein. In this work, 

however, in view of the preceding discussion the vorticity is more likely acquired during the 

flow of normal fluid helium through the nozzle channel.   

In vacuum the droplets experience extensive evaporation. For example, cooling of a 

droplet from 4 K to 0.4 K results in the evaporation of about 30% of its atoms. The effect of the 

evaporation on the droplet's angular momentum remains to be studied.  In a classical droplet the 

surface has higher angular momentum per atom, thus evaporation will likely lead to the 

reduction of the angular momentum per atom upon cooling.  Nevertheless, the estimated 

maximum angular velocity of about ≈3×107 s-1 has the same order of magnitude and is slightly 

larger than the values obtained from the shapes of strongly distorted droplets of ≈107 s-1, see 

Table 2. We also note that about 90 % of the droplets in the beam have AR < 1.1 and must 

predominantly originate from axially symmetric oblate droplets with Λ < 0.2.  

5.4. Quadrupolar deformations and shapes of the rotating droplets 

 The analysis of the strongly deformed diffraction images in Section 5.2 indicates the 

presence of the oblate droplets, which were identified with metastable axially symmetric shapes 

beyond the bifurcation point. Such shapes correspond to the dashed section of the upper branch 

in the stability diagram in Fig. 6. At AR > 1.48 the stable solutions correspond to two-lobed 

prolate shapes along the lower branch of the diagram in Fig. 6, which have lower rotational 

energy (EROT = ω×L/2).  The transition from the upper to the lower branch requires energy 

dissipation, which in classical droplets is facilitated by viscosity. On the other hand, in superfluid 

droplets at low temperatures energy transfer due to viscosity may be negligible and axially 
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symmetric shapes may persist longer than the time-of-flight of the droplets of about 4 ms as 

predicted previously [4].  

 The characteristic time for developing prolate shapes in rotating classical droplets may be 

estimated from the results of recent numerical Navier-Stokes calculations [6]. In these 

calculations, a spherical droplet of radius R was assumed to have a specific angular momentum 

and the time evolution of its shape was calculated while keeping the angular momentum 

constant. The calculations are valid for droplets with an Ohnesorge number 1
2

≥
⋅⋅

=
R

Oh σ
ρη

,
 

which corresponds to the range of overdamped oscillations [6]. Here η is the kinematic viscosity 

of the liquid. The calculations indicated that a rotating droplet at Λ > 1.2 first develops an axially 

symmetric oblate deformation, which remains metastable for a time τ1. At later times, the droplet 

becomes noticeably triaxial and eventually reaches a stationary prolate two-lobed shape at τ2. 

Using Oh = 1, R = 300 nm, ρ = 145 kg/m3, and σ = 3.5×10-4 N/m, characteristic time scales of τ1 

≈ 7×10-7 s and τ2 ≈ 3×10-6 s are obtained, which are of the same order of magnitude as the 

quadrupole oscillation damping time .102
5

6
2

sR
Q

−×=
⋅

=
η

τ  In comparison, the period for an 

underdamped quadrupole oscillation in R = 300 nm droplets is 2.3×10-7 s. Unfortunately, similar 

calculations could not yet be performed for Oh = 0.008 as in helium droplets, which follows 

using the kinematic viscosity of liquid helium at T = 1.3 K of about η = 10-8 m2/s [46]. Similar 

magnitudes of τ1,2 and τQ are not surprising because the deformation of an axially symmetric 

droplet involves coupling of the rotational motion with the quadrupolar deformation mode [4]. 

One can speculate that even at Oh << 1 the timescale for developing a prolate shape will be of the 

same order of magnitude as τQ, which is much shorter than the time of flight of the droplets from 
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the nozzle to the x-ray interaction point. Thus, classical calculations are unlikely to explain the 

observation of oblate droplets with AR> 1.5 in this work. 

The theory of quenching/development of shape deformations in this regime remains to be 

developed. In addition, quantum vortices in rotating superfluid droplets may lend additional 

stability to axially symmetric shapes as indicated by recent DFT calculations [21]. Therefore, the 

classical Navier Stokes equations may have limited applicability for the description of 

deformation kinetics in superfluid droplets.  

 

6. Conclusions  

 This work reports the first systematic study of centrifugal deformations in sub-

micrometer sized superfluid 4He droplets by x-ray coherent diffractive imaging. Strongly 

deformed droplets with aspect ratios up to 2.4 have been identified. The analysis of the images 

shows that in addition to axially symmetric oblate shapes, some droplets have triaxial prolate 

shapes. The obtained images can be well modeled by simulated x-ray diffraction patterns of 

classical droplet equilibrium shapes that belong to the axially symmetric and the two-lobed shape 

families.  It follows that the shapes of rotating sub-micron superfluid droplets are very similar to 

their classical counterparts, which enables quantitative estimates for the angular momenta and 

angular velocities of the studied droplets. The results confirm the existence of oblate metastable 

superfluid droplets with large angular momenta beyond the stability range of classical droplets. 

 Since the measurements in this work were performed at small scattering angles, the full 

three dimensional droplet shapes could not be attained.  Instead, the diffraction patterns only 

allow the reconstruction of the contours of the projection of the droplets onto the detector plane.  
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On the other hand, classical calculations indicate that oblate axially symmetric droplets and non-

axially symmetric prolate droplets may have very similar contours.  Moreover, the degree of 

possible deviations from axial symmetry in the oblate droplets cannot be quantified.  As a result, 

the distinction between oblate and prolate droplets is based on differences in the power law that 

describes the scattering-angle dependent diffraction intensity as well as on statistical arguments. 

More accurate information on the droplet shapes may be obtained based on measurements at 

large scattering angles, where the deviation of diffraction images from centro-symmetric patterns 

may be used to quantify the droplet shapes.  This, however, would require using a much longer 

wavelength of radiation of about 12 nm (100 eV), which has not been available for the presented 

experiments.   

 The interpretation of the results in this work is based on calculations of the equilibrium 

shapes of classical droplets rotating as rigid bodies. In superfluid droplets the liquid is not 

stationary in the rotating frame because its motion is determined by a collection of quantum 

vortices.  The presence of quantum vortices should cause a deviation of the droplet shapes from 

their classical counterparts, which remains to be quantified.  In the future it would be desirable to 

obtain the shapes of superfluid droplets and the configurations of vortices as a function of 

angular momentum and droplet size in order to assemble a stability diagram for superfluid 

droplets, as has been established for their classical counterparts. Our measurements [18] indicate 

that in axially symmetric oblate droplets, vortices form equilateral triangular lattices similar to 

those observed in Bose-Einstein condensates [12, 43]. Similar measurements may help 

evaluating the arrangements of vortices in strongly deformed prolate helium droplets.  
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