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Abstract: The foldover effect of nonlinear eigenmodes in feedback ring systems was observed for
the first time. Experiments made use of a system that consisted of a magnetic thin film strip,
which supported the propagation of spin waves, and a microwave amplifier, which amplified the
signal from the output of the magnetic strip and then fed it back to the input of the magnetic
strip. The signal amplitude vs. frequency response in this ring system showed resonant peaks
which resulted from ring eigenmodes. With an increase in the resonance amplitude, those
resonant peaks evolved from symmetric peaks to asymmetric ones and then folded over to higher
frequencies. The experimental observations were reproduced by theoretical calculations that
took into account the nonlinearity-produced frequency shift of the traveling spin waves.

Active feedback ring systems consisting of a closed loop of a dissipative transmission line and an active
element to compensate for the dissipation constitute an excellent testbed for exploring nonlinear
dynamics in driven damped systems. Example systems include electromagnetic transmission line ring
oscillators [1,2,3,4], optical fiber rings [5,6,7,8,9], and magnetic thin film-based feedback rings
[10,11,12,13,14]. Such systems not only sustain the self-generation of envelope solitons, both bright
[1,6,7,11] and dark [15], but have also enabled the observation of symmetry-breaking nonlinear modes
[11], chaotic solitons [2,7,8,13,14], and soliton fractals [12] and have also allowed for the study of the
excitation of chaotic dynamics via different nonlinear processes [2,5,7,9,10,16,17].

This letter reports that active feedback rings also support another fascinating nonlinear effect - the
foldover effect. The nonlinear foldover effect originates from the nonlinearity in which the oscillation
frequency varies with the amplitude, and manifests itself as the bending of the resonant peak in an
oscillation amplitude vs. frequency plot. It occurs in nonlinear systems as diverse as driven pendula [18],
spring-based mechanical oscillators [19], electrical RLC resonant circuits [20], and precessional magnetic
moments in both insulating and metallic magnets [21,22,23]. The effect, however, has never been
observed in ring systems so far.

The experiments made use of an active feedback ring that consists of a magnetic thin film strip serving
as a spin-wave transmission line and a microwave amplifier which amplifies the output signal from the
magnetic strip and then feeds it back to the input of the magnetic strip. This ring system has a sequence
of resonant eigenmodes for which the phase per round trip satisfies constructive interference conditions
[24]. Thanks to these eigenmodes the amplitude vs. frequency response of the ring signal shows resonant
peaks at certain frequencies, and these peaks fold over to higher frequencies when the peak amplitude is
large. This foldover effect is intrinsic and originates from the nonlinearity-caused frequency shift of the
traveling spin wave. It is not associated with either high-power heating or four-wave interactions, as
evident from the experimental data. To better understand the physical origin of the observed foldover
effect, theoretical calculations were carried out that took into account the nonlinearity of the spin waves.
The theoretical results not only confirmed the experimental observations, but also showed the rolling
over of the top part of the resonant peaks which cannot be measured experimentally.



Four important points should be highlighted. First, the foldover effects reported previously are
associated with the nonlinearity-caused frequency shift of simple, local oscillations [18-23], while the
foldover effect presented below results from the nonlinear frequency shift of waves traveling around a
feedback ring. This indicates that the foldover effect not only occurs for local oscillations but also for
traveling waves. Second, as mentioned above the active ring systems embrace rich nonlinear dynamics
and have enabled the studies of a large number of new nonlinear phenomena [1-17]. The observation of
the foldover effect presented below further demonstrates the excellent versatility of the feedback rings
as a fundamental system for exploring nonlinear dynamics in general. Third, the foldover effect presented
here should be universal and is expected to occur in any feedback ring systems, including electromagnetic
transmission line oscillators [1-4] and optical fiber rings [5-9]. Future work that demonstrates the foldover
phenomenon in these systems is of great interest. Finally, there is always a bi-stability phenomenon that
accompanies the foldover effect, and such bi-stability can be used to develop intensity-dependent filters,
power limiters, and switching devices [25,26]. The demonstration of the foldover effect in ring systems
offers a new dimension for the development of these devices.

The ring setup is shown schematically in Fig. 1. It consists of a magnetic YsFesOi, (YIG) thin film strip
and two microstrip transducers placed over the YIG strip for the excitation and detection of spin waves in
the YIG strip. The YIG strip is magnetized by a perpendicular magnetic field. This film-field configuration
supports the propagation of forward volume spin waves along the YIG strip and, at the same time, also
prohibits three-wave nonlinear interactions [27,28]. The output signal from the detection transducer is
fed back to the excitation transducer through an adjustable microwave attenuator and a microwave
amplifier. The response in the ring is sampled through two directional couplers and is measured with a
vector network analyzer. For the data presented below, the YIG strip was 1.6 mm wide and 55 mm long,
the microstrip transducers were 50 pum wide and 2 mm long, the transducer separation (/) was held at
10.4 mm, and the magnetic field was 2990 Oe. Both the amplifier and the attenuator had a linear response
over 1-8 GHz.

Figure 2 presents the characteristics of the YIG strip and the feedback ring. Figure 2(a) shows the
transmission coefficient data (S;:1) measured as a function of frequency (f) for the transducer-YIG-
transducer structure. The left diagram shows the amplitude vs. frequency response, namely, the
amplitude of Sz;i(f). In the right diagram, the red curve presents the spin-wave dispersion curve
determined from the phase of S, (f), while the green curve shows a theoretical fit to the spin-wave
dispersion equation [24,28]. To obtain the experimental dispersion curve, the spin-wave wavenumber
k(f) was calculated from the phase of experimental S;i(f), namely, @(f), using the relation @(f)=k(f)/+@o
where ¢ is a phase constant and taking k=0 at the low cut-off frequency f=3.30 GHz of the transmission.
The theoretical fit used [24,28]
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Fig. 1. Schematic of a magnetic thin film strip-based active feedback ring system.



a)(k)=|y|\/(H0—47rMS)(H0—47rMS l"kz_kd] (1)

where @=27fis the frequency, | 7| is the absolute gyromagnetic ratio, Ho is the magnetic field, 4nM; is the
effective saturation induction of the YIG film, and d is the YIG film thickness.

The data indicate that the spin waves in the YIG film have a passband of about 3.30-3.65 GHz. The
fitting used | »|=2.8 MHz/Oe and 4tM=1750 G. The fitting parameters were Ho and d. For the fit given
in Fig. 2(a), one has Hy=2920 Oe and d=10.2 um. The field value is slightly smaller than the experimental
value. Possible reasons for this difference include the errors in measuring Ho and determining the low
cut-off frequency of the spin wave and the assumption of zero anisotropy field in the YIG film. Note that
for all the S;1 measurements in this work, the signals from the vector network analyzer had the same
power, which was -17 dBm.

Figure 2(b) shows the amplitude-frequency response and dispersion curve of the ring in the same
format as in Fig. 2(a). Figure 2(c) presents the same data as in Fig. 2(b), but in much smaller frequency
scales. One can see thatin comparison with the transducer-YIG-transducer case, the amplitude-frequency
response in the feedback ring exhibits a very similar passband but shows notable resonant peaks, while
the dispersion curve shows steps at the frequencies of the resonant peaks. These peaks and steps are
indicative of the ring eigenmodes [24]. The vertical dashed lines in Fig. 2(c) indicate the k values of the
eigenmodes which were determined by the phase condition k/+@.=2nn, where kl is the phase change due
to the propagation of the spin wave, ¢. is the phase shift introduced by the electronic, and n is an integer
and denotes the ring eigenmode index. Note that ¢ varies with f, and the ¢ value used in the k
calculations ranged from 2.7 rad to 8.4 rad for n=1-25. It should be mentioned that when the attenuation
() of the adjustable attenuator is relatively large and all ring eigenmodes experience an overall net loss
(L) for one round trip, there is no spontaneous signal in the ring. However, if « is reduced to a certain
level, the ring eigenmode with the lowest decay rate (n=5) can have a zero net loss, namely, L=0, and
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Fig. 2. (a) Transmission profile (left) and spin-wave dispersion curve (right, red) for a YIG strip. (b) Amplitude-frequency response
(left) and spin-wave dispersion curve (right) for a YIG strip-based ring. (c) The same data as in (b) shown in smaller frequency
scales. The green curve in (a) is a theoretical fit. The vertical dashed lines in (c) indicate the wavenumbers of the ring eigenmodes.



thereby start to self-generate in the ring. The data in Figs. 2(b) and 2(c) were taken at L=1.0 dB, at which
there is no self-generation in the ring. Note that in the experiment one varies L by changing the
attenuation of the attenuator. The larger the L is, the weaker the ring signal is.

Figure 3 presents the key results of this work. Figure 3(a) shows the effects of the ring net loss L on
the amplitude-frequency response. The data show five ring resonant peaks, with the eigenmode index
given in the top diagram. These peaks are similar to those shown in Fig. 2(c), but for a different frequency
range. Figure 3(b) shows the resonant peak for the “n=21" eigenmode for three different L levels, as
indicated. One can see that the “n=21" peak is almost perfectly symmetric at L=16.5 dB and L=8.5 dB,
evolves to an asymmetric peak at L=3.5 dB, and folds over to the high-frequency side at L=2.0 dB and L=1.0
dB. Very similar behavior can also be seen for the “n=20" and “n=22" peaks. The “n=19" and “n=23"
peaks, however, do not show the same foldover response. This is because these two modes have
relatively lower amplitudes than the “n=20", “n=21", and “n=22" modes. They are relative weak because
the loss at the corresponding frequencies are relatively high, as shown in Fig. 2(a), where the transmission
profile is not flat mainly due to the frequency characteristics of the electronic components and possible
reflections at the joints between different components in the feedback ring. These two modes did
become stronger with a decrease in L, as shown in Fig. 3(a), but the resultant nonlinearity was still too
weak to produce noticeable foldover responses. Although not shown, similar results are observed for
the resonant peaks in other frequency ranges. These results together demonstrate the nonlinear foldover
effect of the ring resonances.

The above-present foldover effect is associated with the nonlinearity-caused spin-wave frequency
shift. Assuming |u|? as the power amplitude of the spin wave, one can write down the dispersion for the
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Fig. 3. Foldover of ring eigenmodes. (a) Ring amplitude-frequency responses measured at different ring overall net loss (L) levels.
(b) Amplitude-frequency responses for the n=21 eigenmode measured at three L levels.
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forward volume spin wave in the YIG strip as [24]

a)(k,|u|2)=|y|\/[H0—4ﬂMs(1—|u|2)}{Ho—47rMS(1—|u|2)1_|fd_kd} (2)

Note that Eq. (2) reduces to Eq. (1) if one assumes |u|%=0. The fitting of the experimental dispersion curve
shown in Fig. 2(a) used Eq. (1), rather than Eq. (2). This is justified because during the measurements the
input power was low and the spin wave was weak, resulting in |u|?*<<1. It is evident from Eq. (2) that for
a given k, an increase in |u|? leads to an increase in @. This means that if the amplitude of the ring
resonant peak becomes large, the peak shifts to higher frequencies. As the top of the peak shifts more
than the sides of the peak, the net effect is the bending of the peak to the high-frequency side, giving rise
to the foldover behavior.

It is important to highlight that the foldover shown in Fig. 3 is towards the high-frequency side, but in
principle it is also possible to have a foldover to the low-frequency side [18,20,23]. If one defines

N :am/a(|u|2) as the nonlinearity coefficient of a system, the sign of N dictates the direction of the

foldover. Specifically, the resonant peaks fold towards the high-frequency side if N>0 and towards the
low-frequency side if N<O. For the ring system shown in Fig. 1, one can flip the sign of N and thereby
reverse the foldover direction simply by rotating the magnetic field to the film plane. For the in-plane
configuration, the YIG strip supports backward volume spin waves for a field along the YIG strip length
and surface spin waves for a field perpendicular to the strip length [27,28], both exhibiting N<0 [24].

To better understand the physics underlying the foldover effect in feedback ring systems, numerical
calculations were carried out to reproduce the experimental observations. Referring to the system shown
in Fig. 1 and considering a signal Ai, input to the left directional coupler, after the signal passes through
the amplifier and then the YIG strip, it appears at the output of the right directional coupler as

Au = AuG| 7 (€M7 7, | @)

where S denotes the loss for the directional coupler to transfer a signal into or out of the ring and G is the
gain provided by the amplifier. The square bracket term in Eq. (3) describes the change of the signal in
the transducer-YIG-transducer structure, where 7. and 774 describe the attenuations due to the excitation
and detection transducers, respectively, and & denotes the spatial decay rate of the spin wave. For
convenience, the term ryee‘§SW'77d is replaced by a single attenuation parameter 7 in the discussions that

follow. Aot in Eq. (3) is only a small portion of the signal from the YIG strip due to the relatively large loss
S, while the majority of the signal propagates to the attenuator and the amplifier and then back to the
YIG strip. The net effect is the continuous circulation of the signal in the ring and a signal at the output of
the right directional coupler as

Au =3 AS[GrE [ [(1-p)a1-p)]" 5 (4)

where (1-f) denotes the loss which the ring signal experiences every time it passes through the directional
coupler, and « denotes the attenuation of the adjustable attenuator. From Eq. (4), one can define the
complex ratio

Su= =% plene T[0-pai-p)]"' 5 (5)

n

Defining S;1 as the amplitude of S;1, 20Ig(S21) corresponds to the ring amplitude-frequency response
measured in the experiment. From Eq. (5), one can write S;; as



2 2
S, = J[ > B2G"" (1- g) " ! cos(nkl)} +[ > A6 (1- )"V ™! sin(nkl)} (6)
n=1 n=1

Equations (2) and (6) together allow for the calculation of the amplitude-frequency response in the ring.

For the theoretical results presented below, the calculations used £=0.15 (-16.5 dB), G=1.78 (45 dB),
and a=-(L+7) dB, which are all experimental values. In order to have the frequency positions of the
calculated resonant peaks match those of the experimental peaks, the calculations used /=11.3 mm, which
is slightly larger than the actual transducer separation (10.4 nm). This adjustment was reasonable because
the phase change (¢.) due to the electrical circuit is not taken into account in Eqgs. (4)-(6). Note that this
phase change is much smaller than the change due to the spin-wave propagation (k/). The parameter 7
in Eq. (6) is frequency dependent and was determined using Eqgs. (2) and (6) to fit the ring amplitude-
frequency response measured at [=40 dB. The fitting assumed that |u|? was a constant (|uo|?)
independent of @. This assumption is justified because the amplitude-frequency response at L=40 dB is
relatively flat and does not show interference patterns. Note that the “L=40 dB” amplitude-frequency
response and its corresponding response in the kK domain were used as a reference background in the
calculations. The “Sy1 vs. @” and “S,1 vs. k” responses can be mapped to each other using Eq. (2).

The calculations involve the following steps. One first uses Eq. (6) to calculate the S;1 vs. k response
for a given L. Then, one obtains (|u|%|uo|?)as a function of k by examining the difference between the
calculated S; vs. k response with the background 5,1 vs. k response mentioned above. Next one uses the
(Ju|?|uol?) vs. k response and Eq. (2) to calculate the corresponding wvs. k response. By comparing the
wVs. k response with the S;1 vs. k response, one finally obtains S,; as a function of @ for a particular L.

Figure 4 shows representative results. Figure 4(a) compares the calculated amplitude-frequency
responses (red curves) with the experimental responses (blue curves) for three L levels, as indicated.
Figure 4(b) shows the same red curve in the bottom diagram in (a), but in a much smaller frequency scale.
It is evident that there is an almost perfect agreement between the experimental and calculated
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Fig. 4. Comparison of experiments and calculations. (a) Experimental (blue) and theoretical (red) ring amplitude-frequency
responses for three different ring net loss (L) levels. (b) Calculated amplitude-frequency response for L=1.0 dB.
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responses. What’s more, the curve in Fig. 4(b) shows the rolling over of the top part of the peak, which is
inherent but cannot be demonstrated experimentally. These results clearly justify the above-discussed
physical origin of the foldover effect. Note that for the data shown in Fig. 3, the measurements were
carried out by sweeping the frequency from low to high, and the amplitude jumped down from a high
value to a lower value at the foldover. If the frequency is swept from high to low, it is expected that at
the foldover the amplitude would jump up from a low value to a higher value at a frequency slightly lower
than that for the down jump, resulting a hysteresis. This hysteresis response was not measured as the
frequency sweeping direction was limited in the experiment. However, it is intrinsic [19,22,23] and can
easily be imaged with the help of the foldover shown in Fig. 4(b).

In summary, the foldover effect was observed for nonlinear resonances in a YIG thin film strip-based
active feedback ring. The amplitude vs. frequency response in the ring showed resonant peaks developed
from ring eigenmodes. With an increase in the resonance amplitude, those resonant peaks evolved from
symmetric peaks to asymmetric ones and then folded over to higher frequencies. To understand these
results, theoretical calculations were carried out that took into account the nonlinearity of the spin waves.
The calculated results almost perfectly agree with the experimental observations, confirming that the
observed foldover effect originated from the nonlinearity-produced spin-wave frequency shift. The effect
is not associated with either heating or the nonlinear parametric interactions of different spin waves, as
evident by experimental data presented in the supplemental document. Finally, it should be noted that
the foldover effect presented above differs from that observed previously for ferromagnetic resonance in
magnetic thin films. In this work the foldover effect is associated with the nonlinear frequency shift of
traveling spin waves, while in previous work the effect was for spatially uniform precessions of magnetic
moments [21,22,23,25].
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