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Abstract

At high pressure, Mg is expected to transform to the body-centered cubic (BCC) phase. We use

density functional theory to explore the structure of 〈111〉-type dislocation cores in BCC Mg as a

function of pressure. As the pressure is reduced from the region of absolute stability for the BCC

phase, the dislocation cores spread. When dislocation cores overlap the displacements of columns

of atoms resemble the nanodisturbances observed in TiNb alloys known as Gum Metal. As the

pressure is lowered further, these regions transform into the hexagonal close-packed (HCP) phase.

The ideal tensile strength of BCC Mg is also computed as a function of pressure. Despite its low

shear modulus, BCC Mg is predicted to be intrinsically brittle at absolute zero.
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I. INTRODUCTION

Over a decade ago researchers at Toyota developed Gum Metal, a class of TiNb based

metals that exhibit a wide variety of both novel and attractive properties.1 These metals

display an elastic limit of approximately 2 − 3% at room temperature and 4% at 77 K, a

yield strength of over 1 GPa, as well as Invar and Elinvar properties. In addition Gum

Metal appears to fail at or near its ideal strength, a behavior that has been long thought

impossible in a bulk material due to the prevalence of defect mediated plasticity.2–4 Saito,

et al. proposed three criteria for the emergence of the ”super” properties of Gum Metal.1

The material must have an average valence electron number (electron/atom ratio) of 4.24,

a bond order of approximately 2.87 and a d-electron orbital energy level of roughly 2.45 eV.

Subsequent work on Gum Metal suggested that a more general connection can be

made between the properties of Gum Metal and the proximity of a material to an elas-

tic instability.5–8 Gum Metals exist near the composition at which the body-centered cubic

(BCC) phase becomes elastically unstable and transforms into the hexagonal close-packed

(HCP) phase. The proximity to this lattice instability is apparent in the elastic constants.

Specifically the reduced shear modulus, C ′ = 1
2
(C11 −C12), goes to zero at the transition.1,5

Based on continuum anisotropic linear elasticity theory (henceforth abbreviated as lin-

ear elasticity theory) an explanation for the apparent failure of Gum Metal near its ideal

strength has been developed. As the elastic instability is approached the dislocations’ core

radii grow. For proper alloy compositions and sufficient dislocation densities (Gum Metal’s

“ideal” behavior emerges only after severe cold-working1) an applied stress can cause the

spread dislocation cores to percolate, resulting in high shear stress regions, where plastic

deformation via shear melting should be possible.6

This explanation for the appearance of Gum Metal like properties suggest that it might

be possible to observe similar behavior in other alloy systems and at other types of lattice

instability.7 In fact, experimentally the BCC to face-centered cubic (FCC) instability has

been exploited to produce a Fe-Ni-Co-Ti alloy with Gum Metal like properties.9 As in the

case of Gum Metal, the properties of this alloy are likely strongly influenced by the d-states

of the component atoms. Experimentally, the only known examples of Gum Metals are

based upon transition metals.

This suggests an interesting avenue of exploration. Can one develop a Gum Metal alloy
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without the incorporation of transition metal elements? Such an alloy might be technolog-

ically interesting as it is likely to have a high specific strength. For example, a Mg based

Gum Metal might be well suited for applications requiring a light weight structural alloy.

In what follows, we consider the potential for a non-transition metal to display properties

that have been linked to the ”super” properties of TiNb based Gum Metals. We consider in

detail the case of Mg under high pressure.

The BCC phase is elastically unstable in magnesium at ambient pressure,16 but is pre-

dicted to be stabilized at high pressures.10 This offers a useful model for examining the effect

of an elastic instability on the dislocation core structure as pressure can be used to approach

the instability. It is also a much simpler approach compared to varying the composition

of a binary alloy to approach an elastic instability, as none of the complexities inherent to

modeling a solid solution need to be considered.

We first calculate the relative stability of BCC Mg with respect to HCP as a function of

pressure using density functional theory (DFT) and compare these results to those already

in the literature. By determining the elastic constants for a range of pressures, we show that

BCC Mg approaches an elastic instability associated with C ′ → 0 and that this corresponds

to a spreading of the dislocation core. Analysis of the dislocation core structure indicates

that interactions between the spread cores take place. This leads, initially, to the formation

of localized regions of shear (nanodisturbances) that are characteristic of Gum Metal,42 and

ultimately results in the nucleation of the HCP phase. Unlike Gum Metal, BCC magnesium

is predicted to be intrinsically brittle, despite being highly elastically anisotropic and having

a G/B value typically associated with ductility.

II. THEORY

The calculation of elastic constants was done by following the method described by Sin’ko

in which pressure terms are incorporated into the elastic constants.18 The approach begins

with writing the strain of the homogeneous body as a symmetric second-rank tensor, which

is a function of the strain magnitude, γ, and is of the form

ǫij = sijγ + eijγ
2 + ... (1)

Here sij and eij are the first- and second-order terms of the strain tensor. The elastic
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constants can then be written as a function of both volume at a given pressure V , and the

Lagrangian strain η

C̃ijkl =
1

V

∂2E(V, η)

∂ηij∂ηkl
(2a)

ηij = ǫij +
1

2
ǫikǫkj . (2b)

It should be noted that the Einstein summation convention is used throughout this paper.

Taking the Taylor series expansion of the strain energy with respect to the strain magnitude

results in

∑

α,β

ξαξβC̃αβsαsβ = 2P (V )
∑

α

(2− ξα)eα + P (V )
∑

α

ξαs
2
α +

1

V

∂2E(V, γ)

∂γ2
|γ=0. (3)

The above equation is written in Voigt notation with the indices ranging from 1 to 6 and

ξα = 1 if α ≤ 3 and ξα = 2 if α > 3. Tsuchiya and Kawamura found that by selecting the

strain configurations appropriately, the cubic elastic constants under pressure (C̃ij) can be

calculated from equation 3 using the following equations20

C̃11 =
1

V

∂2E(V, ǫ̂4)

∂γ2
|γ=0 (4)

C̃44 = −P

2
+

1

12V

∂2E(V, ǫ̂5)

∂γ2
|γ=0 (5)

C̃11 − C̃12 = −P +
1

2V

∂2E(V, ǫ̂6)

∂γ2
|γ=0. (6)

Here the strain tensors ǫ̂4, ǫ̂5, and ǫ̂6 are defined as follows
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ǫ̂4 =











γ 0 0

0 0 0

0 0 0











(7a)

ǫ̂5 =











0 γ γ

γ 0 γ

γ γ 0











(7b)

ǫ̂6 =











γ 0 0

0 −γ 0

0 0 0











. (7c)

Ideal tensile strength calculations can be performed to determine if a material is intrin-

sically brittle or ductile.21,22 The eigenvalues of the symmetrized Wallace tensor,13,23 λijkl,

govern the elastic stability of a material following

λijklδǫijδǫkl ≥ 0. (8)

In the case of a uniaxial load, σ, on a BCC material applied along 〈001〉 the elastic stability
criteria are

(C33 + σ)(C11 + C22) > 2
(

C13 −
σ

2

)2

(9a)

C11 − C22 > 0 (9b)

C66 > 0 (9c)

C44 +
σ

2
> 0. (9d)

The failure of conditions 9b-9d correspond to a shear instability (intrinsic ductility) while

condition 9a results in cleavage.13 The elastic constants are of a body-centered tetragonal

(BCT) Bravais lattice due to an uniaxial load being applied to the BCC crystal. The strain

states used to calculate the six elastic constants of a BCT lattice under pressure are shown

in the appendix (VIIIB).

The elastic constants can be used to define a size for a dislocation core. By defining the

dislocation core as the region for which the stress predicted by linear elasticity theory is

greater than the ideal strength, an approximation for the region in which linear elasticity
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theory is no longer valid is obtained.6,7 Since symmetry often links the ideal strength to

the elastic constants, this definition allows for the dislocation core radius to be written in

terms of the elastic constants. In the case of a BCC metal the dislocation core radius can

be expressed as

rcore =
bK

2πfG〈111〉

. (10)

Here b is the Burgers vector, K, the elastic modulus governing the dislocation line tension,

G〈111〉, the shear modulus along the 〈111〉 direction (that for BCC is independent of slip

plane), and, f , a constant equal to approximately 1/9 in the case of BCC.7 K and G〈111〉

can be expressed as

K =
√

(C11 − C12)C44

√

2C2
11 + 2C11C12 − 4C2

12 + 13C11C44 − 7C12C44 + 2C2
44

3(C11 − C12 + 4C44)(C11 + C12 + 2C44)
(11)

G〈111〉 =
3C44(C11 − C12)

C11 − C12 + 4C44
. (12)

The result of equation 10 is that the dislocation core radius is inversely proportional to
√
C11 − C12. It has been argued that in the case of Gum Metal, due to its small reduced

shear modulus the application of an applied stress can cause the dislocation core region to

percolate resulting in paths of shear melting.6,36

DFT can be used to compute dislocation core structures using periodic supercells of 〈111〉
oriented screw dislocations following the approach of Daw.37 This approach assumes that

the distortion tensor can be written as a Fourier series

∆jk(r) =
∑

G

∆̃jk(G)eiG·r (13)

where ∆̃jk(G) is a component of the distortion in reciprocal space and G corresponds to a

reciprocal lattice vector. The elastic energy is written as

Wc =
1

2

∫

cell

dvCjklm∆jk∆lm =
1

2
ΩcCjklm

∑

G

∆̃jk∆̃
∗
lm. (14)

Here ∆̃∗
lm is the complex conjugate of ∆̃lm, Cjklm is the elastic tensor, and Ωc is the volume

of the cell. The equilibrium distortion tensor is determined by minimizing Wc with respect
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to the distortion components subject to the constraints imposed by the dislocations. The

distortion is then integrated to produce the initial displacements for our unit cells. In our

numerical work the core radius was chosen to be b/4.

The distortion in the cell vectors due to the introduction of the dislocation quadrupole

was determined as done by Lehto and Öberg.32 Analysis of the dislocation core structure

was carried out using differential displacement maps (DD) as developed by Vitek, et al..33

In these maps, the magnitude of an arrow between two nearest neighbor (NN) atoms shows

the relative displacement, normal to the page, between the two atoms as a result of the

dislocation. The arrows are scaled such that an arrow connecting NN represents a displace-

ment of b/3. For a 〈111〉-type screw dislocation in BCC a full dislocation is symbolized in a

DD map as a circuit which sums to b (e. g. a triangle of NN atoms connected by arrows of

magnitude b/3 and pointing clockwise). The Nye tensor was calculated using the approach

outlined by Hartley and Mishin.30,31

III. COMPUTATIONAL DETAILS

The relative phase stability of BCC and HCP Mg, the elastic constants, dislocation core

structure, and ideal tensile strength calculations were all performed using the projector

augmented wave method (PAW) as implemented in the Vienna Ab Initio Simulation Pack-

age (VASP).11,12 For the exchange-correlation functional the Perdew, Becke, and Ernzerhof

(PBE) Generalized Gradient Approximation was employed.15 Both the 2p as well as the 3s

states were considered as valence electrons. Phase stability calculations using PAW were con-

ducted using primitive unit cells. A plane-wave cutoff of 580 eV was used with a first-order

Methfessel-Paxton scheme and a smearing parameter of 0.1 eV. The convergence condition

for electronic and ionic relaxations were set to 1 × 10−6 eV and 0.005 eV/Å respectively.

These values were used for all other PAW calculations, unless otherwise stated. For BCC a

21× 21× 21 Monkhorst-Pack grid was used, while for HCP a 21× 21× 13 Γ-centered grid

was implemented instead. The elastic constants calculations used a 25×25×25 Monkhorst-

Pack grid with a conventional BCC unit cell. Electronic relaxations for elastic constants

calculations were set to 1 × 10−10 eV. A 135 atom BCC unit cell was used with 2 × 1 × 8

Γ-centered grid for dislocation core calculations.

Ideal strength calculations21,22 were performed by applying a fixed strain along the [001]
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direction, as this is considered the weakest direction under tension for BCC metals,24,25

and varying the strain along [100] and [010] to achieve the proper stress state. Relaxations

were performed until all components of the stress tensor other than σ33 were less than 0.05

GPa. Brillouin zone integrations were performed using a 29 × 29 × 29 Monkhorst-Pack

grid. The intrinsic ductility of the material was tested by allowing the unit cell to relax

along a tetragonal path. The symmetrized Wallace tensor was evaluated by calculating the

BCT elastic constants using the same input parameters as for the cubic elastic constants

described above. The strain states for the BCT elastic constants are defined in equation 15

of the appendix (VIIIB).

The relative phase stability as well as the density-of-states as a function of pressure

were also performed using the full-potential linearized augmented plane wave (FP-LAPW)

method as implemented in the code Elk.14 Convergence testing was conducted with respect to

the muffin-tin radius, k-point sampling, and plane-wave cutoffs. A total energy convergence

criterion of 3.0× 10−8 Ha was used. A smoothing of 0.001 Ha was used for the Dirac delta

function.

IV. RESULTS

The phase stability of BCC and HCP structures was considered using both FP-LAPW

and PAW. Both methods result in a general agreement for the behavior of the energy of

the BCC phase in magnesium as a function of pressure as shown in figure 1. This leads

to the conclusion that the PAW method, while not an all-electron method, models the

given system reasonably well, and is suitable for our calculations. The BCC-HCP transition

volume and pressure, computed with PAW, are in general agreement with previous work

conducted using the linear muffin-tin orbitals method (LMTO) as shown in table 1. The

current work’s values for transition volume and pressure differ from that of reference10 by

0.8% and 7% respectively. The partial density of states calculated using FP-LAPW shown

in figure 1d demonstrates that the occupation of the d-states are negligible at least for

volumes V = 0.6V0 and higher. Calculations of the density of states, figure 2, at volumes

between 0.6V0 and 0.7V0 using FP-LAPW show that the elastic instability does not appear

to be related to the Fermi level approaching a van Hove singularity, which is associated

with the low shear modulus, C44, seen in V, Nb, and Ta.26–28 Using the common tangent
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construction figure 1 indicates that the two phase region does not extend far beyond the

transition pressure, which is calculated to be approximately 50 GPa and corresponds to a

volume of 0.6V0. However, the BCC phase remains elastically stable for volumes approaching

V0 as shown in figure 3 and table II.
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FIG. 1. Comparison of the total energy of the BCC phase using both the FP-LAPW and PAW

methods in 1a. Figure 1b shows a plot of the relative stability of BCC with respect to HCP as a

function of volume. The BCC phase becomes stable at roughly half of the volume corresponding

to ambient pressure and volume. Common tangent construction for BCC and HCP as a function

of volume ratio is illustrated in figure 1c. The partial density of states (DOS) for magnesium at

V = 0.6V0 is shown in figure 1d.
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FIG. 2. Total density of states for volumes between 0.60V0 and 0.90V0 using FP-LAPW.

TABLE I. BCC-HCP transformation data. V0 corresponds to the volume of HCP magnesium under

no applied pressure.

V0 (HCP) [Å3] Vtrans [Å3] Ptrans [GPa] Ref.

23.0 13.5 53.8 current work

23.2 13 50 [10]

— — 50± 6 [19]

The elastic stability of the BCC phase was computed and compared to previous work

(figure 3a). As ambient pressure is approached the BCC lattice becomes elastically unsta-

ble. Based on the arguments given above this should result in an increase in the dislocation

core radii. The dislocation core radius normalized by the burgers vector as calculated from

elasticity theory is shown in figure 3b. For volumes 0.6V0 − 0.9V0 the core radius is large

compared to Gum Metal, but also increases as the elastic instability is neared. For com-

parison the dislocation core radius of tungsten, a nearly elastically isotropic crystal, was

estimated to be 1.45.6

As shown in table II, the dislocation core radii of Gum Metal and the Ti3Nb Gum Metal

approximate are relatively close to the that of tungsten. The dislocation core radius of
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FIG. 3. Figure 3a compares LMTO results from reference16 with PAW (Current Work). Figure

3b shows the change in the ratio between the dislocation core radius, rcore, and magnitude of the

Burgers vector, b. Lowering the pressure of Mg appears to cause C11 −C12 → 0, leading the BCC

phase to become elastically unstable.

Ti80V20, however, is 2.42. Ti3Nb contains 4.25 valence electrons per atom (e/a), while

Ti80V20 has 4.20 e/a. Near an elastic instability small fluctuations in composition (changes

in e/a) can have a dramatic impact on the dislocation core radius, leading to the potential for

different mechanisms for plasticity in different regions of the material. Substituting pressure

for composition this same behavior is apparent. Comparing figures 3a and 3b, as C11 −C12

approaches zero the dislocation core radius increases.

Dislocations core structures were computed as described in section III. A quadrupolar

configuration for the dislocations was selected as this has been shown to be energetically
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TABLE II. Comparison of relative core radii and elastic constants for various Gum Metal approx-

imants. All elastic constants are in units of GPa.

Material C11 C12 C44 C ′ rcore/b

Ti80V20 (Theory)6 139 131 47 4 2.42

Ti3Nb (Theory)38 149 111 37.5 18.7 1.51

Ti–36Nb–2Ta–3Zr–0.3O (wt.%)39 125 93 28 16 1.49

Mg (V = 0.6V0) 207 178 124 14.5 1.83

Mg (V = 0.7V0) 137 112 85.5 12.5 1.93

Mg (V = 0.8V0) 84.2 76.1 59.9 4.05 2.51

favorable to a conventional dipole stacking.32 Figure 4 illustrates the expansion of the dis-

location cores in the quadrupolar configuration as the volume increases from 65% to 80% of

the ambient volume coinciding with the drop in the reduced shear modulus as seen in figure

3. The dislocation densities of the screw quadrupolar configuration at 0.65V0, 0.70V0, and

0.80V0 is 2.66 × 1017 m−2, 2.53 × 1017 m−2, and 2.32 × 1017 m−2 respectively. It should be

noted that the lateral displacements of atoms on the (111) plane are included in this plot.

The large displacements shown in the DD map for the two larger volumes are indicative

of the phase transformation of BCC to HCP as illustrated in figure 4 by adaptive common

neighbor analysis (a-CNA)40 as implemented in the open visualization tool (OVITO).41 This

is especially evident for 0.8V0, where the dislocations appear to have initiated the transfor-

mation of almost the entire supercell into HCP (red atoms). Considering that this material

has been designed specifically such that C ′ approaches zero, the appearance of HCP in the

dislocation core is understandable. The 0.65V0 dislocation cores display an approximant

three-fold symmetry near the center of the dislocation similar to those found by Vitek, et

al. for Fe.33 These correspond to the three {112} type planes intersecting the dislocation

cores. Interestingly, the Burgers path, which connects the BCC to HCP phase34 consists of

a near {112̄}〈111〉 shear coupled with a softening of N-point acoustic phonon mode.35

Figure 5 depicts the projection of a screw dislocation quadrupole with all atoms projected

onto the (111) plane in order to better visualize any lateral shifts resulting from the disloca-

tions. The large degree of lateral displacements for both volumes is associated with a highly
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a) b)

c) d)

e) f)

FIG. 4. Comparison of relaxed 〈111〉 screw dislocations in a quadrupolar configuration for BCC

magnesium at 0.65V0, 0.7V0, and 0.8V0 (figures a, c, and e respectively). Figures b, d, and f show

atoms colored using CNA for 0.65V0, 0.7V0, and 0.8V0. Red atoms are HCP, blue atoms correspond

to BCC, green FCC and white are unclassified.

anisotropic material based on a comparison to TiV dislocation cores.6 In figure 5a localized

regions of shear can be seen reminiscent of nanodisturbances (defined as a dipole of partial

dislocations with Burgers vectors not corresponding to the crystal) seen in Gum Metal42 as

well as TiV Gum Metal approximants.6 In order to determine if the lateral displacements

in the atoms claimed to be nanodisturbances in figure 5 are associated with edge disloca-

tions, the edge component of the Nye tensor was plotted for the dislocation quadrupolar

13



configuration. From figure 6 no edge character is apparent for either 0.65V0 or 0.7V0 BCC

Mg. However, in the case of 0.8V0 there is a direct correspondence between the regions of

possible edge character outlined in figure 5 and the regions of high edge character in figure

6, both of which are outlined by green circles in the two figures.

a) b)

c)

FIG. 5. Projection of relaxed 〈111〉 screw dislocations in a quadrupolar configuration onto the

(111) plane for BCC magnesium at 0.65V0, 0.7V0, and 0.8V0 (figures a, b, and c respectively). In

figure 5c, a region of suspected edge character is highlighted by the green circle.

The pressure dependence of the ideal tensile strength was computed in order to explore

the intrinsic brittle/ductile behavior of BCC magnesium. For the material to be intrinsi-

cally ductile it must fail under a uniaxial tensile load via a shear instability instead of via

cleavage (intrinsically brittle). A failure of condition 9a is a consequence of a material being

intrinsically brittle, as the eigenvector associated with this condition does not result in any

shearing of the crystal. A uniaxial stress is applied along c and relaxations are performed

under the constraint that the lattice remains BCT. The elastic stability at each strain is

then determined from the eigenvalues of the symmetric Wallace tensor following equations

9a-9d.
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a) b)

c) d)

e) f)

FIG. 6. Comparison of relaxed 〈111〉 screw dislocations in a quadrupolar configuration for BCC

magnesium at 0.65V0, 0.7V0, and 0.8V0 (first, second and third rows respectively). Coloring is

done using the edge components, α13 and α23, of the Nye tensor for the left and right columns

respectively. The atom positions of plots show the lateral shifts resulting from the dislocations.

The green circles identify regions that correspond to the regions of edge character in figure 5.

BCC magnesium at both 0.65V0 and 0.7V0 is indicated to be intrinsically brittle as shown

in figure 7. Both volumes show an elastic instability due to cleavage at approximately

2% − 4% strain. The initial instability due to cleavage is relatively shallow, meaning that

slight differences in the elastic constants could cause a change in behavior. This was tested

by varying the smearing parameter. The elastic constants were run for smearings of 0.05

eV, 0.1, 0.2, and 0.3 eV. For all values the cause of elastic instability was found to be the

same (cleavage).
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FIG. 7. The eigenvalues of the symmetric Wallace tensor, which correspond to the elastic stability

criteria of a crystal under an uniaxial load are shown for 0.65V0 and 0.7V0 in figures 7a and 7b

respectively. Both volumes show an elastic instability at 2% − 4% that is a result of cleavage.

The formation of an elastic instability at such small strains 2%−4% is an unusual feature.

Examining the change in the density of states as shown for the two volume 0.65V0 and 0.70V0

in figures 8b and 8c, there does appear to be a large shift in the DOS for both volumes at the

approximate energy range −2 eV to −1 eV. The application of an uniaxial load changes the

point group of the crystal from Oh to D4h. This causes the group of the wave vector along

Z2 → P to change from C3v to C1h. As C1h has no 2 dimensional irreducible representation

the band splits as shown in figure 8a. The same band splits at Z as a result of a change in

the group of the wave vector from Oh to D4h. As shown in figure 8a the splitting of this

band appears to be associated with an overall increase in the energy of the occupied states
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FIG. 8. The band structure of 0.65V0 is shown with 3% applied strain and no strain (8a). The

band structure of 0.70V0 resembles very closely that of 0.65V0. The change in the density of states

with strain is shown in figures 8b and 8c. The high symmetry points are those of a body-centered

tetragonal lattice:43 Γ = [000], N = 1
2 [100], P = 1

4 [111], Z1 =
1
2 [111̄], Z2 =

1
2 [111], and X = 1

2 [001].

Z1 and Z2 are symmetrically equivalent k-vectors in reciprocal space both corresponding to the

high symmetry point, Z.

(Z1 → Z2). Interestingly, The two-fold degeneracy of the band at Z is consistent with that

of a d-band.44 There does appear to be some d-like character near and above the Fermi level

as shown in figure 1d, although it is much smaller than the s- and p-states. It does entertain

the idea though that the d-electrons, while playing no significant role in bonding of the cubic
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crystal, could be involved enough in the strained state to contribute to the material failing

in cleavage.

V. DISCUSSION

BCC magnesium draws many parallels to Gum Metal. Linear elasticity theory shows

that a reduction in the reduced shear modulus with decreasing pressure is associated with

an expansion in the dislocation core radius as well as an increase in the elastic anisotropy

of the crystal. The strain field due to a screw dislocation contains more than one non-zero

component for a highly anisotropic crystal leading to large lateral displacements. Disloca-

tion core structure calculations show that as the pressure is reduced lateral displacements

become more pronounced to the point where nanodisturbances appear. Associated with

this is the formation of HCP via the Burgers path starting at the dislocation core. These

observations are all consistent with a previously stated explanation for ideal slip in a bulk

material.6 Heavily cold-working a material near an elastic instability results in a high den-

sity of dislocations, which exhibit large core structures. An applied stress can cause the

dislocation core region to overlap, resulting in highly stressed regions in which shear bands

associated with the Burgers path can form.

Unlike Gum Metal, BCC magnesium appears to be intrinsically brittle. With this noted,

the behavior of BCC Mg is especially intriguing considering that the anisotropic Pugh

criterion,45 B/G〈111〉, for 0.7V0 BCC Mg is approximately 6.89, suggesting it is ductile.

For comparison niobium, vanadium, and tantalum (all intrinsically ductile BCC metals) are

approximately 7.9, 5.5, and 3.3 respectively. As all calculations have been conducted at 0

K there is a possibility that a brittle to ductile transition can occur within the BCC phase.

Assuming that a material must (1) be near an elastic instability and (2) be intrinsically

ductile for its plasticity to be governed by the ideal shear strength (ISS), the case for BCC

magnesium appears to be in doubt. Condition (2) appears obvious for a perfectly crystalline

material. However, bulk materials will always contain defects and if the theoretical studies

on materials governed by ISS are to believed it is only at enormous defect densities that the

ISS will begin to govern the yield strength. The complex stress fields associated with a high

dislocation density bring into question whether a material must be intrinsically ductile to

have its plasticity governed by the ISS.
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VI. CONCLUSION

The properties of BCC Mg nearing its elastic instability have been investigated using

DFT. Calculations of the elastic constants at pressure show that the reduced shear modulus

of the BCC phase approaches zero with decreasing pressure, resulting in a highly anisotropic

material for volumes 0.60V0 - 0.80V0. Dislocation core calculations show the formation of

nanodisturbances between screw dislocations, which have been experimentally observed in

Gum Metal. The formation of nanodisturbances is shown to coincide with the appearance

of the HCP phase at or near the dislocation core. Ideal tensile strength calculations indicate

that, unlike Gum Metal, BCC magnesium is intrinsically brittle. The lack of d-states in

bonding for BCC magnesium leads to the suggestion that an intrinsically ductile material

near an elastic instability could behave like Gum Metal.
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VIII. APPENDIX

A. Dislocation Core Structure

The full dislocation core structure calculations can be seen for both the 0.7V0 as well as

0.8V0 samples of BCC magnesium. The figures depict a 2 × 2 supercell created from the

original 135 atom cell, which consists of two dislocations. Relatively large magnitudes of

the Nye tensor components along the edges of the supercell are a result of boundary effects

in calculating the Nye tensor.
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a)

b)

c)

FIG. 9. Comparison of relaxed 〈111〉 screw dislocations in a quadrupolar configuration for BCC

magnesium at 0.7V0 and 0.8V0 showing the entire supercell (figures a and b respectively). Coloring

is done using the screw component of the Nye tensor.

B. Tetragonal Elastic Constants under Pressure

For a tetragonal lattice the elastic constants at pressure can be calculated using the

following six strains defined as ǫ̂
tetr
1 , ǫ̂tetr2 , ǫ̂tetr3 , ǫ̂tetr4 , ǫ̂tetr5 , and ǫ̂

tetr
6 , which are represented

in tensor form as
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ǫ̂
tetr
1 =











γ 0 0

0 0 0

0 0 0











(15a)

ǫ̂
tetr
2 =











0 0 0

0 0 0

0 0 γ











(15b)

ǫ̂
tetr
3 =











γ 0 0

0 γ 0

0 0 0











(15c)

ǫ̂
tetr
4 =











γ 0 0

0 0 0

0 0 γ











(15d)

ǫ̂
tetr
5 =











0 0 0

0 0 γ

0 γ 0











(15e)

ǫ̂
tetr
6 =











0 γ 0

γ 0 0

0 0 0











. (15f)

The applied strains states do not exactly correspond to the cubic case shown in equation 7.

No difference was seen in the elastic constants of a cubic material when using equations 15

or 7. Applying these six strain states separately results in a system of equations involving

the elastic constants. The resulting six elastic constants describing a BCT lattice are defined

in equation 16 in terms of the pressure and the the second derivative of the energy with

respect to γ as
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C̃tetr
11 =

1

V

∂2E(V, ǫ̂tetr1 )

∂γ2
|γ=0 (16a)

C̃tetr
12 = P − 1

V

∂2E(V, ǫ̂tetr1 )

∂γ2
|γ=0 +

1

V

∂2E(V, ǫ̂tetr3 )

∂γ2
|γ=0 (16b)

C̃tetr
13 = P − 1

2V

∂2E(V, ǫ̂tetr1 )

∂γ2
|γ=0 −

1

2V

∂2E(V, ǫ̂tetr2 )

∂γ2
|γ=0 +

1

2V

∂2E(V, ǫ̂tetr4 )

∂γ2
|γ=0 (16c)

C̃tetr
33 =

1

V

∂2E(V, ǫ̂tetr2 )

∂γ2
|γ=0 (16d)

C̃tetr
44 = −P

2
+

1

V

∂2E(V, ǫ̂tetr5 )

∂γ2
|γ=0 (16e)

C̃tetr
66 = −P

2
+

1

V

∂2E(V, ǫ̂tetr6 )

∂γ2
|γ=0. (16f)
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