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The phase diagram of numerous materials of technological importance features high-symmetry
high-temperature phases that exhibit phonon instabilities. Leading examples include shape-memory
alloys, as well as ferroelectric, refractory and structural materials. The thermodynamics of these
phases have proven challenging to handle by atomistic computational thermodynamic techniques,
due to the occurrence of constant anharmonicity-driven hopping between local low-symmetry dis-
tortions, while maintaining a high-symmetry time-averaged structure.
To compute the free energy in such phases, we propose to explore the system’s potential energy sur-
face by discrete sampling of local minima by means of a lattice gas Monte Carlo approach and by a
continuous sampling by means of a lattice dynamics approach in the vicinity of each local minimum.
Given the proximity of the local minima, it is necessary to carefully partition phase space using a
Voronoi tessellation to constrain the domain of integration of the partition function, in order to
avoid double-counting artifacts and enable an accurate harmonic treatment near each local minima.
We consider the bcc phase of titanium a prototypical examples to illustrate our approach.

I. INTRODUCTION

Phase diagrams are widely used as a powerful tool to
predict the equilibrium state of physical systems. In re-
cent years, computational methods have extensively con-
tributed to the determination of thermodynamic data1.
The underlying assumption in many of the commonly
used frameworks for phase diagram computation, such as
cluster expansion2–5 and computational thermodynam-
ics6–9, is that all structural phases, even if they are ob-
served at elevated temperatures, are mechanically sta-
ble. This “lattice stability” assumption, however, reduces
the applicability of the aforementioned frameworks, be-
cause the crystal structure of many high-temperature
phases exhibit mechanical instabilities. These instabil-
ities manifest themselves by phase transitions to lower-
symmetry structures at low temperatures and can be
readily identified by lattice dynamics calculations based
on a harmonic model centered about the high-symmetry
high-temperature structure10–20. For example, many
transition metals10–14, their alloys15–17, accompanied by
their hydrides18,19 and oxides20, all reveal high-symmetry
phases at elevated temperatures with mechanical insta-
bilities. These mechanical instabilities are also common
among shape memory alloys21,22, refractory oxides23,24

and ferroelectric materials25,26. In some cases (such as
fcc W), the mechanical instability is such that the phase
simply does not exist in nature17,27–29. But in many cases
(such as bcc Ti) the phase is “dynamically stabilized” at
high temperatures, thanks to entropy contributions aris-
ing from constant hopping between local low-symmetry
distortions of a high symmetry structure10,30.
Standard lattice dynamic calculations, such as (quasi)-
harmonic models, are inadequate for the free energy cal-
culation of such phases, as the energy surface becomes
non-convex along unstable modes and introduces non-
physical divergence in the calculation of the free energy.

To calculate the free energy of such phases accurately,
a practical and efficient framework has to be devised to
account for anharmonic vibrational effects, which play
a crucial role in the stabilization of high-temperature
phases with low-temperature mechanical instabilities.
A number of solutions have been proposed so far31–45,
although some of them are not free of certain drawbacks.
Brute-force ab-initio molecular dynamics (AIMD) cal-
culations can deliver free energy changes as a function
of temperature, but obtaining absolute free energy (as
would be needed to predict phase transitions) remains a
challenge, due to the fact that a simple reference state
with a known free energy is unavailable. Thermody-
namic integration (TI) approaches use AIMD in order
to calculate the anharmonic free energy by employing
quasi-harmonic calculations as a reference45. However,
when anharmonic effects are strong, computational re-
quirements can become intractable for TI approaches (see
Sec. IV). Self-consistent phonon theories provide more
computationally inexpensive avenues and have been suc-
cessful in predicting effective phonon frequencies and free
energies in a range of systems35–37. However, these meth-
ods fundamentally rely on the assumption of the exis-
tence of an effective harmonic model. If this assumption
is inappropriate, there is no systematic avenue to improve
the accuracy of the model. Effective-Hamiltonians ap-
proaches38–43, which explicitly parametrize the system’s
anharmonic energy surface, do offer systematically im-
provable models without significant a priori assumptions.
Although these approaches have proven to be power-
ful tools to investigate phase transition phenomena, the
task of parametrizing the relevant anharmonic degree of
freedom can become daunting as the range of interac-
tions considered is increased. Systematic and rigorous
approaches have been proposed recently, which signifi-
cantly improve the efficiency of the task of incorporating
anharmonic effects by selecting the physically important
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degrees of freedom in the lattice dynamics model, ex-
ploiting the compressive sensing techniques44.
In this paper, we propose a systematically improvable
method that simplifies the anharmonic energy surface
parameterization process by breaking the problem into
a collection of simpler tasks. Our approach is based on
coarse graining of the partition function, subjected to
an innovative Voronoi partitioning of the configuration
space, which enables the use of a piecewise quadratic ap-
proximation to the system’s potential energy surface in
conjunction with a cluster expansion approach. We sug-
gest the name “Piecewise Polynomial Potential Partition-
ing” or “P4” for the proposed method. As shown in figure
1, a local exploration of multiple minima around the high
symmetry structure on the potential energy surface is ac-
complished by partitioning the configuration space into
multiple corresponding regions. The partitioning scheme
ensures that the harmonic approximation is not employed
beyond its range of validity and eliminates unphysical di-
vergences in the calculated harmonic free energy. Each
local harmonic model can be constructed by means of
well-established lattice dynamics techniques and we de-
vise a Monte Carlo scheme to calculate the associated free
energy contribution that accounts for the region bound-
aries. The free energy contributions arising from hopping
between the different regions is accounted for by means
of the cluster expansion formalism in conjunction with
lattice gas Monte Carlo simulations. The advantage of
proceeding in this way is that the very complex anhar-
monic system is reduced to two, nested, simple classes of
models: A lattice gas and an array of constrained har-
monic model, for which automated construction methods
are available46–48.
The application of P4 method is to describe the equilib-
rium state of a phase with its thermodynamic properties,
when opposed to kinetic models, as needed to build the
phase diagram of the system. This application is most
advantageous when the lattice vibrations become anhar-
monic or even“harmonically unstable”. In Sec. II a gen-
eral description of the P4 method is presented employing
bcc Ti as an illustrative example. In Sec. III we vali-
date the presented scheme by comparing thermodynamic
properties obtained for the archetypical case of bcc Ti
with available experimental data. The method is, how-
ever, generally applicable, since an arbitrary energy sur-
face can always be approximated by a piecewise quadratic
function. The computational tools and techniques used
in the application of the method are described in Sec. II
and III.

II. PIECEWISE POLYNOMIAL POTENTIAL
PARTITIONING

A. Partitioning the phase space

To account for hopping of the system between differ-
ent local distortions of the bcc lattice (see figure 1), we

construct an augmented lattice, denoted by Laug, that
includes not only the ideal high symmetry sites, but also
the sites corresponding to configurations that are local
energy minima near the ideal structure. These additional
sites can be found by the identification of unstable modes
through a standard lattice dynamics analysis, followed by
a full relaxation calculation using, as an initial configu-
ration, bcc structures slightly distorted along the various
unstable modes. Once one such local minimum has been
identified, all other symmetrically equivalent minima can
be identified by applying the symmetry operations of the
high-symmetry phase (here, Oh for bcc).
In the case of bcc Ti, the unstable modes consist of longi-
tudinal [ξξξ] phonons with ξ = 2/310. Geometrically, this
mode moves two of the three neighboring (111) planes to-
wards each other, whereas every third plane stays at rest.
The collapse of the two planes results in the ω phase (for a

displacement of a
√

3/2), therefore this mode is associated
with bcc to ω phase transition. As shown in figure 2(a),
the potential energy for different distortion amplitudes
along L 2

3 (1, 1, 1) phonon is calculated using first principle
electronic structure calculations. All electronic structure
calculations are performed using the Vienna Ab-initio
Simulation Package (VASP)49–52, implementing projec-
tor augmented wave method53. The PBE functional54

is used, with a plane wave kinetic energy cutoff of 222.3
eV for bcc Ti. A (4 × 4 × 4) Monkhorst-Pack mesh55 is
used for generating the k -space grid. For each distortion,
the only degree of freedom equilibrated is the volume of
the cell and the cell shape is fixed, because those struc-
tures that are combined to build the augmented lattice
must be compatible. Volume relaxation for each super-
cell is performed in two steps (relaxing the initial struc-
ture and re-relaxing), using Methfessel-Paxton method56,
with ISMEAR = 1 and SIGMA = 0.15. To obtain the
energy (i.e. the energy of the relaxed volume structure),
tetrahedron method57 with ISMEAR = −5 is used.
The minimum along energy-distortion curve (as shown in
figure 2(a)), which corresponds to the ω structure, is the
location of the first off-bcc site. This particular position
of atoms is denoted by xω, and the ideal bcc position
is denoted by xbcc. The augmented lattice supercell is
constructed by operating the symmetry point group of
bcc (Oh point group) to a lattice including both sites
at xω and xbcc. As shown in figure 2(c), this results
in an augmented lattice with bcc lattice vectors and a
basis consisting of 9 sites; the ideal bcc site, as well as
eight other sites, each of which is located on a corner
of a cube centered on a bcc site. For the movement of
atoms to represent the L 2

3 (1, 1, 1) phonon, which involves
the movement of three sets of (111) planes, the supercell
should, at least, consists of three sets of (111) planes or a
third multiple of (111) planes. This is necessary because
of the periodic boundary condition. In our calculations,
a 3 × 3 × 3 supercell of the bcc conventional unit cell is
used, as presented in figure 2(b). The lattice constant
used for conventional unit cell is a = 3.2413Å. This re-
sults in 54 bcc sites, therefore our simulation cell consists
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of 54×9 = 324 sites, including both bcc and corner sites.
By creating an augmented lattice, phase space is parti-
tioned into different configurations. A configuration σ, is
defined as a possible assignment of Ti atoms and vacan-
cies (Vac) to the augmented lattice sites. The configura-
tional part of free energy associated with Laug is given
by a 3N -dimensional integral over the classical configu-
rational partition function in a “coarse-grained” form3:

FL = −kBT ln
∑

σ∈Laug

e−βF
∗
σ (1)

where

F ∗σ = −kBT ln

∫
x∈ζσ

e−βV (x)dx (2)

where β = 1/(kBT ), T is temperature, kB is Boltzmann’s
constant, x is a 3N vector of all atomic positions, N is
the number of atoms in the system, ζσ is the proximity
of configuration σ, which will be defined more precisely
below, and V (x) is the potential energy of the system at
a state represented by the position vector x.
The above integration can be divided into two levels. One
level is the “outer” level that sums over different con-
figurations associated with Laug (represented in equa-
tion (1)), and, the other is the “inner” level that is a
continuous integration of the Boltzmann distribution in
the vicinity of each configuration (represented in equa-
tion (2)). The inner level states are characterized by
constrained vibrational free energy, denoted by F ∗σ . The
outer level states can be sampled through a cluster ex-
pansion approach2, while a continuous sampling in the
vicinity of each configuration is carried out using har-
monic approximation of energy hyper-surface about each
configuration.
One has to define the proximity of each configuration for
continuous sampling of the phase space. For each config-
uration σ, the unrelaxed position of the atoms is denoted
by xuσ (for each σ, xuσ is a 3N vector). All the atomic posi-
tions closer to xuσ than the unrelaxed position of any other
configuration σ′, are defined as the proximity of configu-
ration σ and denoted by ζσ. For computational efficiency,
we determine ζσ by computing the Voronoi tessellation58

in tridimensional space generated by the augmented lat-
tice points (which coincides with the well-known concept
of Wigner-Seitz cells59). These Voronoi cells are repre-
sented in figure 2(c) for different augmented lattice points
as generators. We then define ζσ in the 3N-dimensional
configuration space as the Cartesian product of the tridi-
mensional Voronoi cell associated with each site.
This construction is preferable to a Voronoi tessellation
in 3N-dimensional space, not only for computational rea-
sons, but also because it naturally excludes nonphysical
very high energy states from the region ζσ, such as those
where two atoms would lie in the same Wigner-Seitz cell
of a given lattice site. The contribution of the excluded
states to the partition function is negligible, since these
states are those of very high energy. Figure 3(a) illus-
trates partitioning of 3N -dimensional configuration space

schematically (to be compared to Voronoi tessellation in
tridimensional space used to define ζσ as shown in figure
3(b)), and figure 3(b) indicates a schematic state which
is implicitly excluded in our calculations due to the way
ζσ is defined.

B. Piecewise polynomial potential

A piecewise polynomial form is employed in order to
model the potential energy, V (x), over different subre-
gions, ζσ. We denote the location of the minimum of
V (x) within ζσ by xrσ (for each σ, xrσ is a 3N vector).
A harmonic expansion about xrσ is used to calculate F ∗σ
in this case, although any order of polynomial is gen-
erally applicable. To determine the minimum within
ζσ (which is a constrained nonlinear optimization pro-
cedure) a steepest-descent search is performed and an
interior or a boundary minimum is found. xuσ is used
as an initial guess, and a sequence of position vectors
(xuσ,x1,x2, ...,xn+1) is constructed by moving along the
negative gradient of potential energy hyper-surface using
the following equation

xn+1 = xn − γn∇V (xn) (3)

where γn is an arbitrary small scalar.
In the steepest-descent method, potential energy, V (xn),
and the gradient of potential energy, ∇V (xn), are
calculated using VASP. For each step, a value of 0.02

Å
2
/eV is used for γn. If the movement along the

negative gradient directs the configuration outside ζσ,
then the projection of the force vector, fv(xn), along
the boundary of ζσ replaces the negative ∇V (xn) in
equation (3).
If there exists no interior local minimum within ζσ
(a positive definite Hessian is the necessary but not
the sufficient condition for the minimum to be an
interior minimum), then the minimum must be on the
boundary of ζσ. The first derivative may not vanish
at a boundary minimum. Energy surface is expanded
up to quadratic term, with first and second derivatives
of energy calculated at xrσ (see supplementary note 1).
All of the energies, forces and second derivatives of
energy (force constant tensors) used in the piecewise
polynomial model are calculated at xrσ for each config-
uration employing PAW-PBE in VASP. The supercell
size (3 × 3 × 3 supercell of bcc unit cell) and k-points
(2× 2× 2 Monkhorst-Pack mesh) are chosen in a way so
that the energy values are converged with an accuracy
of 1 meV/atom. The forces and second derivatives are
converged with an accuracy of 1 meV/Å/atom and 1

meV/Å
2
/atom, respectively.
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C. Adiabatic switching technique

As indicated in equation (2), the 3N -dimensional inte-
gral is over a complex hyper-volume ζσ. Therefore, the
analytic integration of the configurational partition func-
tion is not feasible, although the integral has known ana-
lytical solutions over certain simpler domains. Moreover,
divergence issues in the calculation of free energy due to
existence of unstable modes present computational ob-
stacles. Theses obstacles, however, can be bypassed by
first constraining the integration domain to ζσ and then
using the well-known adiabatic switching technique to
calculate the associated constrained free energy.
The idea is to select a reference potential V ref (x) with
a positive definite Hessian that is sufficiently stiff so that
the integral in equation (2) has the same value whether
the integral is constrained over the domain ζσ or not.
The free energy of such system, which is defined as F ∗0
in the following equation, can then be calculated ana-
lytically. In order to obtain the free energy difference
between the real and the reference systems, we need to
define a thermodynamic path between these two states:
V̂ (x, λ) = V̂ (x, 0)+λ(V̂ (x, 1)− V̂ (x, 0)), which smoothly

interpolates between the real (V̂ (x, 1) = V (x)) and the

reference (V̂ (x, 0) = V ref (x)) energy surfaces. The
free energy difference is derived to be the integration
of ensemble-averaged potential energy difference between
the real and reference energy surfaces over ζσ along this
path (see supplementary note 2 for derivation).

F ∗1 − F ∗0 =

∫ 1

0

〈
V̂ (x, 1)− V̂ (x, 0)

〉
λ
dλ (4)

where
〈
V̂ (x, 1)− V̂ (x, 0)

〉
λ

denotes an average obtained

through Metropolis sampling of the region ζσ using the
potential V̂ (x, λ). F ∗1 for each subregion ζσ corresponds
to the constrained vibrational free energy for the real
system.

D. Lattice gas model

With the aid of commonly-used cluster expansion tech-
nique, constrained vibrational free energy corresponding
to each configuration is represented as a polynomial series
in terms of the occupation variables σi associated with
each atomic site i of the augmented lattice (σi = +1 if
site i is occupied by a Ti atom and σi = −1 if site i is
empty).

F ∗(T, σ)

Ns
=
∑
α

mαJα(T )

〈∏
i∈α

σi

〉
α′

(5)

The sum in equation (5) is over symmetrically distinct
clusters α while the average is over clusters α′ that are
symmetrically equivalent to α. Ns is the number of sites
in the parent lattice, mα is the multiplicity of cluster

α and Jα(T ) is the effective cluster interaction (ECI)
of cluster α at temperature T (to be determined by a
fitting procedure)46. Here, the effective cluster interac-
tions are temperature-dependent, as opposed to the well-
known cluster expansion of energy with temperature-
independent ECIs3.
A cluster expansion has to be fitted over a training data
set. In this case, data points are the constrained vibra-
tional free energy for a number of configurations, com-
puted using the P 4 scheme. The expansion in equation
(5) is improved by adding more data points to the rel-
atively small initial training data set until convergence
is obtained in free energy value with a precision of a
few meVs (see supplementary note 3 for a detailed de-
scription). In our calculations, 34 different clusters are
included. There is one empty cluster (which is the con-
stant term in the polynomial series) and there are 2 point
clusters (one is bcc point cluster and one is corner point
cluster), along with 31 pair clusters. As shown in fig-
ure 4(a), 4 of these pair clusters connect the sites within
each group of 9 sites (1 bcc site and 8 neighboring corner
sites) and are accordingly called “short-pairs”. The other
27 pairs join one site on a group to another site in the
nearest neighbor group . The 4 short-pairs include half
diagonal pair, edge pair, face diagonal pair and diagonal
pair of the cube formed by 8 corner sites and one bcc site
in the center. All of the ECIs associated with these clus-
ters are fitted using the training ab-initio data set, except
for those ECIs associated with short-pairs. These 4 pairs
are treated differently in our scheme because their role
is simply to ensure that two atoms never lie within the
same group of 9 sites. Such configurations have an energy
so high that they essentially never occur in reality. To
avoid performing ab-initio calculations for these unphys-
ical states, these ECIs are simply set to a positive value
sufficiently large to effectively suppress the appearance
of more than one atom within the same 9-site group of
sites. A 2-dimensional plot of such an unphysical state
is represented in figure 4(c) and is compared to those
states included in our calculation, as a typical example
of them is presented in figure 4(b). A set of temperature-
dependent ECIs, {J(T )}, is fitted over a training data set
at different temperatures employing the Alloy-Theoretic
Automated Toolkit (ATAT)46–48 (by equation (5)).
P4 scheme is employed only once, at a temperature T1, for
each configuration to calculate F ∗(σ, T1). Constrained
vibrational free energy at any other temperature T2 is
simply calculated knowing F ∗ at T1 using the well-known
thermodynamic integration, reformulated as the follow-
ing

F ∗(T2, σ)

T2
=
F ∗(T1, σ)

T1
+

∫ T2

T1

〈Uσ(T )〉 d(1/T ) (6)

where 〈Uσ(T )〉 is the average internal energy of the sys-
tem constrained to ζσ, which is calculated using Metropo-
lis sampling (see supplementary note 5 for derivation of
equation (6)). In other words, once a data set of F ∗ is
built at a temperature T1, the corresponding data set at
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any other temperature T2 is calculated using F ∗(T1, σ)
as an initial point of integration in equation (6).
Thermodynamic integration technique makes the calcu-
lation of total free energy in equation (1) feasible. In
order to calculate the Helmholtz free energy at any tem-
perature T1, we employ thermodynamic integration in
accordance with the following equation

F (T1)

T1
− F (T0)

T0
=

∫ T1

T0

〈F ∗(T )〉 d(1/T ) (7)

where 〈F ∗(T )〉 is the average vibrational free energy at
temperature T and F (T ) is the total free energy at T (see
supplementary note 5). Monte Carlo simulation is car-
ried out to compute the ensemble average of constrained
vibrational free energy, 〈F ∗〉, with equation (5) once the
set of {J(T )} is known, utilizing MultiComponent Easy
Monte Carlo Code (memc2)48. We need a convenient
initial point of integration in equation (7), which its free
energy can be computed analytically. Therefore, mean
field approximation limit at high temperature is used
as the starting point for integration60. The Helmholtz
free energy at high temperatures is calculated analyti-
cally (Supplementary note 4 gives a detailed description
of Mean Field Approximation (MFA) calculation). Any
thermodynamic process that connects the initial state to
the final state can be integrated to obtain the free en-
ergy. In order to avoid calculating 〈F ∗(T )〉 at tempera-
tures far from the temperature range of interest, the ECIs
are kept constant (at their value at the desired tempera-
ture T1) along the thermodynamic integration path while
the temperature the system experiences varies from our
high temperature reference down to the temperature of
interest (which is why the integrand in equation (7) is
〈F ∗(T )〉 rather than 〈U∗(T )〉). Only at the end of the
integration path does the free energy represent the one
of a real physical system.
In order to include thermal electronic contribution to
the free energy, Fermi distribution (ISMEAR = −1) is
employed with the corresponding smearing parameter at
each temperature T (SIGMA = kBT ) in all of the ab-
initio calculations. For each configuration σ, the elec-
tronic contribution to the total free energy, Felec,σ is
added to the corresponding vibrational free energy, F ∗σ
at different temperatures. As a result, the free energies
used in the training data set of equation (5) to obtain the
corresponding ECIs are F ∗σ +Felec,σ at each temperature
T .
The fact that we model the system’s potential energy
surface by a piecewise approximation rather than by a
smooth surface has no bearing on the accuracy of calcu-
lated free energies. It can be shown that the error in the
free energy is bounded by the largest error in the energy,
regardless of the smoothness of the approximation. A
proof of the above argument is presented in supplemen-
tary note 8.

III. RESULTS

The free energy of bcc Ti is calculated using the P4

method described in the previous section. In order to
validate the obtained free energy, we compare our re-
sults with ab-initio molecular dynamics (MD) and Na-
tional Institute of Standards and Technology (NIST) con-
densed phase experimental thermodynamic data for Ti
61,62. In order to first perform an internal consistency
check of the method, a set of NVT molecular dynamics
calculations are performed at different temperatures for
a 3× 3× 3 supercell of bcc conventional unit cell, includ-
ing 54 atoms, using VASP49–52. In constant temperature
ab-initio MD simulations, the thermostat is conducted
under Nosé-Hoover chain formalism63–66, and ensemble
averages are captured every 50 steps (150 fs) in a tra-
jectory with sufficient number of steps which ensures an
accuracy of 5 meV/atom. The internal energy calculated
in the NVT ab-initio MD simulations includes both the
kinetic and potential energies. Electronic contribution
to the total energy is considered using Fermi-smearing
(ISMEAR = −1) along with the corresponding smearing
parameter at each temperature T (SIGMA = kBT ).
Before comparing the free energies, we use the MD results
in order to illustrate the hopping of the system around
local distortions of the bcc structure to verify the hy-
pothesis used in the P4 scheme. The trajectory of a typ-
ical atom in the Ti54 bcc supercell is illustrated in figure
5(a), 5(b) and 5(c) for 1200 K, 1500 K and 1800 K, re-
spectively. It is observed that the trajectory at 1500 K
is more symmetric compared to 1200 K and 1800 K. The
reason for this behavior is that, at low temperatures, the
system preferably samples configurations that are simi-
lar to hcp. At very high temperatures, the atoms diffuse
across different bcc sites with a high probability instead
of remaining in the vicinity of one bcc site. The displace-
ment relative to the ideal bcc position for each degree of
freedom (d.o.f) is indicated in figure 6(a), 6(b) and 6(c)
for 1200 K, 1500 K and 1800 K, respectively. As shown in
figure 6, the average displacement for each d.o.f. is almost
zero at 1500 K, which explains the symmetry observed
in the atomic trajectory at this temperature. Although
the average displacement is around zero, the system ex-
periences displacement amplitudes in the order of 1/3 of
nearest-neighbor (NN)-pair distance at 1500 K. However,
for 1200 K and 1800 K, some degrees of freedom indicate
larger and asymmetric displacements, which results in
an off-zero average displacement for those d.o.f. Some of
these asymmetric displacement amplitudes equal lattice
constant, abcc, for 1800 K, which implies some atomic
permutations at this temperature. This is further clari-
fied in figure 7, where the time-averaged position of each
atom in the Ti54 supercell is shown. For the MD simu-
lation at 1500 K, the time-averaged structure is exactly
bcc, as shown in figure 7(b). However, for the MD simu-
lation at 1200 K, which is just above the transition tem-
perature to hcp, the time-averaged structure is slightly
shifted toward the path that transforms bcc to hcp (see
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figure 7(a)). This explains the asymmetry observed in
the atomic trajectory at this temperature. The averaged
atomic positions at 1800 K stay at bcc, although some
permutation of atoms are observed (as shown in figure
7(c)), which is the result of high thermal energy acces-
sible to the system at temperatures close to the melting
point (1941 K).
We now compare the free energies obtained through the
P4 method with the ones obtained by ab initio MD. The
MD simulations are carried out to trace the average inter-
nal energy of bcc Ti at different temperatures. Helmholtz
free energy is obtained by integrating the thermodynamic

relation
[
∂(F/T )
∂(1/T )

]
V,N

= U , where U is the average inter-

nal energy. Helmholtz free energy of bcc Ti relative to
bcc Ti free energy at 1200 K, obtained with both the P4

method and ab-initio MD, are illustrated in figure 8(a).
The agreement between the P4 method and ab-initio MD
confirms the validity of the presented scheme.
The enthalpy of hexagonal closed-pack (hcp) Ti at room
temperature (RT) is assigned as the reference point for
energy to make our results comparable to NIST data,
since hcp is the reference phase for titanium. Formation
of the hcp phase in titanium from around 1150 K down to
0 K at ambient pressure implies the mechanical stability
of hcp Ti, which is further confirmed by standard phonon
analysis. Therefore, the free energy of hcp Ti is calcu-
lated using a standard harmonic approximation utilizing
the fitfc code46,48. The harmonic model can be regarded
as a special case of the P4 scheme. When the P4 scheme
is applied to a mechanically stable phase, with the phase
at the local minimum of the energy surface, it reduces to
the harmonic model. In this case, the augmented lattice
is basically the same as the ordinary lattice of hcp phase.
Consequently, the summation in equation (1) reduces to
one term and equation (2) becomes the standard free en-
ergy equation of a harmonic model.
For calculating the force constant tensor for hcp Ti, the
fitfc code includes up to the third nearest neighbor forces
in a 90 atom supercell with 0.1 Å displacements. Once
the free energy and entropy of hcp Ti are calculated at
room temperature, the enthalpy of hcp Ti is computed
using the thermodynamic relation H = F + TS + pV ,
which is used as the reference point in our free energy
results. Moreover, the pV work term correction is added
to the computed Helmholtz free energy of bcc Ti in order
to get Gibbs free energy at ambient pressure (see supple-
mentary note 6 for more details). Available NIST values
are also Gibbs free energies at ambient pressure with ref-
erence to hcp Ti enthalpy at room temperature.
As shown in figure 8(b), the P4 method predictions for
free energy of bcc Ti at different temperatures agree per-
fectly well with NIST data. The discrepancy between
this work and experimental data is less than a few meVs,
which is the accuracy needed to resolve energy differences
that typically drive solid state phase transitions.
The data obtained for Gibbs free energy with respect to
the reference state, G, are used to fit a power series of

the following form

G (T ) = a+ bT + cT log (T ) + dT 2 (8)

where a = 0.0160155, b = 9.586× 10−4, c = 1.984× 10−4

and d = −5.331 × 10−8 are coefficients that are fit-
ted through a least square fitting procedure. Constant-
pressure heat capacity curve is then obtained according

to the relation Cp (T ) = −T
(
∂2G(T,p)
∂T 2

)
p

and is presented

in figure 9. NIST and SGTE (Scientific Group Thermo-
data Europe) curves67, along with the experimental val-
ues at different temperature ranges68–74, are compared to
the P4 isobaric heat capacity curve. Our results for bcc
Ti are seen to lie within the spread in the available ex-
perimental results. The observed discrepancy among dif-
ferent experimental measurements can be corresponded
to the experimental accuracy. It is especially important
for higher order properties such as heat capacity, which
is usually measured with lower accuracy. It is also impor-
tant to note that determination of derivative quantities
such as heat capacity would result in significant noise
in such quantities, since they are highly sensitive to ex-
tremely small free energy differences.
As indicated in figure 10, by comparing the calculated
Gibbs energies for hcp and bcc Ti the transition tem-
perature from hcp to bcc is obtained. The calculated
transition temperature of 1095 K compares well with the
experimental values of 1156.1510 and 1198.2661 and com-
putational results of 111433 and 125032. As indicated in
figure 10, our calculation shows a Gibbs energy differ-
ence between hcp and bcc that has a similar slope to
CALPHAD data at lower temperature (below and slightly
above transition temperature). However, at higher tem-
perature the slopes differ and our calculations show a
steeper negative slope. This originates from using har-
monic approximation for hcp Gibbs energy, which is in-
sufficient to incorporate anharmonic contributions to free
energy. These contributions becomes crucial especially at
high temperature. Ignoring anharmonic free energy for
hcp Ti results in an overestimation of Gibbs energy of
hcp and consequent steeper slope at temperature above
transition temperature. One should not, however, cor-
relate all of the disagreement with the harmonic model
deficiency considering that at temperatures above transi-
tion to bcc the CALPHAD Gibbs energies of hcp are based
on extrapolations of experimental data from a region of
temperature where hcp is stable.

IV. DISCUSSION

It is important to observe that even though the method
only requires ab-initio calculations of harmonic force con-
stants, the resulting free energy model includes anhar-
monic contributions to an accuracy that can be system-
atically improved by simply including more sites in the
augmented lattice. Phonon lifetime effects, stabilization
by quartic terms, etc. are all included in the thermo-
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dynamic description, despite the use of a local harmonic
treatment. This follows from the fact that any smooth
function can be approximated with any given accuracy
by a piecewise quadratic function, provided the pieces
are chosen sufficiently small. It is practically more con-
venient to improve an approximation to a function by
including more polynomial pieces of a low order (e.g.
quadratic) than to increase the order of a single polyno-
mial, as effective Hamiltonian methods traditionally do.
The former avoids Runge’s phenomenon75 while the lat-
ter does not. Figure 2 in supplementary notes represents
the piecewise polynomial interpolation of an illustrative
potential energy surface. In addition, in our method,
when the expansion points of the quadratic pieces are
chosen to lie at local minima, the approximation is most
accurate in the regions of phase space where the system
spends the most time, a property not guaranteed by a
higher-order polynomial expansion of the system’s en-
ergy surface.
Our method becomes especially advantageous relative
to existing methods, such as thermodynamic integration
(TI) methods, when the anharmonicity is so strong that
it creates multiple local minima around a local high-
symmetry maximum. In such cases, thermodynamic
integration can become problematic because the hops
between the local minima can become rare, resulting
in difficulties in equilibrating the system at each step
of the thermodynamic integration. The residence time
in a well grows exponentially with the well depth, so
even with an efficient energy model, thermodynamic in-
tegration may be too computationally demanding. In
such cases, sampling through ab initio molecular dy-
namics (AIMD) would become inefficient and impracti-
cal whereas Monte Carlo sampling by means of a lattice

gas model (as in P4 method) remains equally efficient.
TI methods calculate anharmonic free energy employ-
ing quasi-harmonic model as a reference. Therefore, the
efficiency of TI methods greatly depends on how close
the quasi-harmonic approximation is to the real system,
while the efficiency of our method depends much less to
this fact, because the lambda-integration in the presented
model switches between local harmonic approximations
inside sub-regions. For strongly anharmonic systems,
where the quasi-harmonic sampling is far away from the
ab-initio sampling, TI methods become less efficient.

V. CONCLUSION

In summary, a general and robust scheme to determine
the free energy of mechanically unstable but dynamically
stabilized phases is presented. The reasonable agreement
between the free energy obtained for the prototypal ex-
ample of bcc Ti and the existing experimental and com-
putational values confirms the validity of our method.
The proposed method also offers a natural avenue to han-
dle alloys since the cluster expansion method can easily
allow for multiple species on each site of the augmented
lattice introduced herein.
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FIG. 1. (Color online) Partitioning the configuration
space into different regions a) Schematic of potential en-
ergy including multiple local minima around the high sym-
metry point. b) Potential energy contour represented on the
configuration space which is partitioned into Voronoi tessel-
lation. Each Voronoi cell is associated with a configuration.
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FIG. 2. (Color online) Locating the neighboring local
minimum and creating augmented lattice. a) Energy
per atom versus distortion amplitude (δ) along L 2

3
(1, 1, 1)

phonon of bcc Ti with lattice constant a. The volume of
the supercell is the only degree of freedom which is equili-
brated for each distortion. The minimum is located close to
δ
a

= 0.1443. b) The (111) planes in a 3 × 3 × 3 bcc super-
cell of bcc conventional unit cell, including 54 atoms. The
three neighboring (111) planes are distinguished by different
colors. c) Representation of the augmented lattice unit cell
and Voronoi cells containing lattice sites as generators. The
+ signs indicate lattice site in 3-dimensional space in periodic
boundary condition. The red cells are associated with bcc
sites and the green cells are associated with corner sites.
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FIG. 3. Demonstration of partitioning the 3N-
dimensional vs. 2-dimensional configuration space.
a) Schematic representation of partitioning 3N -dimensional
configuration space into its Voronoi tessellations. The gen-
erating points (circles) are 3N -dimensional position vectors.
The shaded area includes all the coordinates that are asso-
ciated with configuration σ. b) Schematic 2D representation
of partitioning the configuration space into its Voronoi tes-
sellations. The + signs indicate the lattice sites that are the
generating points in the Voronoi tessellation. The configu-
rational state of simultaneous lying of two or more atoms in
the shaded area does not belong to any ζσ. Only those states
with one atom in each Voronoi cell have a corresponding ζσ.
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FIG. 4. (Color online) Demonstration of pairs included
in the cluster expansion of vibrational free energy. a)
The bold red lines indicate short-pairs and the dashed green
lines represent the long-pairs. Not all of the long-pairs con-
sidered in the cluster expansion are indicated, but only a few
of them are represented as an example. A group of sites is
the collection of 9 spheres sitting on the center and corners
of a cube. Short-pairs include the half-diagonal, edge, face-
diagonal and diagonal pairs formed in the cube. By imposing
large ECIs for short-pairs, they are avoided during a Monte
Carlo simulation, eliminating the need to perform ab-initio
energy calculation of those sates where more than one atom
occupies a group of sites. b) A 2D plot of configuration space
associated with a state during Monte Carlo simulation. The
shaded area is all the possible coordinates that the state can
possess so that it is associated with a configuration in which
Ti atoms occupy those sites in the center of shaded areas.
c) A 2D representation of an example of a state that is pre-
cluded in Monte Carlo simulations due to large imposed ECIs
for short-pairs. The shaded areas indicate the coordinates
corresponding to the state, where Ti atoms sit on sites on
their centers.
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FIG. 5. (Color online) 2-dimensional projection of the tra-
jectory of a typical atom in the Ti54 supercell during a MD
simulation for (a) 1200 K, (b) 1500 K and (c) 1800 K. Dis-
placements are normalized by lattice constant, abcc. Only
positive half of x-axis is projected for the purpose of clarity.
The black circle indicates the ideal bcc position and the green
diamonds are the off-bcc sites augmented to the ordinary bcc
lattice in the P4 scheme.
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FIG. 6. (Color online) Displacement from ideal bcc posi-
tion normalized by lattice constant for each degree of freedom
(d.o.f.) obtained from molecular dynamics (MD) trajectories
in a fixed bcc Ti54 supercell at (a) 1200 K, (b) 1500 K and
(c) 1800 K. The average displacements for each d.o.f. are
connected by a red line.
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FIG. 7. (Color online) 2-dimensional plot of MD time-
averaged atomic positions (red plus signs) and the ideal bcc
positions (black circles) for (a) 1200 K, (b) 1500 K and (c)
1800 K. The deviation from bcc positions are indicated by
arrows. All atomic positions are in Å unit.
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FIG. 8. (Color online) a) Helmholtz free energy of bcc Ti with
respect to its free energy at 1200 K compared to molecular
dynamics (MD) results for internal consistency check. A Ti54
supercell is used both in MD and P4 at all temperatures. Elec-
tronic contribution to the free energy is included. Error bars
indicate the accuracy of MD values for free energy. The ac-
curacy of P4 results are ensured to be less than 1 meV/atom.
b) Gibbs free energy of bcc Ti with respect to enthalpy of
hcp Ti at room temperature. The curve indicates a function
of the form G − H0 = a + bT + cT log(T ) + dT 2 which is
fitted to the P4 values. The fit coefficients are a = 0.0160155,
b = 9.586×10−4, c = 1.984×10−4 and d = −5.331×10−8. ∆
is the difference between the calculated value and NIST data
and is less than 10 meV/atom at all temperatures.
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FIG. 9. Isobaric heat capacity of bcc Ti at ambient pressure
(0.001 Kbar). The presented P4 scheme is used to calculate
the heat capacity of the mechanically unstable phase of bcc.
The vertical lines indicate the experimental hcp-to-bcc transi-
tion temperature, T hcp→bcc

exp = 1156.15 K (Ref.10), and melt-

ing temperature, Tmelt
exp = 1933.15 K (Ref.10), respectively.

CALPHAD data are taken from both SGTE (Ref.67) and NIST
(Ref.61,62). Experimental values are presented from Ref.68–74.
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FIG. 10. Gibbs free energy difference between bcc and hcp
phase of Ti, ∆Ghcp−bcc at ambient pressure (0.001 Kbar).The
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exp = 1156.15 K (Ref.10) and melting tem-

perature Tmelt
exp = 1933.15 K (Ref.10). CALPHAD values are

taken from SGTE unary database (Ref.67).


