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The fractional Josephson effect has been observed in many instances as a signature of a topological
superconducting state containing zero-energy Majorana modes. We present a non-topological sce-
nario which can produce a fractional Josephson effect generically in semiconductor-based Josephson
junctions, namely a resonant impurity bound state weakly coupled to a highly transparent channel.
We show that the fractional ac Josephson effect can be generated by the Landau-Zener processes
which flip the electron occupancy of the impurity bound state. The Josephson effect signature for
Majorana modes become distinct from this non-topological scenario only at low frequency. We prove
that a variant of the fractional ac Josephson effect, namely the low-frequency doubled Shapiro steps,
can provide a more reliable signature of the topological superconducting state.

PACS numbers: 74.45.+c, 03.67.Lx, 05.40.Ca, 71.10.Pm

Superconductors supporting Majorana zero modes
(MZMs)[1–4] at defects provide one of the simplest ex-
amples of topological superconductors (TSs) [5, 6]. In
fact, a number of proposals [7–12] to realize such MZMs
have met with considerable success [13–18]. Such systems
containing MZMs are particularly interesting [19–25] be-
cause of the topologically degenerate Hilbert space and
non-Abelian statistics associated with them that make
such MZMs useful for realizing topological quantum com-
putation [26]. While preliminary evidence for MZMs in
the form of a zero-bias conductance peak have already
been observed [13–18, 27–31], confirmatory signatures of
the topological nature of MZMs are still lacking.

The zero-bias conductance peak provides evidence for
the existence of zero-energy end modes which can arise
not only from TSs but also from a variety of non-
topological features associated with details of the end
of the system [32–35]. In contrast, the topological invari-
ant of a TS, being a bulk property, is not affected by the
details of the potential at the end. The topological invari-
ant of a one-dimensional TS can be determined from the
change in the fermion parity of the Josephson junction
(JJ) [3]. Specifically, the fermion parity of a topological
JJ changes when the superconducting phase of the left su-
perconductor φ of the JJ winds adiabatically by δφ = 2π
[2, 3]. Such a change in fermion parity of the JJ may
be detected from the resulting 4π-periodic component in
the current-phase relation of the topological JJ [3, 36].
This is referred to as the fractional Josephson effect and
can be detected using the fractional ac Josephson effect
(FAJE).

The FAJE involves applying a finite dc voltage V
across the junction so that the superconducting phase
across the junction varies in time as φ(t) = ΩJ t [37].
Here ΩJ = V is the Josephson frequency, where we
have set ~ = 1 and the charge of the Cooper pair
2e = 1. The 4π-periodic current-phase relation char-
acteristic of a topological JJ results in a current that

has a component at half the Josephson frequency, i.e.,
at ω = ΩJ/2 instead of ω = ΩJ characteristic of con-
ventional JJs [3, 11, 12, 36, 38, 39]. In principle, the
resulting ac current may be detected by a measurement
of the radiation emitted from the junction [40, 41]. Al-
ternatively, the fractional Josephson effect can also be de-
tected by measuring the size of the voltage steps, known
as Shapiro steps [42, 43]. For topological JJs, these volt-
age steps have been numerically found to be δV = 2ΩJ
which is doubled the voltage steps for the conventional
JJs [44, 45].

Interestingly, evidence for both the FAJE [41] and dou-
bled Shapiro steps [42, 43, 46] have been seen in TSs
that are expected to support MZMs. However, there
is evidence that such signatures might appear in non-
topological systems as well. For example, both the
signatures seem to also appear in the TS experiments
when the devices are not in the topological parameter
regime [41, 43, 46, 47]. One possible spurious source
of FAJE is the period-doubling transition seen in cer-
tain JJ systems [48]. In addition, the FAJE and doubled
Shapiro steps are known (both experimentally [40] and
theoretically [49, 50]) to arise from Landau-Zener (LZ)
processes in certain ranges of frequency. Avoiding such
LZ processes might require particularly low frequencies
in low-noise systems with multiple MZMs [51]. While the
LZ process is known to potentially lead to FAJE [40, 49],
there have not been any generic non-topological scenarios
presented in the literature so far.

In this Letter, we start by discussing a generic model of
a resonant impurity coupled to a JJ [shown in Fig. 1(a)],
which has a weakly avoided crossing in the energy spec-
trum as a function of phase [see Fig. 1(b)]. The present
scenario requires only the coexistence of a highly trans-
parent channel in a JJ (as seen in recent measurements of
ABS spectra [52]) and a weakly coupled impurity bound
state. Such a coexistence can be found in a multichan-
nel semiconductor-based JJ with a spatially varying den-
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FIG. 1: (Color online) (a) JJ configuration showing FAJE
consists of a high transparency channel connecting two su-
perconductors. The channel is tunnel coupled to an impurity
bound state (shown as a disc adjoining wire). (b) Computed
Andreev bound state spectrum for setup in (a) shows a weakly
avoided crossing at E = 0 and a gap to higher energy states
generated by a larger avoided crossing with the flat impu-
rity bound state. The weakly avoided crossing can lead to an
FAJE at finite voltages.

sity as is the case of all of the recent experiments [41–
43, 46]. We use a scattering-matrix approach to show
that this relatively generic situation can lead to an FAJE
over a frequency range of a factor of a few even in the
absence of any TS. In order to distinguish between this
non-topological scenario from TS, it is important to be
able to go to ultra-low MHz frequencies in the FAJE mea-
surements. Shapiro steps provide the setup where such a
large range of frequencies spanning three orders of mag-
nitudes (MHz-GHz) are possible [53]. In the second part
of this Letter, we provide the first rigorous framework
connecting Shapiro steps to TS where we show that the
low-frequency doubled Shapiro steps are guaranteed to
appear in the overdamped driven measurements of topo-
logical JJs.

Let us first understand how an FAJE can occur in a
non-topological setup such as the setup in Fig. 1(a). For
simplicity, we consider the superconductors to be s-wave
with a highly transparent normal channel in between to-
gether with a subgap impurity bound state. Highly trans-
parent channel supports Andreev bound states (ABSs)
in the junction that approach zero-energy (see Fig. 1(b))
when the phase φ crosses φ = π [54]. Applying a finite
voltage V across the junction causes the superconducting
phase φ to vary in time as φ(t) = V t. This leads to the
possibility of LZ processes exciting Cooper pairs across

the superconducting gap. In general, these Cooper pairs
are transported across the entire superconducting gap via
multiple Andreev reflections [55, 56] ultimately leading to
a dissipative but otherwise conventional ac Josephson ef-
fect [55]. This situation is modified when the junction is
tunnel coupled to impurity bound states. As shown in
Fig. 1(b), the ABS spectrum of the JJ varies with phase
φ where it crosses the relatively flat impurity bound state
with energy Eimp at pairs of points. At such crossings,
the junction exchanges a Cooper pair with the flat im-
purity state. When φ = π, the ABS loses Cooper pair
to the condensate through a LZ process across the zero-
energy gap δ0. As the ABS energy approaches the second
avoided crossing with the impurity bound state at energy
Eimp, the ABS restores its Cooper pair at the expense of
leaving the impurity bound state empty. Thus, the im-
purity bound state electron occupancy is flipped via the
LZ process as the phase varies over a period of φ = 0 to
φ = 2π which is restored during the next 2π cycle. There-
fore, while the spectrum of the junction is 2π periodic,
the occupation of the impurity bound state is 4π periodic.
Since the total energy E which includes the spectrum and
occupation of the ABS and impurity bound states de-
termines the supercurrent I(φ) by I(φ) ∼ ∂φE(φ), I(φ)
would also be 4π periodic with the phase φ. This mani-
fests as a peak in the radiation spectrum from the current
at a frequency of ω = ΩJ/2 instead of the usual Joseph-
son frequency ω = ΩJ peak.

While the qualitative argument in the previous para-
graph suggests the possibility of an FAJE occuring in
non-topological semiconductor systems, it assumes the
zero-energy LZ processes to be perfect and all other LZ
processes to be completely avoided. In the following, we
perform a completely unbiased quantitative analysis of
the FAJE for the JJ shown in Fig. 1. To begin with, we
note that at any finite voltage V , the occupation of an
ABS fluctuates due to excitations out of the bulk gap (via
multiple Andreev reflections). The quasiparticle fluctua-
tions ensure that the system equilibriates to grand canon-
ical ensemble (with no conserved fermion parity) such
that the expectation value of the current is 2π periodic
as in the conventional system [57]. Thus, strictly speak-
ing, the FAJE at any finite voltage is subject to random
fluctuations and can only appear in the noise spectrum
of the current [58, 59]. To assess the range of voltage
over which the JJ shown in Fig. 1(a) exhibits an FAJE,
we compute the noise spectrum of the current

P (ω) =

∫
dτeiωτ [〈I(t)I(t+ τ)〉 − 〈I(t)〉〈I(t+ τ)〉], (1)

where 〈· · ·〉 denotes the averaging over time t. The
current [55] and its noise spectrum [58, 59] can be
computed by considering the scattering of quasipar-
ticles between the superconducting leads, which are
at different voltages. This approach has the advan-
tage of including the contribution of not only the low-
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FIG. 2: (Color online) Power radiated P (ω) as a function of
frequency ω/ΩJ for different ratios of the applied voltage V
relative to the zero-energy gap δ0. The power spectrum P (ω)
shows a fractional ac Josephson peak at ω = ΩJ/2 for a range
of values of V/δ0. The peak broadens out at higher voltages
and shifts towards a more conventional peak at ω = ΩJ at
lower frequency (while becoming smaller). P (ω) has been
rescaled so that all peaks are clearly visible.

energy ABSs but also all bound and scattering states
in the junction. We have expanded this formalism
to general superconductor-normal-superconductor junc-
tions [60]. Our general framework can be easily im-
plemented with Kwant [61] which supplies the normal-
superconductor scattering matrices. The resulting power
spectrum P (ω) is plotted against the frequency scaled
by the Josephson frequency, i.e., ω/ΩJ in Fig. 2 for var-
ious voltages for the system depicted in Fig. 1(a) with
the spectrum shown in Fig. 1(b). The power spectrum
at high voltages is quite broad, which becomes narrower
at lower frequency and develops peaks in the vicinity of
ω/ΩJ = 1/2 before splitting off to different values. The
high-frequency spectrum is also several orders smaller in
magnitude, which is expected in the adiabatic limit when
fluctuations in the ABS occupation are small. While
some of the peaks appear to move away from the ideal
fractional value and come back, this might be difficult to
resolve at a high level of broadening arising from nearby
energy states and circuit-noise induced broadening.

The spurious FAJE peaks in Fig. 2 resulting from the
LZ mechanism appears over a frequency range narrower
compared to the parametrically large frequency range
(i.e. (Γ, δ ≤ ω ≤ ∆)) of the FAJE in a high quality
TS [58, 59, 62, 63]. Here, ∆ is the induced superconduct-
ing gap, which is a relatively large frequency (∼ GHz),
Γ and δ are respectively the quasiparticle poisoning rate
and the MZM overlap that become vanishingly small (.
MHz) in high quality TSs.

It is clear from Fig. 2 that distinguishing a bona-fide

TS from an LZ-type mechanism induced by resonant
bound states requires low-frequency (. 50 MHz) mea-
surements of high quality TS devices with ∆� δ,Γ. The
FAJE which involves measuring small oscillating currents
is difficult to perform for low frequencies because such
small oscillating currents are typically measured using
an on-chip detectors [40, 64] that are suited to measure
relatively high frequencies (∼ GHz). On the other hand,
the Shapiro step [37], which is a variant of the FAJE,
has been demonstrated over a large range of frequencies
from several MHz to GHz [53]. While this makes the
Shapiro step promising for the detection of TSs, a rig-
orous proof establishing the doubled Shapiro step as a
signature of TS is still missing from the literature. Be-
low, we demonstrate analytically for the first time that
the low-frequency doubled Shapiro steps can be used as
a reliable signature of TS.

We begin by considering the Shapiro step experiment
where a JJ shunted with a resistance R is biased with
a time-varying current Ibias(t) = Idc + Iac cos (ΩJ t) with
Idc and Iac being dc and ac bias currents, respectively.
For the following analysis, we make a key assumption
that we are working in the limit of low frequency ΩJ so
that the Josephson current IJ(φ(t)) can be taken to be in
equilibrium, apart from the conserved local fermion par-
ity. The assumption of being at sufficiently low frequency
can only be justified by studying the Shapiro steps over
a few orders of magnitude in frequency (from ∆ ∼ GHz
to δ,Γ ∼ MHz). Using this assumption and the result
of Bloch [57], we can establish that IJ(φ) for any non-
topological system must be 2π periodic and thus rule
out any non-topological FAJE such as those from the LZ
mechanism.

Furthermore, assuming that the shunt resistance R is
small enough to allow the JJ to be overdamped, the equa-
tion of motion for φ(t) for the resistively shunted JJ takes
the standard form [37]

dφ

dt
= R[Ibias(t)− IJ(φ(t))]. (2)

For illustration purposes, we will choose a simple case of
IJ(φ) = I0 cos (2πφ) + Itop cos (πφ) where I0 and Itop are
the 2π- and 4π-periodic component of the critical cur-
rent of the adiabatic current-phase relation, respectively.
However, our results hold generally and do not depend
on this parameter choice as is proven by the analytic ar-
guments in Ref. [65]. The dc voltage V across the JJ is
calculated by considering the average change of the phase

V = lim
t→∞

φ(t)− φ(0)

t
, (3)

where the limit is computed by choosing a sufficiently
long simulation time for Eq. 2.

We will now show that overdamped JJs constructed
out of TSs are generically characterized by a dou-
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FIG. 3: (Color online) (a) Schematic of a phase particle (or-
ange disc) on a tilted washboard potential that describes the
phase dynamics in an overdamped JJ. As the bias current
increases from t = 0 to t = τ , the phase particle is released
from the local minimum and traverses the trajectory along
the green dash-dot arrow, and stops when the current bias is
back to its value at t = 0 and the phase particle has trav-
elled by 4π (for the TS case shown here). This corresponds
to a voltage step of 2ΩJ . (b) Shapiro step calculated nu-
merically for a putative fractional Josephson system shows
doubled Shapiro steps (see also Ref. 44) as opposed to a con-
ventional system with all integer Shapiro steps for an over-
damped JJ. Here Iac = 0.1I0, R = 25, Itop = 0.15I0 (for
fractional), and Itop = 0 (for conventional).

bled Shapiro step in the strongly overdamped and low-
frequency limit (i.e., ΩJ/IJR � 1). The dynamics of
φ(t) described by Eq. 2 can be understood simply by an
analogy of a “phase particle” rolling down a washboard
potential according to the equation φ̇(t) = −∂φUwb(φ, t),
where the washboard potential is written as Uwb =
−R[Ibias(t)φ−

∫
dφIJ(φ)]. As seen in Fig. 3(a), because

of the ac drive, the potential Uwb(φ, t) varies in time with
local minima at each cycle when φ(t) = φ0 such that

Ibias(t)− IJ(φ0) = 0. (4)

In the adiabatic limit (i.e., ΩJ/IJR � 1), one can show
that the phase particle approaches the minimum of the
washboard potential exponentially in time once every pe-
riod of the drive. This leads to a well-defined voltage that
appears as a sharp plateau in the Shapiro steps [65].

Let us for now assume that [65] the phase particle
approaches a minimum of Uwb during the time inter-
val when such exists. In the conventional case of a 2π-
periodic function IJ , this can occur once in a 2π period
provided the critical current IJ,max > (Idc − Iac). This
will certainly occur if Idc is small enough. In addition,
if Idc > (IJ,max − Iac), then there will be a range of
time when Uwb has no minimum and the adiabatic so-
lution breaks down. In this case, φ(t) will wind by a
multiple of 2π and collapse to φ0 after a winding of 2πn.
The result is that an integer voltage appears across the
JJ. In the case of a topological JJ, the current-phase re-
lation IJ(φ) has a 4π-periodic component and one can
define two critical currents IJ,max and I ′J,max, one asso-
ciated with the range φ ∈ [4nπ, (4n+ 2)π] and the other
in the range φ ∈ [(4n − 2)π, 4nπ]. In our simple model
IJ,max, I

′
J,max = I0±Itop. As in the conventional case, the

dc bias current must satisfy Idc > (IJ,max−Iac) (assuming
IJ,max > I ′J,max) to exit the zero-voltage state even in the
TS case. On the other hand, if 2Iac < (IJ,max − I ′J,max)
then Idc > I ′J,max + Iac so that the phase particle can
not stop at one half of the minima. This leads to a dou-
bled voltage step for the topological case as seen from
the numerical solution of Eq. 2 [see Fig. 3(b)].

In summary, we have shown that while the FAJE can
be viewed as a smoking gun for the TS with MZMs, a
detailed study of the frequency dependence of the FAJE
is necessary before concluding a system to have realized
the TS. We have shown this by considering a generic
model of a high transparency channel in a JJ coupled
weakly to a resonant impurity. We find this model to
show an FAJE quite generically in semiconductor-based
JJs, similar to the TS case with MZMs. Nevertheless,
TSs are expected to show FAJE over a parameterically
larger range of frequency. We argue that current-phase
relation over such a range of frequency, particularly at
the low-frequency end is better studied by considering
the Shapiro step experiment. We present a way of un-
derstanding the Shapiro step experiment in terms of the
tilted washboard potential that guarantees that the nec-
essary and sufficient condition for the existence of dou-
bled Shapiro steps in the low-frequency limit is that the
JJ is formed from a TS. Thus, low-frequency Shapiro
steps which have been demonstrated in conventional sys-
tems can serve as a smoking gun for MZMs.
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