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To understand emergent magnetic monopole dynamics in the spin ices Ho2Ti2O7 and Dy2Ti2O7,
it is necessary to investigate the mechanisms by which spins flip in these materials. Presently there
are thought to be two processes - quantum tunneling at low and intermediate temperatures, and
thermally activated at high temperatures. We identify possible couplings between crystal field and
optical phonon excitations and construct a strictly constrained model of phonon-mediated spin flip-
ping that quantitatively describes the high temperature processes in both compounds, as measured
by quasielastic neutron scattering. We support the model with direct experimental evidence of the
coupling between crystal field states and optical phonons in Ho2Ti2O7.

In rare earth compounds, magnetic responses can
be strongly and non-monotonically dependent on the
strength or frequency of applied magnetic field, or the
temperature. Examples include stepped magnetization
curves in single ion magnets [1], or the multiply-peaked
susceptibility response in LiYF4:Ho?" [2-4]. These ef-
fects appear because there are competing mechanisms
that can contribute to the flipping of large rare earth
magnetic moments. Owing to their different origins -
conduction electrons [5], phonon-mediated (e.g. direct,
Raman, Orbach, and phonon bottleneck effects [6-8]),
or quantum mechanical (tunneling, thermally assisted
tunneling between excited states, resonant tunneling at
electronic-nuclear level crossings, and co-tunneling [2, 3,
9-11]) - these mechanisms have quite different paramet-
ric dependencies. Understanding spin flipping (or relax-
ation) is currently important in rare-earth based single
ion magnets [12], especially in the context of applications
in quantum information processing [13-15] that depend
on the stability and control of quantum states [16-19],
and in spin ices, where they determine the mobility of
magnetic monopole excitations [20].

In a canonical spin ice such as DysTisO7 or
HoTioO7 [21], the magnetization dynamics of the low
temperature Coulomb phase [22, 23] should be described
by the cooperative behavior of the thermal population
of emergent magnetic monopoles [20, 24], which form
a magnetic Coulomb gas. Indeed, the spin relaxation
time, 7, of Dy5TisO7, as extracted from x,., has been
explained with considerable success by the monopole pic-
ture: both a thermally activated regime at T < 1 K [25-
28] (which we call low temperature) and temperature in-
dependent plateau for 1 < T' < 10 K (intermediate tem-
perature) are captured well by a theory of monopole hop-
ping in dilute (unscreened) and concentrated (screened)
magnetic Coulomb gases respectively [29]. The reentrant
low temperature thermal activation is due to interactions
between unscreened monopoles.

For a monopole to hop, a spin must be flipped, and
because the plateau of 7 was previously associated with

quantum tunneling of the large, Ising-like Dy3T mo-
ments between the members of their ground state dou-
blet [28], monopoles were assumed to hop by tunneling
of the spins with temperature independent attempt fre-
quency [29]. The resulting picture should describe the
Coulomb gas realized in each material by relating the
energy for monopole creation and unbinding to the ex-
change interactions [30, 31]. However, subsequent mea-
surements of HoyTi2O7 [32] and Dy2TizO7 [33-35] have
found that in the unscreened regime this relationship is
not exactly as expected, while simulations of DysTisO7
with a temperature-dependent hop rate agree better with
the observed relaxation times [36]. These studies sug-
gest that to understand out-of-equilibrium [37-40] and
quantum dynamics [41, 42] in spin ices at low temper-
ature, it is essential to understand all contributions to
the monopole hopping dynamics. As in LiYF4:Ho?* [4],
the first requirement is to understand the classical spin
flipping mechanism of the spin ices.

Studies of Dy2TisO7 [25-28] in which the intermedi-
ate temperature plateau was ascribed to quantum tun-
neling of the spins also revealed a second thermally ac-
tivated regime for 7' > 10 K (i.e. high temperature).
The response of HooTioO7 is similar but the relative rate
of the low temperature process is much faster than in
Dy2TizO7 [43, 44]. The high temperature process in both
spin ices was modeled by an Arrenhius law, with activa-
tion energy A attributed to over-barrier hopping via the
first crystal field excitation (CFE). However, the best-
fitting A, although close, is not equal to the energy of
any CFE in either material, and this interpretation does
not explain how such a process would occur.

We propose that phonon mediated processes involving
a higher crystal field state interacting with phonons [45]
provide a quantitative and physical explanation of the
high temperature processes. In this mechanism, a rare
earth ion is excited from one crystal field state to an
intermediate excited state by absorption of a phonon,
and then relaxes to a third state by emission of an-
other phonon. Relaxation by a single such process
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FIG. 1. General features of QENS in spin ices, as exemplified
by HooTi2O7. We see a |Ql-independent S(]Q|,w) response,
with QENS around the elastic line and transitions amongst
excited crystal field states (a). In panel b, we show an example
of a resolution-convoluted fit of the quasielastic Lorentzian
(QENS) and two CFEs (T1 and T2). In panel ¢ we show the
general evolution of the QENS and excited state transitions,
along with the resolution regimes used in the measurements
(A12,3 = 11,6,4.3 A in this case).

has the characteristic temperature dependence of n =
1/(exp (A/kpT) — 1), where A is the energy of the
phonon to be absorbed, but more than one process can
operate simultaneously, depending which crystal field
levels interact with phonons. The time and temperature
scales of this type of process mean they can be stud-
ied by neutron scattering. Either the width (T') of the
quasielastic neutron scattering (QENS) can be under-
stood as lifetime broadening of the ground state dou-
blet and used to give a measure of the spin relaxation
time (7), as was done for rare earth cuprates [45]; or the
width of a CFE can be followed directly, as was done
for LiTmF, [46]. In the former case the origin of the re-
laxation was debated [47], while in the latter full details
of the coupled phonons were not established. In the fol-
lowing, we measure I' using QENS, determine the allowed
spin-lattice interactions and construct a model of phonon
mediated processes in both materials that describes the
high temperature processes quantitatively. We provide
microscopic evidence of one such coupling.

We have measured QENS in powder samples of both
HooTi2O7 and Dy, TiaO7 [44] over a wide range of tem-
peratures using the spectrometer FOCUS at SINQ. We
report results obtained using the (0,0,2) reflection of
both the pyrolytic graphite (A = 4.3,5,6 A; resolution
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FIG. 2. The QENS width I'" as a function of temperature
(a) and relaxation time as a function of inverse temperature
(b), measured with different neutron wavelengths shown by
the symbols. Solid lines are from the model described in the
text, dotted lines in b indicate the resolution limit of the dif-
ferent settings of the spectrometer. The same quantities for
Ho2Ti2O7 are shown in panel ¢ and d, incorporating QENS
(FOCUS, this study) and neutron spin echo (NSE, [43]), com-
pared to the full model (FM), the first term of the model
(A =26.3 meV), and an Arrhenius law (AL) [43].

~ 100,50,40 peV) and mica (A = 11 A; resolution ~ 20
ueV) monochromators, where we selected the wavelength
to give appropriate resolution for a range of tempera-
tures. The quasielastic scattering was fitted by a sin-
gle Lorentzian, adjusted by the Bose factor for detailed
balance. The elastic line was removed by fitting with a
Gaussian peak, whose parameters were derived from a
measurement of the resolution using a vanadium stan-
dard. Additional Lorentzians were incorporated in the
fit of high temperature data from HosTizO7 to model
excited state CFEs that appear close to the elastic line.
Points at the edges of two resolution ranges were mea-
sured with both settings to ensure overlap of the fitted
peak widths.

An example of the S(|@|,w) data obtained for
Ho5TisO7 is shown in Fig. la, and an example of the
|Q|-integrated data used for fitting is shown in Fig. 1b.
The temperature dependence of the width and intensity
of the quasielastic scattering and CFEs can be seen in
Fig. 1c. Below T &~ 50 K, the spin fluctuation processes
are too slow for QENS, and, even with A = 11 A, the
response is resolution-limited, but as the temperature is
further increased, the QENS broadens.

In Fig. 2a, we show the temperature evolution of T’

for both compounds, and also its representation as a re-
laxation time 7 (panel b). Notably, the QENS spectra of
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FIG. 3. Schematic overview of the interaction of CFEs and phonons. The line color of the CFEs represent the combined
values of the quadrupolar transition matrix elements between the members of the crystal field ground state and excited states.
Quadrupolar operators @), and zone center phonon modes (u) of Ho2TizO7 (a and b) and Dy2Ti2O7 (c and d) are sorted by
their symmetries A (a and ¢) and E (b and d). The relevant phonon modes (represented by solid lines) are quasi-degenerate
with a CFE supporting a strong quadrupolar matrix element of the correct symmetry. Phonons that are not involved are shown

by dotted lines.

Dy, TisO7 are nearly twice as broad as those of HosTisO7
throughout the sampled temperature range. In Fig. 2c,d
we show our data for Hos TisO7 compared with NSE data
from Ref. [43], which extends to longer times/lower tem-
peratures, in terms of I and 7 respectively. All the lines
in Fig. 2 are derived from models, either the model which
we discuss below, or the Arrenhius law used in Ref. [48].
It can be seen in Ref. [48] that the relaxation time already
departs from the Arrhenius law at the highest tempera-
tures studied there, and this is made plain by the higher
temperatures measured in this work (see Fig. 2c¢ and d).

The phonon-mediated spin relaxation mechanism de-
pends on a magnetoelastic interaction of normal modes
of vibration with the single ion crystal field potential [45].
The contribution to the temperature dependence of I is
given by

D(T) = 3 ST G2, A ([l Qulu P+ [01Qulor) .
M

where (,, is the magnetoelastic coupling parameter for
a phonon and intermediate crystal field state |v;) at en-
ergy A;, v is the number of ions per unit cell, and M
the mass of an oxide ion. The distribution function
n; = (exp(A;/kpT) — 1)~ provides the temperature
dependence of the process, and Z,(A;) is the partial
phonon density of states (pPDOS) of the anionic modes
of vibration transforming according to the representation
. The prefactors are absorbed into fitting parameters
such that I'(T') = >, Bin; [45].

For an intermediate state ¢ to enter the summation, we
require a finite matrix element for the quadrupolar oper-
ator (@Q,,) for the transition between the initial ({a|) and
intermediate (Jv)) crystal field state and spectral overlap
of this state with a phonon (u,) of identical symmetry
(v labels the irreducible representation of the operator

i

or excitation). At the rare earth site, in Dsq symme-
try, there are three quadrupolar operators with symme-
try (Aj, E, E), and the matrix element for a transition
(a|Qpulv) is finite if the direct product of the represen-
tations () of the two states and the transition operator
contain the unit representation, v, X v, Xy € A;. There
are three possible combinations for finite matrix elements
of the magnetoelastic interaction operator: v4,0,v,u = &
(1); Yoo = E, 700 = A (2); Ya,u = E,70 = A (3). The
initial state |a) is a member of the ground state doublet,
and |v) is an excited crystal field state, the final state |b)
is the other member of the ground state doublet.

The transitions involved in the model are summarized
in Fig. 3. Using the wave functions of crystal field
states [49], we evaluated the quadrupolar matrix ele-
ments of the crystal field transitions. Quasi-degenerate
(at the Brillouin zone center) phonon modes of the cor-
rect symmetry were identified from the phonon band
structure [50]. The vibrational modes involved are dom-
inated by oxide ions in the 48 f position, so we approxi-
mate Z,(A;) by the pPDOS of this site.

In Ho,TizO7, we find the two largest matrix elements
between the ground state and the doublets at £ =
26.3,60 meV, and weaker matrix elements between the
ground state and the singlet and doublet at £ = 21,22
meV. Each of these transitions is quasi-degenerate with
a phonon of appropriate symmetry, while the remaining
transitions have no overlap with a vibrational mode of F
or A symmetry. For HooTisO7, we construct our model
using three intermediate states at A; = 21.5,26.3,60
meV, where the first represents the effect of the weak
matrix elements. In Dy;TisOr, the intermediate states
are those at E = 21,31,43 meV. The state at 91 meV
also meets the symmetry requirements but is outside the
temperature window of this study. Other states have
large matrix elements, but no compatible phonon.
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FIG. 4. CFE and phonon interactions in a single crystal of
Ho2Ti2O7. Two CFEs (E = 22,26.3 meV) and a phonon
(E = 31 meV) can be seen. The CFEs can be measured at the
zone center (I = 8) and boundary (I = 7) and shift upward
between 5 and 200 K. The CFE at £ = 22 meV disperses
upward by 0.5 meV at the zone center where it intersects with
an optical phonon [50] (panel a). The intensity of the two
CFEs follows the magnetic form factor along (0,0,1), except
for the CFE at EF = 22 meV which is boosted at zone centers
with strong phonon structure factors (I = 4n) (panel b and c,
scan positions of panel a are indicated by colored points).

For Ho,TioO7 we included both QENS and NSE data
in the fit, and since the states By and Bs have similar en-
ergies and nearly identical pPDOS [50], we related their
values by the ratio of their quadrupolar matrix elements.
The resulting coefficients are Bj3 = 0.018,0.2,0.79
meV. For Dy,TisO7, to reduce the number of fitting pa-
rameters, the values of the parameters Bs and Bs were
linearly related using the energies of their CFEs, unity
for the ratio of the oxygen phonon density of states, and
their quadrupolar transition matrix elements. We ob-
tained Bj 23 = 0.23,0.49,0.38 meV. As shown in Fig. 2,
the model fits the relaxation rates of both compounds
very well. For HoyTisO7, relaxation via the level at 26.3
meV describes the QENS width effectively up to T ~ 250
K, and the third intermediate state at £ = 60 meV dom-
inates at higher temperatures.

The values for the magnetoelastic coupling constants
Cu extracted from the fitted parameters under these ap-
proximations [44] suggest that the magnetoelastic cou-
pling is linear (in energy), consistent with physical in-
gredients of the model. To further verify our model,
we sought direct evidence of interactions between CFEs
and phonons using a single crystal of HooTisO7 and
the triple axis spectrometer HB3 at HFIR, ORNL. The

(0,0,2) reflection of the beryllium monochromator pro-
vides access to quite high energy transfers with good
energy resolution - using a pyrolytic graphite filter and
analyzer ((0,0,2) reflection), the energy resolution was
AFE =~ 1.7 meV in the energy transfer window of 20 — 30
meV. With fixed final energies of Ef = 14.7,30.5 meV,
we measured energy scans in the range 18 < E < 33
meV at different (0,0,1) positions that were either Bril-
louin zone centers (0,0,1 = 2,4, 6, 8,10, 12) or boundaries
(0,0,1=13,5,7,9), at T'= 5,200 K.

Fig. 4a shows the two CFEs at E ~ 22,26.3 meV and a
phonon at F = 31 meV, measured at (0,0,8). The inten-
sities of the CFEs decrease as the temperature is raised,
and they shift upward in energy, while the intensity of the
phonon increases but its energy does not change. The
upward shift of the CFEs is also shown by the down-
ward shift of the excited state transitions T1 and T2 in
Fig. 1c. Comparison of the same scan at | = 7,8 shows a
resolution limited sharp peak for both CFEs with a 0.5
meV upward dispersion between zone boundary and cen-
ter for the first, but at identical energies for the second.
The [-dependence of the intensity of the CFEs (Fig. 4b)
follows the dipole magnetic form factor at zone bound-
aries (I = n) and at zone centers where the Fd3m space
group forbids a Bragg reflection (I = 2n), but the CFE
at I/ =~ 22 meV has anomalously large intensity at zone
centers with strong Bragg reflections (I = 4n) while the
CFE at E =~ 26.3 meV also follows the magnetic form
factor at these positions.

Phonon calculations [50] show that there is an optical
phonon with E symmetry at E ~ 22 meV at the zone
center. The phonon disperses away at the zone bound-
ary, and its structure factor is suppressed at zone centers
where the Bragg intensity is not allowed. Hence at all
these positions (i.e. { = n and | = 2n) both CFEs are
unaffected and follow the magnetic form factor. At those
zone centers with a strong Bragg reflection, the strong
phonon structure factor boosts the intensity well above
the magnetic form factor, but the observation of a single
mode displaced from the energy of the uncoupled zone
boundary CFE or phonon shows that the coupling pulls
the two excitations into resonance, i.e. they are not just
coincident. Conversely, the phonon mode expected to in-
teract with the CFE at 26.3 meV was calculated to have
a very weak structure factor along (0,0,1), due to its po-
larization. Hence we observe no signatures of coupling
in this direction, and this CFE also follows the magnetic
form factor (Fig. 4c).

We have shown that the symmetries and wavefunctions
CFEs and optical phonons can be used to construct a
physically realistic model for phonon mediated spin flip-
ping processes. Modes with the correct symmetry and
energy exist in the spin ices HoyTizO7 and DysTis O,
and we presented direct evidence of one of the couplings
in HooTioO7. A model based on these spin-lattice inter-
actions describes the high temperature spin relaxation in



both compounds very well. We advance this model as
the first microscopic description of a spin flipping mech-
anism in the spin ices HosTioO7 and Dy, TisO7, and also
as a quantification of the spin-lattice interactions possi-
ble in these materials. Our investigation sets the stage
for microscopic investigations of the possible quantum
processes at low temperature, and their consequences for
collective monopole dynamics.
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