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Abstract 14 

 The change in electrical resistance associated with the application of an external 15 

magnetic field is known as the magnetoresistance (MR). The measured MR is quite 16 

complex in the class of connected networks of single-domain ferromagnetic nanowires, 17 

known as ‘artificial spin ice’, due to the geometrically-induced collective behavior of the 18 

nanowire moments. We have conducted a thorough experimental study of the MR of a 19 

connected honeycomb artificial spin ice, and we present a simulation methodology for 20 

understanding the detailed behavior of this complex correlated magnetic system.  Our 21 

results demonstrate that the behavior, even at low magnetic fields, can be well-22 

described only by including significant contributions from the vertices at which the legs 23 

meet, opening the door to new geometrically-induced MR phenomena. 24 

 25 
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Magnetoresistance (MR) plays a central role in studies of magnetism [1, 2], and 26 

MR effects are particularly interesting in nanostructures, where size constraints can 27 

alter the fundamental electrical transport behavior [3].  A prominent example of such 28 

nanostructures, connected artificial spin ice, consists of mesoscopic networks of single-29 

domain ferromagnetic nanowires arranged in lattice geometries designed to emulate the 30 

frustrated behavior of spin ice [4, 5, 6]. In zero magnetic field, the moments of the 31 

nanowire legs are effective Ising spins aligned with their long axes, directed toward and 32 

away from the vertices of the lattice. Local interactions result in so-called “ice rules” that 33 

govern the number of moments pointing into and out of each vertex to minimize the 34 

local magnetostatic energy. Artificial spin ice structures have proven to be exemplary 35 

systems in which to study frustration [5,6] and have been noted for their technological 36 

potential as both a reconfigurable metamaterial and as a memory storage medium [7, 8, 37 

9, 10, 11, 12].  Connected artificial spin ice in particular has been studied extensively in 38 

the last decade [13, 14, 15, 16, 17, 18, 19, 20, 21, 22,23,24, 25].  Tanaka et al. and 39 

other workers, observed sharp features in the magnetoresistance of connected artificial 40 

spin ice, and associated them with reversal events that maintain the ice rules of the 41 

system [13, 14, 15].  An explicit understanding of the data, however, has not yet been 42 

achieved beyond qualitative attribution to changes in the magnetization profile in 43 

combination with anisotropic magnetoresistance (AMR), a property of ferromagnetic 44 

metals associated with changes in resistivity as a function of the angle between the 45 

magnetization and the local current density [26, 27].  46 

We have studied MR in artificial spin ice, combining experimental data with a 47 

micromagnetic-based transport model that gives us microscopic understanding of the 48 
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observed sharp features in both the longitudinal and transverse magnetoresistance.  49 

We find that the MR behavior of artificial spin ice systems can be explained through a 50 

complex interplay of AMR and the collective magnetization response of the frustrated 51 

network, and that the physics of the system involves significant deviations from a simple 52 

spin ice model of Ising moments even at low magnetic fields.  Specifically, we find that 53 

the vertices where nanowires intersect can be critical in determining the observed MR 54 

behavior of the entire system.  While previous studies of magnetotransport in different 55 

geometries of ferromagnetic structures demonstrated that domain wall configurations 56 

would be important to transport measurements [28, 29, 30, 31, 32, 33, 34], here we are 57 

able to understand and quantitatively replicate details of magnetotransport considering 58 

both the collective magnetic structure of this frustrated system and the resulting 59 

complex electric field configurations throughout the system.  The success of our 60 

methodology indicates that a wide range of new magnetotransport effects associated 61 

with nanoscale geometry can be understood in both artificial spin ice and other 62 

ferromagnetic nanoscale systems, opening possibilities for new devices and novel 63 

magnetoresistive physical phenomena. 64 

 We studied permalloy (Ni81Fe19) networks of nanowires, which we label as “legs” 65 

connected at vertices (Fig. 1d), patterned into a Hall-bar geometry with current leads 66 

spanning the width of the sample (Fig. 1a). Magnetic force microscopy imaging at zero 67 

field (Fig. 1b) confirmed the single domain nature of the nanowire legs of the networks. 68 

Applying an ac current, we measured both V||, the longitudinal voltage, and V⊥, the 69 

transverse voltage (Fig. 1c), and thus determine the longitudinal and transverse 70 

resistances R|| and R⊥. The in-plane magnetic field was at an angle θ to the nominal 71 
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current direction denoted by θ. Experimental details are given in the Supplementary 72 

Sections 1 and 4 [35]. 73 

All data shown are from samples in the armchair geometry seen in Fig. 1a, where 74 

one third of the wires are parallel to the current. Measurements on a 90°-rotated lattice 75 

in the zigzag geometry, where one third of the wires are perpendicular to the current, 76 

are qualitatively consistent with the results discussed below (Supplemental Section 1 77 

[35]). For all data shown, the sample dimensions were consistent, and the individual 78 

nanowire legs of the network were approximately 800 nm by 75 nm in-plane and 25 nm 79 

thick, with the vertex regions having approximate lateral dimension of 100 nm. 80 

We plot our magnetoresistance data for field sweeps that start from +10000 Oe 81 

and sweep down to -10000 Oe, and then back to +10000 Oe. The maximum fields are 82 

sufficient to saturate the magnetization. Selected longitudinal resistance data are 83 

displayed in Fig. 2a, with corresponding transverse data shown in Fig. 2c. Field sweeps 84 

for a second armchair geometry device, and for other θ, can be found in Supplemental 85 

Section 2 [35]. The transverse data has an offset associated with slight longitudinal 86 

misalignment of the leads (less than ~50 nm). For all θ, we observed the broad 87 

parabolic background and field reversal symmetry expected for AMR [16]. Clear sharp 88 

features in the field sweep data are associated with changes in the magnetization as the 89 

nanowire leg moments collectively flip from being aligned with the magnetic field at the 90 

start of the sweep, to obeying the ice rules near zero field, and then becoming aligned 91 

again with the field at the end of the sweep.  92 

In Fig. 3, we plot the transverse magnetoresistance response at a given field 93 

strength as a function of angle (in 5° increments). This composite angular plot was 94 
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assembled from downward field sweep data. The high field transverse data have the 95 

expected symmetry for the transverse component of AMR, known as the planar Hall 96 

effect, with extrema at 45° and 135°. This confirms that the Ising character of the [26, 97 

27] nanowire leg moments is suppressed in a strong external field, i.e., the applied field 98 

rotates the moments away from the wire axes. It is then natural to ask whether an Ising-99 

ice model can describe the transport at low field. Since shape anisotropy should 100 

completely align nanowire leg moments with the wire axes at zero field, the legs at zero 101 

field should not result in any transverse magnetoresistance because of the functional 102 

form of the planar Hall effect [26, 27]. Surprisingly, the zero field remanent resistance 103 

state of the structure is also highly sensitive to the angle at which the field is swept, but 104 

with a completely different functional form consisting of three different plateaus with 105 

steps near 30°, 90° and 150°. This implies that the vertices, i.e., the regions at which the 106 

nanowire legs of the structure meet, are playing a significant role in the measured 107 

transverse resistance. While the vertex magnetization profiles are naturally determined 108 

by the neighboring leg magnetization, the data indicate that a simple ice model 109 

considering only the legs of the network is insufficient to explain the magnetotransport 110 

of this system even at low fields. 111 

 The changes in resistance as a function of field was also minimized at θ = 0° and 112 

θ = 90°, and we see intriguing behavior at those angles. In Fig. 4a, we show field 113 

sweeps for angles very close to θ = 90°, where small changes in angle result in drastic 114 

differences in MR. For θ > 90°, starting from negative field saturation, the resistance 115 

steadily increased, dropped sharply at 400 Oe, and then steadily increased until a jump 116 

at 1700 Oe. For θ < 90°, we observed inverted behavior: the resistance steadily 117 
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decreased, jumped sharply at 400 Oe, and then steadily decreased until a drop at 1700 118 

Oe. This effect is repeated in zigzag-orientation networks for θ = 0° (Supplemental 119 

Section 1 [35]), for which the orientation of the magnetic field with respect to the lattice 120 

was the same.  121 

To better understand the origins of MR behavior in this system, we developed an 122 

approach combining micromagnetic modeling with the phenomenology of AMR. Our 123 

transverse magnetoresistance data in Fig. 3 demonstrated the necessity of such 124 

modeling. We first obtained the magnetization profile ,  of the structure using the 125 

GPU-based MuMax3 package [36], starting with the geometry of an SEM image of an 126 

experimental device to approximate the edge roughness. We used ,  to calculate 127 

the longitudinal and transverse MR via computation of the electric field associated with 128 

AMR, as given by 129    Δ ·                                                               

where J is the electric current vector,  is a unit vector in the direction of the magnetic 130 

moment,  is the isotropic bulk resistivity, and Δ  is the anisotropic magneto-resistivity 131 

[26, 27].  132 

For a given magnetization profile , , we adopted a perturbation approach 133 

appropriate for Δ  small relative to the total resistance, and a reduced sample of 17 134 

hexagons, as shown in Fig. 5. We used a simplified current distribution such that 135   (along the x direction) for the vertex regions and the horizontal legs, whereas 136 /2  ,  for the remaining non-horizontal legs. Next, we use this 0th-order current 137 

distribution and Eq. (1) to compute the first-order correction to the electric field: 138 
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∆  · . A ∆ /  value of 0.05 was used as appropriate for permalloy [26, 27], 139 

acting here simply as a scaling factor. By taking the line integral of the first-order electric 140 

field, ∆ ·  over the appropriate path C, we calculated both the longitudinal 141 

and transverse resistance by integrating the field and dividing by the current.  Paths 142 

chosen mimicked the placement of the leads used in the experiment and are detailed in 143 

the Supplemental Section 3 [35].  This methodology is quite different from previous 144 

modeling of AMR in ferromagnetic nanostructures that relied on adding together the 145 

resistance from cells of the structures [33,34], and this new method allows for more 146 

complex structures and simulation of transverse resistances. 147 

The results of this modeling are shown adjacent to our experimental data in Fig. 148 

2 and 4. The agreement of the experimental longitudinal data (Fig. 2a) and the 149 

simulated longitudinal response (Fig. 2b) strongly corroborate this approach, capturing 150 

the parabolic background and qualitatively reproducing the observed features. The 151 

experimental transverse data (Fig. 2c) and the simulated transverse response (Fig. 2d) 152 

similarly show good agreement for most angles. 153 

Fig. 4 compares the experimental and simulated transverse data for a small 154 

subset of angles around 90°. Notably, the modeling was able to capture both the overall 155 

qualitative features and the inversion of the plot features. As the field was increased 156 

from -4000 Oe to 500 Oe, the MR gradually rose (θ > 90°) or fell (θ < 90°) as the 157 

nanowire leg moments aligned with their axes near zero field, and the sharp feature at 158 

approximately 500 Oe was due to the magnetization reversal of the ±60° nanowire leg 159 

moments. The simulations also indicate that the drastic change with field angle is 160 

associated with the field being nearly perpendicular to the one third of the nanowires; a 161 
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slight offset in angle forces the magnetization of those wires to all align in one direction 162 

at the highest field. The close agreement between modeling and experimental data 163 

demonstrates that our technique successfully captures the physics of MR in this system, 164 

and the few angles that did not show good agreement (e.g., the transverse data for θ = 165 

60°) we attribute to a failure of the first term perturbation approach, likely arising from 166 

the simplified current distribution, combined with the smaller size of the simulation lattice 167 

(compared to experimental samples).  Another possibility is that at certain angles our 168 

simulation, which is at effectively zero-temperature, is not fully representative of our 169 

room temperature experiment [25] , suggesting a possible avenue for further study.   170 

We hypothesized from our experimental data that the vertices are critical to the 171 

transverse MR, especially at field angles near ±90°, and our simulations allow a direct 172 

test of this conclusion. To demonstrate the impact of the vertex regions on the 173 

transverse MR, we separate the 90.2° simulated MR trace in Fig. 4b into two parts: the 174 

contribution to the MR from the nanowire legs and the contribution to the MR from the 175 

vertices (defined as triangular regions between adjacent legs as in Fig. 1d).  This plot 176 

makes it clear that, over the experimental field range, the transverse MR originated 177 

mainlyfrom the vertex portions.  We can qualitatively explain this fact based on a 178 

symmetry argument; the field near 90o is symmetric with respect to the ±60° nanowires. 179 

When the electric field is integrated along the +60° leg, there is cancellation with a 180 

corresponding -60° leg. As can be seen in the Supplemental Section 3 [35], the vertex 181 

contribution is smaller for other angles of applied field, but it is again appreciable for the 182 

field applied at 0°, where the degree of symmetry for the structure is also high. 183 
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To provide a microscopic picture of the vertex contributions to the MR, we show 184 

a snapshot of our simulations in Fig. 5. Here, the system was initially magnetized with a 185 

-4000 Oe field applied at 90.2o. The snapshot we show is at 800 Oe, the reversal point 186 

of the ±60° nanowires, where some, but not all, of those nanowire leg moments have 187 

reversed. Fig. 5a is a map of the magnetization, and Fig. 5b is the corresponding map 188 

of the y-component of the electric field. The polarity of the electric field for the nanowire 189 

legs is independent of whether or not they have reversed magnetization. 190 

Fig. 5c is an expanded region of the magnetization map showing six vertices. 191 

The vertices have two possible magnetization profiles, depending on whether the 192 

adjoining nanowire leg moments have reversed. The three vertices on the right are 193 

adjacent to nanowire legs whose moments have reversed, with the leg magnetization 194 

pointing upward. The three vertices on the left are adjacent to wires whose moments 195 

have not reversed, with magnetization pointing downward. The corresponding map of 196 

the y-component of the electric field is shown in Fig. 5d, showing how the different 197 

vertex magnetization states result in a difference in the transverse voltage.  We can 198 

similarly understand the three zero-field transverse resistance plateaus in Fig. 3, with 199 

transitions near 30°, 90°, and 150°. In these directions the field is perpendicular to 200 

approximately one-third of the nanowires. For field sweeps on either side of these 201 

angles, the zero-field remanent magnetization configuration changes, resulting in 202 

different vertex magnetization profiles and transverse resistances. 203 

 We emphasize that the transverse resistance has a many-body origin, because 204 

the nonzero transverse voltage in the small field regime arises from vertices obeying the 205 

ice rules. This is demonstrated by the 1-in-2-out and 2-in-1-out vertices in Fig. 5, where 206 
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the minority spins are on the ±60° nanowires. For such configurations, there is a net 207 

magnetization vector pointing along the ±60° directions in the vertex region, which in 208 

turn gives rise to an electric field pointing in the same direction according to Eq. (1). 209 

This off-axis electric field associated with the ice-rule obeying vertices is the 210 

microscopic source of the electric field that yields the non-zero transverse resistance.  211 

This realization opens the possibility of designing reconfigurable magneto-resistance 212 

devices based on artificial spin ice. 213 

Our results demonstrate how the complex magnetotransport of artificial spin ice 214 

networks can be understood through appropriate modelling. The unexpected 215 

contributions of vertex regions, and the concomitant extreme sensitivity of the behavior 216 

to field angle at certain field orientations, both suggest the possibility of new phenomena 217 

associated with the magnetoresistance of creative geometries, even in simple 218 

ferromagnetic metals.  Furthermore, our methodology of integrating the electric field 219 

associated with AMR allows precise modelling of these effects in a wide range of 220 

nanostructures.  Given the unusual physics inspired by the geometric freedom of 221 

artificial spin ice [37,38] and other creative structures enabled by modern lithography, 222 

exploitations of similar effects are likely to enable novel physical phenomena and device 223 

applications. 224 

 225 

 226 
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 248 

 249 

Figure 1: (a) SEM image of an armchair orientation connected kagome artificial spin ice 250 

lattice. An external magnetic field, H, could be applied along any in-plane direction, 251 

denoted by the angle θ between the field direction and the nominal current direction, I. 252 

(b) Corresponding MFM image. The black and white dots at the vertices are domain 253 

walls, indicative of the Ising-like behavior of the individual nanowires. (c) A schematic 254 

illustration of the lead arrangement used for transport studies. Large connective pads on 255 

each end supply an excitation current, while the thin nanowire leads along the long axis 256 

were used for voltage measurement. (d) A schematic illustration of the nanowire leg and 257 

vertex regions.  258 

 259 

 260 
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Figure 2: Experimental longitudinal (a) and transverse (c) magnetoresistance data, and 262 

corresponding simulated longitudinal (b) and transverse (d) magnetoresistance data. 263 

The down field sweeps (red) and up field sweeps (blue) are symmetric under field 264 

inversion. For viewing ease, all data except for θ = 0° have been vertically offset. 265 

Simulated data are for applied field angles at 90.2°, 60°, 30°, and 0.2°. 266 

 267 
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Figure 3: Pseudo-angular tracking of transverse resistance values for identical field 269 

strengths at varying θ. For each curve, the connected data were taken from sweeps of 270 

the magnetic field magnitude at different angles. The high-field data reveal the expected 271 

symmetry of the planar Hall effect, with extrema at 45 degrees and 135 degrees. Inset: 272 

Zero field transverse resistance values as a function of θ. The remanent zero-field 273 

resistance value depends on the angle at which the field was applied, reflecting the 274 

effect of the vertex regions. 275 

 276 
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 279 

Figure 4: Transverse magnetoresistance during upwards field sweeps (-10 kOe  10 280 

kOe) with small angular variations around θ = 90° showing both experimental (a) and 281 

simulation data (b). Note that the features are inverted above and below θ = 90°, and 282 

that the results are well reproduced by the simulations, as described in the text. 283 

Deconstructing the simulation data into contributions from the nanowire legs (green 284 

dashed line) and vertices (green dotted line) reveals the critical importance of the 285 

vertices to the overall magnetoresistance. 286 

 287 

 288 

 289 
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 290 

 291 

 292 

 293 

Figure 5: Simulated magnetization and y-component electric field maps of a 17-294 

hexagon armchair network. (a) The micromagnetic state at 800 Oe and θ = 90.2° after 295 

applying a -4000 Oe saturating field at the same orientation. At this field, only a fraction 296 

of the nanowire leg moments have undergone magnetization reversal. (b) Electric field 297 

maps of the same state, generated as described in the text. (c) Expanded section of the 298 

magnetization map, showing that the vertex regions (circled) have different 299 

magnetization profiles that depend on the adjacent nanowire leg moments. (d) 300 

Expanded section of the electric field map. Note that the electric field profile of the 301 
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vertex regions changes with the magnetization profile, while there is no change for the 302 

nanowire legs. 303 

  304 
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