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We consider charge transport properties in realistic, fabricable, Ferromagnet/Superconductor spin valves hav-

ing a layered structure F1/N/F2/S , where F1 and F2 denote the ferromagnets, S the superconductor, and N the

normal metal spacer usually inserted in actual devices. Our calculation is fully self-consistent, as required to

ensure that conservation laws are satisfied. We include the effects of scattering at all the interfaces. We obtain

results for the device conductance G, as a function of bias voltage, for all values of the angle φ between the

magnetizations of the F1 and F2 layers and a range of realistic values for the material and geometrical param-

eters in the sample. We discuss, in the context of our results for G, the relative influence of all parameters on

the spin valve properties. We study also the spin current and the corresponding spin transfer torque in F1/F2/S
structures.

PACS numbers: 74.45.+c,74.78.Fk,75.75.-c

I. INTRODUCTION

Traditional spin valves1 consist of two ferromagnetic mate-

rials where changing the relative orientation of their exchange

fields is used to control the transport properties of the het-

erostructure. They are based on the well-known and much

celebrated2 Giant Magnetoresistive (GMR) effect. More re-

cently, it has become possible to fabricate spin valves by lay-

ering ferromagnetic (F) and superconducting (S ) materials.

In this context, spintronic devices of various kinds3–5 have

been proposed and considered. The fundamental properties

of such devices arise from the F/S proximity effects6. These

effects lead to many new properties. In particular, spin valve

devices, having an F1/F2/S or (more typically in experimen-

tal situations) F1/N/F2/S , where N is a normal spacer, have

been extensively7–9 studied both theoretically and experimen-

tally. Research on these devices is furthered because, besides

their great scientific interest, they have possible applications

towards the creation of non-volatile magnetic memory ele-

ments. The currents can also be spin-polarized, and this can

then lead to a low energy spin transfer torque that can be used

to control the magnetization of nanoscale devices.

Ferromagnetism and s-wave superconductivity would ap-

pear to be incompatible due to the opposite spin structure of

their order parameters: the internal fields in the ferromag-

nets tend to break the singlet Cooper pairs. Indeed, although

proximity effects do exist in F/S heterostructures, they are

very different from those at N/S interfaces. The exchange

field leads to the Cooper pairs acquiring a center of mass

momentum10 which results in damped oscillatory behavior of

the singlet pair amplitudes in the F layer regions11,12. This

behavior is fundamentally important: it induces oscillations in

most of the physical properties of these structures, including

the dependence of the transition temperature6 on the thickness

of the various layers. It also drastically changes the behavior

of transport quantities such as the the bias dependent conduc-

tance, discussed below.

An even more noteworthy phenomenon arising from the

F/S proximity effects is that in certain F/S heterostructures

triplet correlations may be induced, even though the S mate-

rial is an s-wave superconductor13–16. These triplet correla-

tions are necessarily odd in frequency17 or, equivalently, odd

in time14 as required by the Pauli principle. When the fer-

romagnetic exchange fields are all aligned only the mz = 0

triplet component can be induced since S z, the z compo-

nent of the Cooper pair spin, commutes with the Hamilto-

nian. However, when there are two or more F layers with

non-collinear exchange fields, as can happen for example in

F1/F2/S structures, S z cannot commute with the Hamiltonian

and the mz = ±1 triplet states can also be induced. This is also

the case with a single F layer having a non-uniform magne-

tization texture18–20. In contrast to the short-range proximity-

induced singlet pair amplitudes, these odd mz = ±1 triplet

states are usually long ranged21–27 in the F layers. Their be-

havior is also oscillatory. Because of this, the details of the ge-

ometry of the F/S multilayers are crucial to determining their

equilibrium28 properties, including the oscillatory behavior of

the transition temperature with layer thicknesses29 and with

the misalignment angle φ between the two F layers16,29,30 in

a spin valve. The transport properties8 are also affected, in

particular the applied field dependence of the resistance at Tc

depends16,31 also on φ. As in a conventional spin valve, the

relative exchange field orientation of the F layers can have a

large effect on the conductance of the system. The introduc-

tion of triplet correlations can lead to a nonmonotonic depen-

dence of the conductance on φ, just as for equilibrium quanti-

ties.

Ultimately, all superconducting proximity effects are gov-

erned by Andreev reflection at the interfaces. Andreev

reflection32 is the process of electron-to-hole conversion by

the creation or annihilation of a Cooper pair in the super-

conducting layer. In conventional Andreev reflection, the re-

flected electron/hole has opposite spin to the incident particle.

However, it has been shown8,33–36 that in F/S interfaces triplet

proximity effects are correlated with anomalous Andreev re-

flection, in which the reflected quasiparticle has the same spin

as the incident one. From this, it follows that the transport

properties are highly dependent on the proper consideration

of Andreev reflection, as has been long recognized in both

N/S 37,38 and F/S 39,40 systems. These effects are particularly

important when examining the conductance in the subgap bias

regime.
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In this paper, we are motivated by the increasing interest

in building actual, practical spin valve structures with poten-

tial use as part of memory elements. We therefore inves-

tigate the charge transport properties of a superconducting

spin valve, an F1/N/F2/S structure which includes the nor-

mal metal layer spacer, as used in spin valve devices. This

normal metal spacer is necessary in experiments in order to

control the relative exchange field of the F layers through the

use, for example, of a pinned and a soft ferromagnetic layer,

in which the spacer decouples the ferromagnetic layers layers

(see e.g. Ref. 29). We will use typical values of the different

thicknesses, as in existing and planned41 devices, and realistic

interfacial scattering between the different layers. Parameters

such as the exchange field and coherence length will be taken

to be in the range relevant to the materials actually used. We

are particularly motivated to identify the relevant experimen-

tal transport features of actual F1/N/F2/S nanoscale systems.

Thus, we investigate a geometry corresponding to experimen-

tally realistic nanopillars with a normal metal layer spacer

between two ferromagnetic layers. These F/N/F layers are

grown on top of a superconducting substrate. This substrate

must be thick enough to allow for the sample to be supercon-

ducting: its thickness must exceed the superconducting cor-

relation length. Furthermore, experimental constraints do not

allow for perfect interfaces. Although recent developments in

fabrication techniques4 have allowed for very clean interfaces

with ballistic transport properties, surface imperfections are

unavoidable and even small interfacial scattering can have a

large effect on the transport properties, as we shall see, since

they affect both ordinary and Andreev scattering.

We will use a self consistent solution of the Bogoliubov de

Gennes (BdG) equations42 to calculate the conductance G as a

function of bias voltage for realistic ranges of geometrical and

material parameters, and as a function of the angle φ. Temper-

ature corrections, which we will show to be non negligible,

will also be studied. The conductance will be obtained from

the self consistent solutions of the Hamiltonian, via a transfer

matrix procedure which makes use of the Blonder-Tinkham-

Klapwijk (BTK) method37. In some previous calculations36,43

of the conductance, a non self-consistent, step-function pair

potential has been assumed. This neglects the very proxim-

ity effects which act on the singlet and triplet pair amplitudes,

and thus the pair potential. In order to properly take these into

account, one must use a self-consistent calculation of the pair

potential. Even more important, only a self-consistent solu-

tion can guarantee that the conservation laws are satisfied8, as

we review in Sec. II below. The feasibility of the methods

we use here was demonstrated in previous work8 on simple

F/F/S heterostructures without N spacers or interfacial scat-

tering, at T = 0. That work proved that the self-consistent

BTK method embedded into a transfer matrix procedure can

be used to calculate the conductance as well as the spin trans-

port quantities. Our work presented here exploits these meth-

ods with a broader focus on realistic experimental parameters

and sample compositions.

Because of the oscillatory nature of the superconducting

singlet (and triplet) amplitudes in the F layers, we will see

that, as expected, the transport results are highly dependent

FIG. 1. (Color online) Sketch of the structures studied. The notation

for thicknesses of the different layers is indicated, but the plot is not

to scale. The y axis is normal to the layers. The magnetizations of

the outer magnetic layer F1 is along the z axis while in F2 it is in the

x − z plane, forming an angle φ with the z axis, as indicated.

on the layer thicknesses, as they are on the exchange field. We

report on the φ dependence of the conductance as the angular

spin valve effect of the system. We do so for a variety of thick-

nesses for the ferromagnetic and normal layers. Furthermore,

we investigate the dependence of G on the interfacial scatter-

ing strengths at all the interfaces. The dependencies that we

find are, as a rule, nonmonotonic, and therefore straightfor-

ward extrapolations are not possible. Our goal is to provide

a better understanding on the full range of experimentally rel-

evant results where the interfacial quality cannot be perfectly

controlled. From this, not only can one determine how these

parameters affect the spin valve effect, but one can also pro-

vide the approximate set of parameters that can then maximize

this effect: this has both experimental and technological im-

portance. We investigate also, in a more restricted set of cases,

the spin current and spin-transfer torque (STT).

After this Introduction, we briefly review our methods (both

for equilibrium and transport calculations) in Sec II. The re-

sults are presented, chiefly in graphical form, in Sec. III, and

discussed in the proper context. A summary Sec. IV closes

the paper.

II. METHODS

A. The basic equations

The basic methods and procedures used are straightforward

extensions of those discussed in Ref. 8 and they need not to

be described again here. We merely sketch the main points,

in order to establish notation and to make the paper under-

standable. The geometry of the system under consideration

is represented qualitatively in Fig. 1. The layers are assumed

to be infinite in the transverse direction. The y-axis is normal

to the layers: this somewhat unconventional choice turns out

to be computationally convenient because only the σy Pauli

matrix is complex. The magnetizations of the outer and inner
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layers form an angle φ with each other.

The Hamiltonian appropriate to our system is,

He f f =

∫

d3r















∑

α

ψ†α (r)H0ψα (r)

+
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αβ
∆ (r)ψ†α (r)ψ†β (r) + H.c.

















−
∑

α, β

ψ†α (r) (h · σ̂)αβ ψβ (r)



















, (1)

where ∆(r) is the pair potential and h is the usual Stoner field,

which we take to be along the z axis (see Fig. 1) inside the

outer magnet F1, while forming an angle φ with the z axis in

the x − z plane inside the inner magnet F2. Here, α and β de-

note spin indices and the σ̂i are Pauli matrices. We assume

h1 = h2 ≡ h since in most experiments the same material is

employed. The field vanishes in the superconductor S and in

the normal spacer N. H0 is the single particle Hamiltonian,

which we will take to include the interfacial scattering as ex-

plained below. We perform a generalized Bogoliubov trans-

formation, ψσ =
∑

n

(

unσγn + ησv∗nσγ
†
n

)

, where ησ ≡ 1(−1)

for spin-down (up), and the unσ and vnσ are the usual position

and spin dependent quasiparticle and quasihole amplitudes.

Tnen, taking advantage of the quasi one dimensional geom-

etry one can recast the eigenvalue equation corresponding to

the Hamiltonian given by Eq. 1 as:
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, (2)

We use units such that ~ = kB = 1. The quasi one dimensional

Hamiltonian is H0 = −(1/2m)(d2/dy2) + ǫ⊥ − EF (y) + U(y)

where ǫ⊥ is the transverse energy, (so that the above Eq. (2)

is a set of decoupled equations, one for each ǫ⊥), EF(y) is the

layer dependent width of the band: EF(y) = EFS ≡ k2
FS
/2m in

the S layer and EF (y) = EFM in the F layers. We define a mis-

match parameter44
Λ as EFM ≡ ΛEFS . U(y) is the interfacial

scattering. We take this scattering, due to unavoidable surface

roughness at the interfaces, to be spin-independent and of the

form U(y) = H1δ(y − d f 1) + H2δ(y − d f 1 − dN) + H3δ(y −

d f 1 − dN − d f 2). The dimensionless parameters HBi ≡ Hi/vF ,

where vF is the Fermi speed in S , conveniently characterize

the strength of the delta functions.

All calculations must be performed self-consistently, oth-

erwise a large part of the proximity effect is eliminated from

the problem. As previously shown8,45–47, and as reiterated in

Section II C, it is paramount to perform the transport calcu-

lations self-consistently: not doing so jeopardizes the law of

conservation of change48. The self consistency condition is:

∆(y) =
g(y)

2

∑

n

′
[

un↑(y)v∗n↓(y) + un↓(y)v∗n↑(y)
]

tanh

(

ǫn

2T

)

, (3)

where the sum is over all the eigenvalues and the prime in the

sum denotes, as usual, that the sum is limited to states with

eigenenergies within a cutoff ωD from the Fermi level. The

superconducting coupling constant g(y), in the singlet chan-

nel, is nonvanishing in S only. Self consistency is achieved by

starting with a suitable choice of ∆(y) and iterating Eqs. (2)

and (3) until the input and output values of ∆(y) coincide. The

thermodynamic quantities can then be derived from the wave

functions. The transition temperature itself can be most con-

veniently obtained by linearization of Eq. (3) and an efficient

eigenvalue technique9,14 as in previous29 work.

B. Transport: the BTK method and self-consistency

After the self consistent ∆(y) function has been obtained

as reviewed above, one can proceed with the calculation of

the transport properties. There are no fundamental difficulties

in extending the self consistent8 BTK method37 to the case

where an extra N layer and interfacial scattering exists. This

is because the only nontrivial part of the transfer matrix proce-

dure is that which deals with the self consistent pair potential

inside S and this is extensively discussed in previous8 work.

For the rest, one has of course additional matching equations

at the two added interfaces. The matching equations are of

the same basic form as those found previously8 except for the

interfacial scattering, which requires, as in elementary situ-

ations, a modification of the derivative continuity condition.

Again, it is not necessary to discuss here these relatively ele-

mentary questions, although care is required to include them

correctly in the computations. We confine ourselves to the

minimum necessary to make the notation clear.

For an incident particle with spin up the wavefunction in F1

is:

ΨF1,↑ ≡
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a↓,↑e
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↓1
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. (4)

where we have included the appropriate amplitudes for the or-

dinary and Andreev reflection processes bσ,↑ and aσ,↑, which

we must calculate. The second spin index of these amplitudes

denote the spin of the incoming particle. If the incident parti-

cle has spin down, the corresponding wavefunction in F1 is

ΨF1,↓ ≡
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y

































. (5)

with appropriate amplitude coefficients, numerically different

from those for the spin up incident particle. Each set of coef-
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ficients is calculated separately for incident spin-up and spin-

down electrons. One has, in the above equations:

k±σ1 =

[

Λ(1 − ησh1) ± ǫ − k2
⊥

]1/2
, (6)

where, as above, ησ ≡ 1(−1) for down (up) spins, and k⊥
is the length of the wavevector corresponding to energy ǫ⊥.

All wavevectors are understood to be in units of kFS and all

energies in terms of EFS .

All of the amplitudes are then determined from the trans-

fer matrix procedure discussed in Ref. 8, where the self-

consistent pair potential determines the wavevectors in the S

layer. The transfer matrix matches the continuity conditions

for each layer. The outcome of the calculations includes the

reflection amplitudes aσ and bσ of the incoming wavefunc-

tions for the different (ordinary and Andreev, spin up and spin

down) reflection processes. From these the conductance is ex-

tracted as explained below.

C. Conservation laws and conductance

In transport calculations great care has to be taken not to

violate48 the conservation laws. Consider the equation for

charge density ρ(r, t) which arises from the Heisenberg equa-

tion:

∂

∂t
〈ρ(r)〉 = i

〈[

He f f , ρ(r)
]〉

. (7)

We are considering here steady state situations, so the time

derivative vanishes and we simply should have a zero diver-

gence condition for the current. In our quasi two dimensional

geometry, the only non-vanishing component of the current is

jy, and it depends only on y. Hence we need to ensure that

∂ jy/∂y = 0. Upon computing the commutator in the right side

of Eq. (7) under these conditions we find, however:

∂ jy(y)

∂y
= 2eIm















∆(y)
∑

n

[

u∗n↑vn↓ + u∗n↓vn↑

]

tanh

(

ǫn

2T

)















(8)

In transport calculations the wavefunctions cannot be taken

to be real, as is possible for the evaluation of static quanti-

ties in a current-free situation. Hence it is not necessarily true

that the right side of Eq. (8) will vanish. However, it is easy

to see8,46 that it will be identically zero when the self consis-

tency condition Eq. (3) is satisfied. Therefore, the importance

of performing the calculations self consistently, despite the

computational simplifications inherent to non-self-consistent

methods, cannot be overemphasized.

D. Extraction of the conductance

From the results of the previous subsection, one can extract

the conductance. The current is related to the applied bias37 V

via the expression:

I(V) =

∫

G0(ǫ)
[

f (ǫ − eV) − f (ǫ)
]

dǫ, (9)

where f is the Fermi function. The bias dependent tunneling

conductance is G(V) = ∂I/∂V. The function G0 in Eq. (9)

is the conductance in the low-T limit or, more generally, the

conductance obtained by replacing the derivative of the Fermi

function by a δ function. It is related to the scattering ampli-

tudes by:

G0(ǫ, θi) =
∑

σ

PσGσ(ǫ, θi) (10)

=

∑

σ

Pσ













1 +
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|a↑,σ|
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+
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|a↓,σ|
2 −

k+
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k+
σ1

|b↑,σ|
2 −

k+
↓1

k+
σ1

|b↓,σ|
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,

in the customary natural units of conductance (e2/h). In

Eq. (10) the different k symbols are as defined in Eq. (6).

The angle θi is the angle of incidence: for spin up it is given

by tan θi = (k⊥/k
+

↑1
), and similarly for spin down. Thus

one has θi = 0 for the forward conductance. The factors

Pσ ≡ (1 − h1ησ)/2 are included to take into account the dif-

ferent density of incoming spin up and spin down states. The

energy dependence of G(ǫ) arises from the applied bias volt-

age V . It is customary and convenient to measure this bias in

terms of the dimensionless quantity E ≡ eV/∆0 where ∆0 is

the value of the order parameter in bulk S material. We will

refer to the dimensionless bias dependent conductance simply

as G(V) or G(E) usually omitting the angular argument.

One can not always assume that the experiments are per-

formed in the low T limit. At finite temperature there are two

sources of T corrections. The first and more obvious is that

arising from the T dependence of ∆(y), that is, the T depen-

dence of the effective BCS Hamiltonian. This is of course

straightforward to include: one just calculates the self con-

sistent ∆ at finite T (see Eq. (3)) and uses it as input in the

transfer matrix calculations. But there is also a temperature

dependence arising from the Fermi function in Eq. (9). If the

temperature is not too close to Tc0, the transition temperature

of the bare S material, which sets the overall scale, one can

use a Sommerfeld type expansion. Because the energy scale

over which G(V) varies is of order ∆0, the relevant expansion

parameter is T/Tc0, not T/TF , and hence not necessarily neg-

ligibly small in all experimental situations. One finds using

elementary49 methods:

G(V, T ) = G0(V) + a1

(

T

∆0

)2 (

∂2G(V)

∂ǫ2

)
∣

∣

∣

∣

∣

∣

ǫ=V

+ O

(

T

∆0

)4

(11)

where a1 can be expressed49 in terms of a Bernoulli number.

Alternatively, one can use the general form:

G(V, T ) =
1

4T

∫

dV ′
1

cosh2[(1/2T )(V − V ′)]
G0(V ′). (12)

In Eqs. (11) and (12) G0(V) means the result of Eq. (10) eval-

uated with the self consistent pair potential at temperature T .

The second form turns out to be more useful as most relevant

temperatures turn out to be too high for the Sommerfeld ex-

pansion.
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E. Spin transport

We will consider also spin transport across the junction. In

our quasi one-dimensional geometry the tensorial spin current

becomes a vector in spin space, while spatially it depends only

on y. Denoting this vector as ~S (y) it can be written8 in terms

of the wavefunctions, as:

S i ≡
iµB

2m

∑

σ

〈

ψ†σσ̂i

∂ψσ

∂y
−
∂ψ†σ
∂y

σ̂iψσ

〉

. (13)

It is not difficult to write the components S i in terms of the

un and vn wavefunctions. In the T = 0 limit, the result is:

S x =
−µB

m
Im















∑

n
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−vn↑

∂v∗
n↓

∂y
− vn↓

∂v∗
n↑

∂y
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(14a)

+

∑

ǫk<eV

(

u∗k↑
∂uk↓

∂y
+ vk↑

∂v∗
k↓

∂y
+ u∗k↓

∂uk↑

∂y
+ vk↓

∂v∗
k↑

∂y

)

















S y =
µB

m
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(14b)
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∑
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− u∗k↓
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∂y
+ vk↓

∂v∗
k↓

∂y

)

















,

where the first terms in the right side are the spin current com-

ponents in the absence of bias. A static spin transfer current

may exist near the boundary of two magnets with misaligned

fields. The above results are valid at low T , we will not con-

sider temperature corrections for this quantity. In the steady

state the conservation laws require:

∂

∂y
S i = τi, i = x, y, z (15)

where τ is the torque τ ≡ 2m × h with m being the local

magnetization m = −µB

∑

σ〈ψ
†
σσ̂ψσ〉. The expression for m

in terms of the wavefunctions is given in Ref. 8.

III. RESULTS

In this section we present our results. As discussed in the

Introduction, our emphasis is in exploring a range of values of

experimental interest for the relevant parameters. This, in ad-

dition to helping us meet our goal of helping experimentalists

understand their data, will keep the discussion within reason-

able bounds: otherwise, with a more than ten-dimensional pa-

rameter space to be investigated, this work would completely

lose its focus. We do have an extensive and growing database
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FIG. 2. Effect on the conductance of the barrier between the su-

perconductor and the inner ferromagnet HB3. The four panels show

results for G in natural units, as a function of bias voltage E ≡ eV/∆0

at seven values of the misalignment angle φ as indicated in the leg-

end. The panels correspond to different values of HB3 ranging from

0.0 to 0.3 with HB1 = HB2 ≡ HB = 0. The thicknesses are DF1 = 20,

DN = 40, DF2 = 12 and DS = 180. The internal field parameter is

h = 0.145

of results for many other cases. As mentioned above, we use

dimensionless parameters in our plots: all lengths are given in

units of kFS and all energies in units of EFS except, as already

stated, for the bias. Dimensionless lengths will be denoted

by capital letters with the appropriate subscript. The units for

the dimensionless barrier height parameters HBi have been ex-

plained before. Values close to or higher than unity would rep-

resent a strong tunneling limit: these would be experimentally

very undesirable as the proximity effects would be very small.

Zero values represent an ideal interface, which is unlikely to

be attainable experimentally. Since the first and second in-

terfaces are both between F and N materials, one can fairly

safely assume that these two barrier strengths are similar, and

we will usually take them to be identical, HB1 = HB2 ≡ HB.

In our dimensionless units a field parameter value of h = 1

would correspond to a half metal. The results for G presented

are for h = 0.145 a value previously found adequate29 in fit-

ting Co static properties in similar devices. As in Ref. 29 we

set Λ = 1, which subsumes some of the wavevector mismatch

effects with the phenomenologial HBi parameters. We will

also assume a value of Ξ0 = 115 for the dimensionless cor-

relation length in S , a value used in the same context29 for

Nb. We will vary the thicknesses of all layers, keeping DF2

relatively small, which is necessary to obtain good proximity

effect, and allowing DN and DF1 to be somewhat larger. As

to DS , the thickness of the superconducting layer, it must of

course be kept above Ξ0: otherwise the sample tends to be-

come non-superconducting, for rather obvious reasons. We

will focus here on forward conductance results, which can be

obtained from point probes and involve trends much easier to

understand.
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FIG. 3. Effect on the conductance of the barriers between the normal

spacer and the ferromagnets HB1 = HB2 = HB. The four panels show

results for the same arrangement as in Fig. 2 and the same geometri-

cal and field parameters except in this case HB3 is held constant and

the value of the barrier parameter at the other two interfaces is varied

between 0.1 and 0.4.

A. Barrier effects

The effects of interfacial scattering are very strong and im-

portant. Recall that even in standard normal-superconductor

interfaces the zerto bias conductance (ZBC) can vary between

a value of two for a perfect interface, and an exponentially

small value for the tunneling limit. One should recall here

that even in the case where a certain barrier parameter van-

ishes, there is still scattering at the correspondent interface:

this is because it is impossible for the two Fermi wavectors

in the ferromagnets to match the Fermi wavevector of either

the N or the S materials. This has to be kept in mind in the

discussion below.

In Fig. 2 we show the effect of increasing HB3 assuming that

the other interfaces have zero interfacial potential, although

scattering due to wavevector mismatches is present. Four val-

ues of HB3 are studied, one in each panel, and curves for seven

values of the misalignment angle φ are plotted. The geomet-

rical parameters are DF1 = 20, DN = 40, DF2 = 12 and

DS = 180. The overall trend on increasing HB3 is a marked

decrease of the low bias conductance and a much smaller de-

crease of the high bias limiting value. The critical bias (CB)

is the value of the bias at which G sharply changes behavior

and begins trending towards its normal state limit. In general,

the critical bias is smaller than unity, and smaller values are

associated with stronger proximity effects since the CB is as-

sociated with the saturated value of ∆(Y) well inside S . We

see that the CB tends to increase with HB3, while the value

of G at critical bias (the critical bias conductance, CBC) re-

mains nearly the same. On the other hand, the CB is in all

cases a strong function of φ, decreasing as φ increases, up to

about φ = 100◦ and then flattening, for this geometry. The

dependence is less marked at higher barrier values. The ZBC

however, is monotonically decreasing in φ. This dependence

on φ is different from that of the CB or CBC, and it leads

to a crossover in the conductance values. Remarkably, this

crossover tends to occur with a ”nodal” behavior at a single

bias value in the subgap region: this can best be seen in the

third and fourth panels. Monotonic behavior in the ZBC also

occurs for other values of DF2 that we have studied, but the

direction (increasing or decreasing in φ) is reversed in an os-

cillatory way: for example the ZBC increases with φ at values

of DF2 of 7 and 10 and again at 16,17. This is one more exam-

ple of the multiple oscillatory behavior found in this problem

and an illustration of how much care one has to take before

extrapolating results.

Next we consider, in Fig. 3, the effect of increasing HB1 =

HB2 ≡ HB while keeping HB3 = 0 at the F2/S interface.

Again, four barrier values are considered, in an arrangement

very similar to that in the previous figure. The effects of inter-

facial scattering are now more pronounced. This is not neces-

sarily due to the presence of two barriers: as in well known sit-

uations in elementary one-dimensional quantum mechanics,

we find that having more barriers does not necessarily lead

to less transparency. This analogy is imperfect: our system

is not one-dimensional, there are multiple scattering mecha-

nisms (interfacial imperfections, wavevector mismatch, An-

dreev reflection, etc). Still, we find that having two barriers

does not always reduce transmission. A clear example of this

can be seen in the ZBC value which, for the chosen values

of DF2 = 12 and DN , is nearly independent of HB. This is

because of resonance-like behavior in this geometry. Further-

more, changing the values of DF2 = 12 and DN leads to ZBC

behavior more similar to that in Fig. 2, which we discuss in

the next subsection in connection with Fig. 6. The behavior of

the CB with angle is nonmonotonic, in a way similar to that

found in Fig. 2. The minimum is now somewhat less shallow,

particularly at higher HB. At low bias, G decreases as the bias

is increased, although an upturn does occur as the CB is ap-

proached albeit at a lower value of the CBC for increasing HB.

This is in contrast to Fig. 2 where the CBC was unaffected by

HB3.

B. Geometrical Effects

We have mentioned in the previous discussion that the

thickness of the different layers may have a strong and often

nonmonotonic effect on G. The thickness of the inner mag-

netic layer, DF2 turns out to be the more important of these

geometrical variables. In the six panels in Fig. 4 we consider

increasing values of DF2 while keeping the other geometrical

and material parameters fixed to their values in the previous

figures. The three interfacial barrier parameters are set to in-

termediate values (see the caption).

Consider in detail the first panel, where DF2 = 7. One

notices immediately the reduction in ZBC, as opposed to the

results for DF2 = 12 in the third panel or to those in the pre-

vious figures. The behavior of this reduction occurs, as has

been mentioned above, in an oscillatory manner with DF2: it
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FIG. 4. Effect on the conductance by varying the thickness DF2 of the inner ferromagnetic layer. The values of the other thicknesses, field, and

correlation length are as in the previous two figures, and the barrier values are set to 0.3, 0.3, and 0.1 respectively, which are representative of

possible experimental values. The six panels show G vs bias voltage for several angles, at six values of DF2 = 7, 10, 12, 15, 16, and 17. The

spin valve effect varies significantly in both the CB and the ZBC.

can be seen again at DF2 = 15 (fourth panel). In this panel, as

in the second and the fifth, the minimum value of the CB with

angle is at φ = 90◦, and this minimum is very well marked

– this is an optimum situation for valve effects. The ZBC

value depends somewhat on φ but not in the same way as

the CB: hence, the crossing conductance curves near a bias

of 0.2. The second panel exhibits similar behavior, but the

ZBC is markedly higher. On further increasing DF2 to 12

(third panel) the CB becomes monotonic in φ while the low

bias conductance does not change: indeed the node where the

lines cross barely moves. The case DF2 = 15 (fourth panel) is

yet different: the CB is larger and there is a marked “bump”

in the low bias conductance, the height of which increases

with φ. Resonance in the ZBC is observed again in the fifth

panel, and the angular dependence of the CB returns to having

a marked minimum at φ = 90◦ although with a weaker depen-

dence. Furthermore, the node noticeably moves to a higher

bias value. Finally, at DF2 = 17 (last panel) the ZBC drops

again, the angular dependence of the CB is reversed, and the

node disappears. Thus we see that the thickness of the inner

magnetic layer is a very important variable in determining the

conductance properties.

On the other hand, the effect of varying DF1, the thickness

of the outer ferromagnetic layer, is much weaker than that of

varying DF2. This is illustrated in the first two panels of Fig. 5.

There we display, in each panel, results for G at fixed φ = 0.

In the first panel we do this for several values of DF1 rang-

ing from 12 to 30 and, in the second panel, for DF2 values

from 7 to 17 at fixed DF1. In both panels DN = 40. Barrier

heights and other parameters are as in Fig. 4. The difference is

obvious: while in the first panel the results barely change (al-

though the change is nonmonotonic), in the second one every

relevant quantity (CB, ZBC, high bias and low bias behav-

iors etc) changes, in obvious and very strongly nonmonotonic

ways. Thus, in the fabrication process, the precise thickness

of DF1 is less critical than that of DF2. As to the normal spacer

thickness, in the last two panels of Fig. 5 we consider the de-

pendence of G on DN . We again plot G at fixed φ = 0 for

several values of DN at two values of DF2 (see caption). One

can see that while quantities such as the CB do not depend

very much on DN , the low and high bias behaviors vary quite

appreciably overall, the former rather dramatically. Hence we

conclude that DF2 is the crucial geometrical parameter in the

problem, followed in importance by DN and with DF1 being

much less relevant.

Careful examination of the above results yields insights on

the combined effects of interfacial scattering and on geometry,

particularly on DF2: how geometry and interfacial strength are

related follows ultimately from the oscillatory nature of the

Cooper pairs and from quantum mechanical interference. We

now display, in Fig. 6, these combined effects in a more direct

way. As in Fig. 5 we study results for fixed φ = 0. We con-

sider four values of DF2, one in each panel, ranging from 7 to

17, and plot results for several values of HB at HB3 = 0. In the

first panel we see a large and monotonic dependence on HB of

the entire conductance dependence. In the next case shown,
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FIG. 5. Effects of varying DF1 or DN , compared with dependence on

DF2. All panels are for φ = 0, barrier values of 0.3, 0.3, and 0.1 and

the field parameter, correlation length, and DS are as in Figure 2. The

first two panels contrast the effect on the conductance of varying the

thickness DF1 of the outer ferromagnetic layer with DF2 of the inner

ferromagnetic layer. In the first panel, DF1 is varied, as indicated

in the legend, at DF2 = 12, while in the second one DF2 is varied

at DF1 = 20. The last two panels show the effect of varying DN at

DF1 = 12 and DF2 = 7 respectively. The dependence of the results

on DF1 is much weaker than that on DF2 or DN . Both DF2 and DN

have a large impact on the ZBC, meanwhile DF2 has a much larger

effect on the CB.
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FIG. 6. Combined effect of DF2 and barriers. The behavior at fixed

φ = 0 and HB3 = 0 is studied. Each of the four panels corresponds to

a fixed value of DF2: 7, 10, 12, and 17 and the curves correspond to

values of HB1 = HB2 ≡ HB as indicated in the legend. A nonmono-

tonic feature in the ZBC is observed as a function of DF2, owing to

the oscillatory behavior of the Cooper pairs.

DF2 = 12, the ZBC depends only very weakly on HB. In the

next panel, the spread in the ZBC with φ increases somewhat,

as compared to the previous panel, and it does so even more

in the last panel. This resonance-like behavior is not the same

as in the one-dimensional two barrier problems in basic quan-

tum mechanics, where a resonance feature is observed in the
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FIG. 7. Temperature dependence of the conductance. In the first two

panels we consider G at fixed φ. The thicknesses and fields are as

in Fig. 2. Temperatures T = 0.1, in units of Tc0, are compared to

T = 0 results. The result of including only G0, the correction to G

arising from the T dependence of ∆(y) is also shown, but is nearly

identical to that of G at T = 0.1, particularly in the top panel. The

first panel is for a very high barrier (HB3 = 0.9) between S and F2

and HB1 = HB2 = 0, while in the second all HBi = 0. The last panel

illustrates (for the same values as the first panel in Fig. 4), a case

where the CB varies very nonmonotonically with angle, and shows

how little this behavior is affected by T .

transmission coefficients as a function of the distance between

the barriers. This analogy might apply better to DN , but not

to the inner ferromagnetic thickness DF2. Instead, this reso-

nance is due to the oscillatory behavior of the Cooper pairs.

We see then that certain values of DF2 make the system, or

at least its ZBC, partly “immune” to the effects of fairly high

surface barriers. Although this holds only to a limited extent,

it may be worthwhile to attempt to exploit this effect to pal-

liate the existence of unfavorable interfaces with unavoidably

large scattering.

C. Temperature dependence

Experiments in these systems are not performed at zero

temperature, nor, in practice, at ultralow T . Therefore the

influence of T must be examined. There are two transition

temperatures to consider: the transition temperature Tc0 of

pure bulk S material, and the transition temperature Tc of the

device, which is typically considerably lower. In our discus-

sion we will use a dimensionless temperature T in units of Tc0
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FIG. 8. The three components of the spin current are shown as a function of Y for several values of φ, as indicated, and three values of the bias

voltage. We have h = 0.1, DF1 = DS = 250 = 5Ξ0, DF2 = 30, DN = 0. Only the central region of Y is plotted: Y = 0 is at the F2/S interface.

All components of the spin current are zero for φ = 180◦.

since Tc varies as the geometry is changed.

As explained in Sec. II D one has to consider two sources of

T dependence. The first is that arising from the self-consistent

pair potential, ∆(y), that is, the T dependence in the effec-

tive Hamiltonian. This leads to the function G0 defined below

Eq. (9) and in Eq. (10) being T dependent. The second is that

originating in the Fermi functions in Eq. (9). As discussed in

connection with Eq. (11) the latter is not negligible since the

scale of the variation of G with bias is ∆0, not the Fermi en-

ergy. We have found that, in practice, Eq. (12), which is not

dependent on any expansion, is much more useful than the

Sommerfeld method in the relevant temperature range. This

is because the conductance has large, and even discontinuous

derivatives, which the Sommerfeld expansion does not handle

well.

Representative results are shown in Fig. 7. In the first two

panels we consider a fixed φ = 0 and we show results for G

both at T = 0 and at a reduced temperature T = 0.1. Since

for the size ranges considered in this section we have found

that Tc/Tc0 values are in the 0.5 to 0.6 region, these corre-

spond to T/Tc of about 0.2. The first panel shows results in

a strong tunneling limit regime, with high barriers, and the

second for zero barrier heights. Plots of G0 , i.e. the results

obtained by using the ∆(y) correction only are also included:

these are obviously inadequate in both cases, and the full re-

sult is needed. We have found this to be invariably the case

except at unrealistically low T . The overall effect of the tem-

perature is, otherwise, that of rounding up and softening the

sharp features of the low T results. A consequence of this is

that at finite T one has to redefine more carefully the CB as

the bias value at which G has a peak or a high derivative. The

proper redefinition is the bias value at which G varies fastest.

In the third panel of Fig. 7, we replot G for the same case

considered in the first panel of Fig. 4, which, as we have re-

marked before, shows good spin valve effects in its CB prop-

erties, but now at T = 0.1 instead of at zero temperature. The

two results should be carefully compared. We see that while

the curves are now much smoother the behavior of the dif-

ferent features with angle are robust. In particular the sharp

minimum of the critical bias at φ = 90◦ remains unchanged.

We have found this to be the the situation in all the cases we

have checked. Hence, spin valve properties are only weakly

dependent on T .
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FIG. 9. The three components of the spin transfer torque plotted for the same situation as in the previous figure. The torque is identically zero

for φ = 0 and φ = 180◦. The discontinuities at the interface reflect those of the internal fields.

D. Spin Currents

We present here some results for the spin current and the

spin transfer torque. We restrict ourselves to the case where

there is no spacer, and the barrier parameters are zero. How-

ever, we consider in this paper a range of bias voltages and all

values of the angle φ. Very limited results for only φ = 90◦

value were given in Ref. 8. We use units such that µB = 1

and take h = 0.1. We consider a superconductor thickness

of five times the coherence length (DS = 250 = 5Ξ0) so that

the saturated value of ∆(y) is essentially the same as the bulk

S value ∆0. We assume a rather thick F1 layer (DF1 = 250)

while DF2
= 30.

The main quantities we will focus on are the three com-

ponents of the spin currents and of the spin transfer torques

(STT) as a function of position. For the charge current, the

conservation law entails that the current is independent of po-

sition. But for spin, the derivative of the current is the STT

(see Eq. (15)) and the latter quantity is of great physical in-

terest. As usual8,14 we normalize m to −µB(N↑ + N↓). The

normalization for the spin current follows from these conven-

tions. There are two alternative methods to calculate the spin

currents: one is directly from the expressions in Eqs. (14). The

other method is to calculate the torque first, from the expres-

sion below Eq. (15) and then integrate over the y variable. The

two methods agree when the calculations are done self con-

sistently, as was conclusivelly shown in Ref. 8. The second

method is computationally much easier, but it yields results

only up to a constant of integration. We have therefore used

the direct method: it requires obtaining wavefunction results

over a very fine mesh, so that the derivatives in Eq. (14) can

be calculated to sufficient accuracy.

In the following discussion it is well to recall the meaning

of the indices and coordinates. The spin current is in general

a tensor, each element having two indices, one corresponding

to the spatial components and the other to spin. In a quasi-

dimensional geometry, the only spatial component is in the y

direction, normal to the layers in our convention (see Fig. 1).

The spin current is then simply a vector in spin space: the in-

dices in S i denote spin components, with all transport being

in the spatial y direction. Recalling Eq. (15) and the definition

of the torque τ = 2m×h we see that τy tends to twist the mag-

netization in the plane of the layers, but of course it can only

do so in regions near the interfaces, where m and h are not

parallel due to magnetic proximity effects. We also see that
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each component of the torque vanishes in the S layer where

the internal field parameter h is zero.

We can now discuss the plots in Figs. 8 and 9. These two

figures show results for the three components of the spin cur-

rent and of the STT respectively, each under the same con-

ditions (see captions). These quantities are shown for three

values of the bias, E, ranging from below to well above ∆0:

for each component, there is a panel corresponding to each

value of E. The curves correspond to different values of φ as

indicated in the legend. At φ = 0 and φ = 180◦ the same

conservation laws that preclude singlet to triplet pair conver-

sion imply that the torques vanish. It is evident that there is

no point in including the regions of the sample deep inside

S or even well inside F1, so the region plotted is that which

includes both interfaces: the S/F2 interface at the origin and

that between ferromagnets at Y = −30, where Y is the dimen-

sionless position.

The y-components results are easiest to understand: the y-

component of the torque has very sharp peaks, with oppo-

site signs, near the F1/F2 boundary where it vanishes. These

peaks reflect the existence of a strong but short-ranged mag-

netic proximity effect. In F2 and in F1, τy is small and oscilla-

tory. It reaches its maximum value at φ = 90◦. It depends only

weakly on the bias, since it basically reflects a static effect:

the two magnets interacting with each other. This behavior

is of course reflected in S y as both quantities are related via

Eq. (15).

The behavior of the in-plane components, x and z, is similar

to each other (they are related by spin rotations) and quite dif-

ferent from that of y. Now currents and torques are transport-

induced and one sees immediately that they markedly depend

on bias. Since in F1 the internal field always points along z, we

find that S z is a constant in F1, its value increasing with bias.

As a function of φ its behavior is complicated, the maximum

value is not precisely at φ = 90◦ and it is dependent on bias.

For this value of φ the field points along the x direction in F2

(it is always along z in F1). Therefore S z is always spatially

constant in F1 and this applies also to S x in F2 at φ = 90◦.

For other values of the mismatch angle S x oscillates in both

magnetic layers, and so does S z in F2. The amplitude of the

oscillations of S x decays slowly deep into the F1 layer. In

all cases the period of the spatial oscillations is approximately

1/h indicating that the oscillations are due to the behavior of

the Cooper pairs. As to the corresponding components of the

torque, one notes at once that their maximum value is much

smaller than that of the τy peak but, away from the F1/F2

interface, the values are not all that different. This reflects

the geometry, as explained above. We see that the x and z

components of the torque are also nonmonotonic with φ, with

peaks that are not necessarily at φ = 90◦, depending on the

bias. For lower biases, the peak values appear to shift away to

smaller values, more closely aligned with the z direction, due

to the increasing static effect from the F1 layer. In our coor-

dinate system, τz vanishes in F1 for all φ and oscillates in F2.

Correspondingly, τx is oscillatory in both F1 and F2 except at

φ = 90◦ where it is zero in F2. We have not plotted the magne-

tization itself, but its components exhibit damped oscillations

which reflect the well known50precessional behavior of the
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FIG. 10. The z component of the spin current in the outer F region

as a function of φ, at two different bias values.

magnetization around the internal fields. Such precessional

behavior is then reflected in the current oscillations discussed

above.

In our coordinate system, S z is a constant in the outer layer,

F1. Also, all the components of the spin current are trivially

constant in the S layer, since there are no torques there. As

can be seen in Fig. 8, all spin current components vanish in

S unless the bias exceeds the bulk S gap, ∆0. This confirms

the remarkable fact8 that, in this respect, spin currents behave

like charge currents in an N/S junction. It can rather eas-

ily be shown via standard spin rotation matrix arguments that

the constant values of S z and S x deep in the S material, in

the limit of large bias, should be approximately related to the

value of S z in the F1 layer by factors of cosφ and sin φ respec-

tively, and this can be seen in the last column of Fig. 8 to hold

rather accurately at E = 2. On the other hand, the dependence

of the constant value of S z in the outer layer on φ is nontriv-

ial as one can see in Fig. 8. We display this more clearly in

Fig. 10, where we plot the value of S z in F1 at two different

bias values. We see that for values below the CB the behavior

is nonmonotonic: it cannot be, since S z vanishes at both φ = 0

and φ = 180◦. The maximum value is near φ = 90◦. On the

other hand, when the bias is well above the CB, S z, which in

this case is non-vanishing at zero angular mismatch, decreases

monotonically with φ. It becomes slightly negative when the

two magnets are aligned in opposite direction. The behavior is

not described by a simple trigonometric function and a simple

argument leading to the behavior found seems elusive.
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IV. CONCLUSIONS

The focus of this paper is on the prediction of the charge

transport properties of superconducting spin valves with a

F1/N/F2/S layered structure. The emphasis is on studying

systems having material and geometrical characteristics cor-

responding to samples that can realistically be experimentally

fabricated. Our main results pertain to the conductance G as

a function of bias, particularly with respect to the misalign-

ment magnetization angle φ between the F layers: variation

of this angle produces the desired spin valve effects. The con-

ductance is the basic information which is experimentally ob-

tained from charge transport measurements: it is the derivative

of the current-voltage relation. To further our objective we

have used values of the material parameters (such as the inter-

nal magnetic field and the superconducting coherence length)

which have been previously shown29 to fit with great accu-

racy the transition temperatures of such valve structures when

the actual materials are Co, Cu and Nb. We have also used

thickness values which encompass the available and desirable

experimental ranges and have stayed away from idealistic as-

sumptions, such as ideal interfaces, which are essentially irrel-

evant to actual experimental conditions. We have also studied

the often neglected temperature dependence of the results. We

have used a fully self consistent approach, which is absolutely

necessary to ensure that charge conservation is satisfied.

Our results are summarized in Sect. III. The most important

conclusion to be learned from the figures presented is that sim-

ple extrapolations are inadequate. There are several interfer-

ing oscillatory phenomena involved – the center of mass oscil-

lation of the Cooper pairs in ferromagnets, the transmissions

and reflections (ordinary, Andreev, and anomalous Andreev)

at the three interfaces, and the usual quantum mechanical ef-

fects. As a result, the dependence of the relevant quantities

that characterize the conductance (examples are the critical

bias, the zero bias conductance, and the low and high bias

features) have nonmonotonic behavior when just about any

parameter in the problem varies. From this it follows that the

valve effects, that is, the variation of G with φ, vary quantita-

tively and qualitatively depending on parameter values. The

lack of monotonicity makes it extremely difficult to predict by

extrapolation the measurable features expected for any given

set of conditions. The only thing that makes sense is to build

a database of conductance plots for different sets of parameter

values, and compare the plots in the database with experimen-

tal results as they become available. We have built such a

database–the results included here are a representative subset.

As far as the geometry dependence we have found that re-

sults depend most strongly on the thickness of the inner ferro-

magnetic layer, with a large dependence on the normal spacer

thickness as well and a relatively weaker one on that of the

outer F electrode. This is however an overall, general state-

ment: specific details may be different. We have also found

that the interfacial scattering specifically due to surface imper-

fections (the barriers), does not severely affect the valve ef-

fects for typical experimentally accessible values. Of course,

scattering strong enough to destroy the proximity effect would

be another matter. Another important conclusion we have

reached is that temperature effects are not negligible in typical

experimental situations. Furthermore, because of high deriva-

tive regions in the G vs. bias curves, a Sommerfeld expan-

sion does not work well. However, an exact calculation can

be performed numerically and it reveals that the shape of the

conductance curve changes, becoming much smoother as bias

varies, where as the valve effects as a function of φ remain

unaffected.

We have also studied, in a much more limited way, the spin

transfer torque and the spin currents in structures lacking the

N layer. The results are analyzed in Sec. III D. We have found,

in our geometry, that the y-component of the spin torques

have sharp peaks at the F1/F2 interface, nearly independent

of applied bias. These are due to the strong, static magnetic

proximity effects. The greatest peak occurs for a mismatch

angle φ of 90◦. The spin torque components in the x and z

direction are bias dependent and more complex, with higher

peaks at angles smaller than φ = 90◦ for lower biases. We

attribute this to static effects from the F1 layer magnetization.

We have calculated the spin currents using the direct method

described in Eq. 14. We find a nonmonotonic behavior in the

spin current amplitudes similar to that of the spin torque. The

oscillation amplitudes tend to peak for angles slightly below

φ = 90◦ for lower biases. The S z component is constant in

the F1 layer and monotonic with angle for high bias values

(above ∆0) only. In the S layer, the spin currents are zero

except for at high bias when both the S x and S z components

attain nonzero values for most values of φ. The consistency

between the torques and spin current gradients, imposed by

the conservation laws, is ensured in our approach.

To conclude, the measurable quantities have complex be-

havior, often nonmonotonic as experimental parameters and

inputs vary. Our plots provide an wide spectrum of features to

study, many of which are not yet fully understood. We expect

that the results we have obtained will provide a very important

guide to experimentalists building real world superconducting

spin valves in nanoscale heterostructures.
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