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Controlling electric and magnetic properties of matter by laser beams is actively explored in
the broad region of condensed matter physics, including spintronics and magneto-optics. Here
we theoretically propose an application of optical and electron vortex beams carrying intrinsic
orbital angular momentum to chiral ferro- and antiferro- magnets. We analyze the time evolution
of spins in chiral magnets under irradiation of vortex beams, by using stochastic Landau-Lifshitz-
Gilbert equation. We show that beam-driven nonuniform temperature lead to a class of ring-shaped
magnetic defects, what we call skyrmion multiplex, as well as conventional skyrmions. We discuss
the proper beam parameters and the way of applying the beams for the creation of these topological
defects. Our findings provide an ultrafast way of generating and controlling microscopic magnetic
textures in solids with vortex beams.

PhySH:Angular momentum of light, Ultrafast phenomena, LLG, Skyrmions

I. INTRODUCTION

Optical vortex, first proposed in 19921,2, is electromagnetic wave carrying intrinsic orbital angular momentum
(OAM). Although often being confused with circularly polarized light which has a finite spin angular momentum of
photons, they are different concepts. The intrinsic OAM twists the phase structure of the propagating beams and
forces them to have topological singularity along the propagation axis, a line with vanishing beam intensity. As a
result, optical vortices have ring-shaped spatial profile of the intensity. More recently, beams of electrons with intrinsic
OAM are also proposed and experimentally realized3–5 whose intensity is spatially ring-shaped as well. In this paper,
we call those beams with OAM as vortex beams.

Applications of optical vortices are actively explored. We can transfer their OAM to classical particles6–8 or
excitons9 to induce rotational motion of them or use their phase structure to realize super-resolution microscope10

and chiral laser ablation11–16 to name a few. Compared to those of optical vortices, applications of electron vortex
beams have been not so much discussed yet, but for example, we can use them to achieve direct imaging of electron
Landau levels17.

Regarding those applications of vortex beams as ”printing” of the spatial profile (phase or intensity) of the beams
to physical systems, as a natural extension of them, we hit on the possibility of their microscopic analogues, i.e.
encoding the profile of vortex beams into solids by using electronic or magnetic degrees of freedoms. However, such
applications for solid state physics are so far unexplored. In this paper, we particularly focus on spin systems and
consider a new use of vortex beams for magnetism.

The study of the interaction between lights and magnets goes back to the Faraday’s era, but it is only very recently
that one can exploit intense lasers in the broad frequency region and observe microscopic magnetic textures in ultrafast
ways. Nowadays, such laser-based ultrafast magnetic dynamics is a hot topic in condensed matter physics18–38,
especially in spintronics39 and magneto-optics19,40,41. Here, as a first example of such “magneto-singular-optics”, we
work on chiral ferro- and antiferro- magnets, which have strong Dzyaloshinskii-Moriya (DM) interaction42,43 and host
topological magnetic defects called skyrmions44–50.

Isolated skyrmions in chiral ferromagnets (FMs) are prospected as a promising candidate of bits for future magnetic
memory devices with low energy consumption51–54. More recently, skyrmions in antiferromagnets (AFMs) are also
actively discussed55–59 in the context of antiferromagnetic spintronics. There are many theoretical proposals on the
creation of isolated skyrmions in chiral ferromagnets60–66, among which creation by local spin-polarized current60

and conversion from domain walls62 are experimentally realized67–69 recently. The key idea shared among those
proposals is to use spatially localized perturbations to generate skyrmions. Therefore, we can expect that spatially
inhomogeneous perturbations from vortex beams is a way of generating a wider class of magnetic defects in chiral
magnets reflecting the ring-shaped profile of those beams.

We model the effect of vortex beams on magnets as spatially nonuniform heating and study the spin dynamics on
the basis of stochastic Landau-Lifshitz-Gilbert (LLG) equation. We show that application of vortex beams to two-
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dimensional film of chiral ferro- and antiferro- magnets can produce ring-shaped topological defects. In the simplest
case, the defect is a bound state of a skyrmion and anti-skyrmion and known as 2π-vortex70 (skyrmionium71–73) in
literatures. Moreover, we will see that by changing beam parameters, we can also create defects with a multi-ring
structure, namely nπ-vortices (we call it as skyrmion multiplexes) and conventional skyrmions. It is worth mentioning
that our scheme using vortex beams is applicable to both FMs and AFMs, and to both metallic and insulating systems
in the same manner.

The rest of this paper is organized as follows. In Sec. II we review that vortex beams carry intrinsic OAM and
have topological singularity with vanishing beam intensity at their center. We explain how the effect of vortex beams
can be theoretically described in magnetic materials. In Sec. III and IV are devoted to our results. We demonstrate
the emergence of a class of topologically stable magnetic defects in these systems other than ordinary skyrmions
(and skyrmioniums). We determine optimized way of applying vortex beams for creating these defects. Finally, we
summarize our results in Sec. V.

II. VORTEX BEAMS

In Sec. IIA, we shortly review derivation of optical vortices, or Laguerre-Gaussian (LG) modes of Maxwell’s equations
in a vacuum based on the paraxial approximation. We explain that each eigenstate of the equations possesses intrinsic
OAM. In Sec. IIB we consider how vortex beams interact with magnetic materials. Because of the mismatch in
timescales between vortex beams and the dynamics of spins in chiral magnets, we can assume that the effect of vortex
beams is heating which realizes nonuniform temperature proportional to the local beam intensity.

A. Optical vortex, Laguerre-Gaussian solutions of Helmholz equation

Dynamics of electromagnetic fields is described by Maxwell’s equations. In particular, if we assume electromagnetic
waves with fixed frequency ω, their propagation in a vacuum is governed by the following wave equations:(

∆ +
ω2

c2

)
~E = 0 (1)(

∆ +
ω2

c2

)
~B = 0, (2)

where ∆ is three-dimensional Laplacian and c is the speed of light in a vacuum. These equations are equivalent to
Helmholz-type differential equations.

Vortex beams are defined by solutions of the wave equation

(∆ + k2)ψ(~r) = 0, (3)

in the cylindrical coordinate (ρ, φ, z), where ρ is the radial coordinate, φ the azimuthal angle, and z the coordinate

along the cylindrical axis. In this coordinate, Laplacian is written as ∆ = ∂2

∂ρ2 + 1
ρ
∂
∂ρ + 1

ρ2
∂2

∂φ2 + ∂2

∂z2 . We assume that

the beam propagates along the cylindrical axis. For example, the Maxwell’s equation (2) for the electric field ~E(~r)

reduces to Eq. (3) by settingω
2

c2 = k2 and ~E(~r) = ~eψ(~r) where ~e is the polarization vector. By taking ψ(~r) = u(~r)eikz

we have (
∆T + 2ik

∂

∂z
+

∂2

∂z2

)
u(~r) = 0 (4)

where ∆T = ∂2

∂r2 + 1
ρ
∂
∂ρ + 1

ρ2
∂2

∂φ2 is the transverse component of Laplacian. Let us employ paraxial approximation

to Eq. (4). Namely, we consider the case where z-dependence of u(~r) is small in the sense |∂
2u
∂z2 | � |

∂2u
∂x2 |, |∂

2u
∂y2 | and

|∂
2u
∂z2 | � 2k|∂u∂z | where k is the wavenumber in the z-direction. Then we can drop the second order derivative term
∂2u
∂z2 in Eq. (4) and have (

∆T + 2ik
∂

∂z

)
u(~r) = 0. (5)
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Vortex beams, or LG modes74 form a complete set of solutions for Eq. (5) and are given by

uLG(~r) =
1√
|w(z)|

(
ρ

w(z)

)|m|
L|m|p

(
2ρ2

w(z)2

)
× e−

ikρ2z

z2+Z2 e−iχ(z)(|m|+2p+1)eimφe
− ρ2

w(z)2 , (6)

where the integers p and m label the mode and L
|m|
p is generalized Laguerre function. We note that by setting

p = m = 0, Eq. (6) falls into the usual Gaussian beam. The beam width w(z) = w
√

1 + |z|
Z takes its minimum w,

called beam waist, at z = 0. Rayleigh range Z is the distance from the focal plane along the propagation axis at which
the cross-section of the beam becomes twice the minimum value. The phase factor determined by χ(z) = tan−1

(
z
Z

)
is called Gouy phase. Since OAM around the propagation axis is given by the eigenvalue of Lz = −i~∂/∂φ, the phase
twist eimφ in Eq. (6) yields OAM ~m. This factor requires the topological singularity uLG(0, φ, z) = 0 to maintain the
single-valuedness of electromagnetic fields at the origin ρ = 0. Hence the OAM leads to “doughnut-shaped” transverse
intensity profile of the propagating vortex beams. We emphasize that the OAM is a property of u(~r) or ψ(~r) and
nothing to do with the polarization vector ~e of the electromagnetic waves which corresponds to the spin degrees of
freedom of photons.

Compared to optical vortex, vortex beam of electrons is more subtle. Here we just mention that in a particular
setup, wave function of electrons also acquires the factor eimφ with m an integer (for details, see Ref. 3).

B. Effect of vortex beams on chiral magnets

In Fig. 1(a) we show schematics of our setup. We place two-dimensional film of chiral magnets (the figure is for
chiral FMs) at the focal plane (z = 0) of vortex beams with ring-shaped spatial profile:

uLG(ρ, φ, 0) =

(
ρ
w

)|m|
e−

ρ2

w2 +imφL
|m|
p

(
2ρ2

w2

)
√
|w|

. (7)

In Fig. 2, for several choices of p and m, we show the beam intensity of the vortex beams |uLG(ρ, φ, 0)|2 at z = 0.
For m = 0 the beam (7) reduces to the usual Gaussian beam [Fig. 2(a)] whose intensity peaks at the center (ρ = 0).
For m 6= 0 as we show in Fig. 2(b)(c)(d), we have topological singularities at the center and the intensity distribution
looks like (p+ 1)-fold rings. Such multi-ring structure can be also realized by superimposing several single-ring vortex
beams with different ring size.

FIG. 1. (a) Schematics of our setup. Vortex beam is irradiated to a chiral magnet and induces nonuniform temperature
proportional to the local intensity of the beam. Arrows represent spins in chiral magnets [see Eq. (8)] and the colors represent
their z-component (red for +1, blue for −1, and green for 0). (b) A topological defect created by the vortex beam, skyrmionium.
(c),(d) Spin texture of skyrmions in ferromagnetic backgrounds with up and down spins. (e) Spin texture of an anti-skyrmion.

The length scale of magnetic textures in chiral magnets is determined by the exchange coupling and the strength
of DM interaction. In particular, the size of skyrmions in them is specified by the ratio of the exchange and DM
coupling. If there can exist other kinds of stable defects induced by vortex beams, their size should not be so much
different from that of skyrmions. This naive expectation is numerically verified in Sec. III. Then, taking into account
the diffraction limit of lasers, we expect that the wavelength of vortex beams suitable for our purpose is close to the
size of skyrmions in the target material. Typical size of skyrmions in chiral FMs are O(1) to O(10) nano meters,
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FIG. 2. Intensity of Laguerre-Gaussian modes at the focal plane |uLG(ρ, φ, z = 0)|2 for several choices of p and m. The
brightness is proportional to the intensity. For non-vanishing values of m, the intensity at the center is exactly zero and there
appear (p + 1)-fold rings in the intensity distribution. We also see that for larger m, the size of rings becomes larger with
increasing m.

so that the proper wavelength is in the region of extreme ultraviolet (EUV) lights. We note that by using proper
materials with larger skyrmions with diameter several hundreds of nano meters to a few micro meters68,75–80, the
natural wavelength can be that of visible lights. In this paper we assume parameters of typical chiral FMs. Optical
vortex with EUV wavelength can be generated in the same way as that of visible lights, by using nonlinear optical
effect or holography81,82. As for electron vortex beams, it is much easier to focus them to this wavelength.

If the wavelength is about 10 nm, the frequency of the optical vortex is about 30 Peta Hz. This is much faster
than the dynamics of spins in magnetic materials, whose timescale is typically of the order of Tera Hz. Therefore,
the optical vortex with this frequency cannot induce any coherent dynamics of spins as it is. Instead, vortex beams
create hot electrons and excite high-energy lattice vibrations which (locally) equilibrate within 100 fs ∼ 1 ps22 (EUV
lights are easily absorbed by matter). We note that there are several non-thermal effects of high-frequency lasers on
magnets mediated by electronic degrees of freedom such as Raman effect, Faraday/Kerr effect, and Cotton-Mouton
effect83–85. For example, in Ref.20, coherent interaction between spins in ferromagnets and a femto second laser pulse
is observed, behind which the conservation of spin angular momentum plays an essential role. In this work, we only
focus on the heating effect and ignore these non-thermal spin-photon couplings, employing simple spin models of
chiral magnets for numerical calculations.

That is, we assume that vortex beams only raise the local temperature of the system in accord with the beam
intensity. We note that in reality, the temperature gradient achieved in experiments may not be so clear. If we use
materials with sufficiently large skyrmions, there would be no problems, but if the length scale is in the EUV region
(wavelength ∼ 10 nm), some modifications would be required. Nevertheless, we expect that for our purpose, printing
the spatial profile of vortex beams to chiral magnets, details of the temperature distribution is unimportant, as long
as the realized temperature reflects the ring-shaped spatial profile of vortex beams. Indeed, we numerically verified
that vertex beams with various OAM integer m show qualitatively the same outcomes in our setup. Therefore, in
this work we assume that vortex beams simply induce temperature proportional to the local beam intensity: T (~r) ∝
|uLG(ρ, φ, 0)|286 and see whether the heating can generate defects with unconventional spatial profile. We mention
that for chiral FMs, it is theoretically predicted that local but uniform heating can lead to ordinary skyrmions63.

The situation for electron vortex beams is more subtle because electrons are charged and the beams generate
electromagnetic fields which can affect spin structures of chiral magnets. However, the intensity of electron vortex
beams generated by (S)TEM equipments is generically small at present so that the dominant effect will be heating
just as optical vortices.

Here we shortly comment on the use of Tera Hz optical vortex with which we can coherently control the dynamics
of spins by using the direct coupling between spins and electromagnetic fields, not by heating. Due to the large length
scale (300 µm for 1 Tera Hz) and the diffraction limit, naively we expect that for Tera Hz optical vortices as they are,
possible manipulations would be limited to large-scale structures such as magnetic domain walls. However, recently it is
becoming possible to break the diffraction limit of lights with plasmonics techniques87–89. With such techniques, we can
explore non-thermal control of nano-scale magnetic textures in solids with Tera Hz optical vortices90. Nano-focusing
with plasmonics can be also useful for heating. Usually, visible lights are much more accessible than EUV lights for
experimentalists. Concerning practical applications therefore, combining visible optical vortex and plasmonics would
be more promising than EUV optical vortex.
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III. CHIRAL FERROMAGNET

In this section, we discuss topological defects induced by vortex beams in two-dimensional film of chiral FMs. First
we shortly review static properties of chiral FMs, the phase diagram and characteristic magnetic defects, skyrmions
in a canonical model of them. Then, we explain our numerical calculations based on (stochastic-) Landau-Lifshitz-
Gilbert equation. We demostrate the generation of a class of ring-shaped topological defects by vortex beams and
optimize the way of applying the beams.

FIG. 3. Ground state phase diagram of the canonical model of chiral ferromagnets (8) (reproduced from Ref. 91). There appear
three distinct phases depending on the magnitude of the external magnetic field applied in the z-direction. For the helical order
phase and skyrmion crystal phase, we give their spin texture obtained by numerical simulations based on LLG equation, using
arrows and colors.

A. Static properties of chiral magnets

Chiral FMs such as B20-type compounds MnSi92–95, Fe1−xCoxSi96,97, or FeGe78,98,99, are characterized by their
relatively large DM interaction. A canonical model of chiral FMs is the following two-dimensional classical spin model
defined on a square lattice with ~m~r being the spin at the site ~r100:

H = −J
∑
~r

~m~r ·
(
~m~r+a~ex + ~m~r+a~ey

)
+
∑
~r

~Di · (~m~r × ~m~r+a~ei)−Bz
∑
~r

mz
~r , (8)

where a is the lattice constant and ~ei is the unit vector along the i-axis (i = x, y). The exchange coupling J > 0

represents ferromagnetic Heisenberg interaction and ~Di is DM vector on the bond (~r, ~r+ a~ei), and Bz is the external
magnetic field applied in the z-direction. Hereafter we normalize the length of ~m~r to unity. As long as we are
interested in physics like spin waves or magnetic defects whose length scale is much longer than the lattice constant,
we expect that the model (8) works as a standard model of chiral FMs. Indeed, many experimental results on real
materials are well described by this model (see for example Ref. 101), even though their microscopic Hamiltonians
must be much more intricate.

What is peculiar about chiral magnets is the emergence of topologically stable magnetic defects, skyrmions. In

Fig. 1(c)(d), we show skyrmions for a particular choice of DM vectors ~Di = D~ei (D > 0) and the external magnetic

field ~B = ±Bz~ez. In Fig. 1(e) we also show the spin texture of a so-called anti-skyrmion. (Anti-) skyrmions are
characterized by their non-vanishing skyrmion number:

NSK =
1

4π

∫
~m~r ·

(
∂ ~m~r

∂x
× ∂ ~m~r

∂y

)
d2r. (9)

In a continuous space, NSK must be quantized to an integer, so that (anti-) skyrmions are stable against any continuous
deformations. Even for lattice systems, where the quantization is incomplete, skyrmions and anti-skyrmions are
topologically stable if their size is much larger than the lattice constant. Nevertheless, in chiral FMs, anti-skyrmions

are energetically unstable102 and have short lifetime for the given DM vectors ~Di = D~ei.
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The phase diagram of the model is well studied (see for example Ref. 47). For a fixed exchange and DM interaction,
when the external magnetic field is very small, the ground state develops a helical magnetic order with a single
wavelength determined by the magnitude of the DM interaction. As we increase the magnetic field, the helical order
becomes unstable and the ground state turns into a triangular lattice of skyrmions. For very large magnetic field,
spins become polarized in the direction of the field and the ferromagnetic ground state is stabilized. Therefore, the
phase diagram of this model is summarized as Fig. 3. We present the critical values of the magnetic field and spin
textures of typical states in the helical order phase and skyrmion crystal phase. In addition to the skyrmion crystal
phase, skyrmions can appear as energetically stable isolated magnetic defects in the ferromagnetic phase. We note
that anisotropy energy, which lacks in the model (8), can also stabilize skyrmions. Later, we will discuss the situation
for chiral AFMs, where we introduce anisotropy energy for the stabilization of skyrmions in them.

FIG. 4. Skyrmion duplex and quadplex obtained by numerical simulation of the model (8) for J = 1, D = 0.15, and Bz = 0.014.
(a) Cumulative skyrmion number NSK(R) of the skyrmion duplex. as a function of R/a, where a is the lattice constant. The
skyrmion duplex, or skyrmionium is a skyrmion with positive NSK [Fig. 1(d)] surrounded by that with negative NSK [Fig. 1(c)].
(b) Spin texture of the skyrmion duplex with diameter about 50 sites. (c) Spin texture of the skyrmion quadplex whose whole
size is approximately 160 sites in diameter. The arrows represent the in-plane components of spins and the color indicates their
z-component.

B. Skyrmion multiplex

With numerical calculations based on stochastic LLG (sLLG) equation, we show that the ring-shaped temperature
profile induced by vortex beams offers a way to create ring-shaped topological magnetic defects shown in Fig. 1(b) and
Fig. 4(b)(c). Details of numerical methods and optimal way of applying vortex beams will be discussed in Sec. III D.

To see the topological nature of these defects, in Fig. 4(a), we present the cumulative skyrmion number for the
defect Fig. 4(b)

NSK(R) =
1

4π

∫
r<R

~m~r ·
(
∂ ~m~r

∂x
× ∂ ~m

∂y

)
d2r. (10)

The integration is performed within the circle with radius R measured from the center of the defect. The spin texture
and the R dependence of NSK(R) clearly show that the ring-shaped defect is a bound state of two skyrmions in
Fig. 1(c)(d) where the former (latter) has NSK = −1 (+1) if placed in a continuous space and isolated. Namely, its
spin configuration outside a certain radius, at which mz = −1, is that of the skyrmion in Fig. 1(c) and the spins
inside that radius form the skyrmion in Fig. 1(d). This kind of “dounut-shaped” defect is known as 2π-vortex70 (also
called as skyrmionium recently71–73), but we find that the skyrmionium is just the simplest case of a family of possible
topological defects with ring-shaped structure induced by vortex beams. In general, by changing the spatial structure
of the beams by for example, using the different radial index p, we can create general multi-ring structures, namely
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nπ-vortex. In this paper, we call skyrmionium as skyrmion duplex (SkD) and those generic ring-shaped structures
as skyrmion multiplexes. In Fig. 4(b)(c), we show spin structure of skyrmion duplex (skyrmionium) and skyrmion
quadplex (4π-vortex). Although both of them are excited states within the skyrmion crystal phase, we find that they
are, once formed, stable within the framework of our LLG calculations. We note that recently, their stability in a
nanodisc geometry is systematically studied in Ref. 73. If those topological defects actually have sufficiently long
lifetime in real materials as theoretically predicted, their spin structures can be experimentally observed with Lorentz
TEM just as done for soliton lattices and skyrmion lattices103,104.

C. Formation of skyrmion multiplex

We numerically calculate the time-evolution of spins based on sLLG equation63,105 for the model (8):

d ~M~r

dt
= −γ ~M~r ×

(
− ∂H

∂ ~M~r

+ ~hT (~r)(t)

)
+ α ~M~r ×

d ~M~r

dt
, (11)

where ~M~r = ~γ ~m~r and γ is gyromagnetic ratio. The time coordinate is t. The second term in the right hand side in
Eq. (11) is so-called Gilbert damping term which describes dissipation. The dimensionless constant α characterizes
the strength of the dissipation. In the framework of the sLLG equation, the effect of heating is treated as a random

field ~hT (t) satisfying

〈hµT (t)〉 = 0,〈
hµT (~r)(t)h

ν
T (~r′)

(t′)
〉

= σ(~r)δµ,νδ(~r − ~r′)δ(t− t′), (12)

where µ, ν = x, y, z. Here σ(~r) is determined by temperature at ~r from the fluctuation-dissipation theorem: σ(~r) =
2kBT (~r)α. Therefore, by using Eq. (11) with this random field we can numerically simulate the time evolution of the
model (8) at finite temperatures. We use Heum method with the time step ∆t = 0.02 for numerical integration of the
sLLG equation with linearlization technique101.

We fix parameters as J = 1, D = 0.15, and α = 0.1. Although we focus on the skyrmion crystal phase but the
initial state of simulations (t = 0) is taken as a metastable, perfect ferromagnetic state i.e. ~m~r = (0, 0, 1) for all ~r.
For these values of J and D, the phase boundary between the helical order phase and the skyrmion crystal phase
is Bz = 0.0052 and that between the skyrmion crystal and the ferromagnetic phase is Bz = 0.018. After several
trials and errors we find that “annealing” the spins is advisable to obtain topological defects. Hence we fix the

time dependence of the vortex-beam driven temperature as T (t) = T0

(
1− t

t0

)
Θ(t)Θ(t0 − t) with t0 = 500. Here

Θ(x) is the step function. Namely, assume that the temperature is instantaneously raised to its maximum (T0) and
gradually cooled down. The time is measured in the unit of ~/J , which is estimated to be 0.7 ps for J = 1 meV. For
this strength of J , Bz = 0.01 corresponds to 0.173 Tesla and T = 1 does 11.6K. As we mentioned in the previous
section, we assume that the beam-induced temperature is proportional to the local beam intensity. Therefore, we
have T (t, ~r) = T (t)(|uLG(ρ, φ, 0)|2/max

~r
(|uLG(ρ, φ, 0)|2)).

In Figs. 5, 6, and 7, we present typical time evolutions of the magnetic texture under the annealing processes. In
Fig. 5 we present the result for p = 0 and m = 5, namely, for a single-ring beam profile. We see that the spin texture
perturbed by the vortex beam is annealed to form an SkD. In Fig. 6, we show the time evolution for p = 1, m = 3.
When p = 1, as we saw in Fig. 2(d), the intensity profile of the beam looks like double-rings and we see that its
spatial structure is successfully printed to spins as a skyrmion quadplex, which consists of two anti-skyrmions and
two skyrmions. When the beam waist is small, the topological singularity of vortex beams becomes unimportant and
our setup becomes similar to the situation of Ref. 63 where uniform heating caused by near-field is proposed as a way
of creating ordinary skyrmions. Indeed, as shown in Fig. 7, using vortex beams with small beam waist, we can create
ordinary skyrmions for p = 0 and m = 5, same as Fig. 5. Therefore, by changing the beam waist, both skyrmion
(π-vortex) and SkD can be generated using the same method. These results indicate that vortex beams with proper
beam waist and the integer p yield nπ-vortices with arbitrary integer n as long as they are allowed as energetically
stable defects in the target material.

D. Optimal way of applying vortex beams

Here we determine the optimal way of applying vortex beams to achieve high probability of creating SkDs with
single-ring vortex beams (p = 0) by changing other parameters. We try the simulations in a periodic system with
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FIG. 5. Time evolution of the z-component of spins for a particular trial with parameters Bz = 0.01, D = 0.15, w = 12.5a, t0 =
500, and T0 = 2. We start from the metastable ferromagnetic state at t = 0. At t = 0 we suddenly raise the temperature in
accord with the intensity of the vortex beam with p = 0 and m = 5. The the temperature is lowered gradually and finally, a
skyrmion duplex is formed. The time is measured in the unit of 1/(Jγ). When J = 1meV the time unit corresponds to 0.7 ps.
The system consists of 150 times 150 sites and periodic boundary condition is imposed.

FIG. 6. Time evolution of the z-component of spins for a particular trial with parameters Bz = 0.011, D = 0.15, α = 0.1, w =
100/3a, T0 = 4, and t0 = 800. For p = 1 and m = 3, the intensity of the beam takes the form of a double-ring and a skyrmion
quadplex is formed after the irradiation. The system consists of 200 times 200 sites and periodic boundary condition is imposed.

150 × 150 sites and calculate the success probability of creating SkDs. We take the peak temperatures T0 = 1, 1.5,
and 2 and the time-dependence of the temperature as shown in In Fig. 8(d). In Fig. 8 we show the success probability
of creating SkDs, (N/20 × 100) %, where N is the number of success trials in which we obtain SkDs, and 20 is the
total number of trials for each set of (T0, Bz, w). The probability tops when the magnetic field is small and the beam
waist satisfies 150a ∼ 13w. If we take w = 0.5λ and a = 5Å, as the optimum wave length we have λ ∼ 12 nm, which
is close to that of EUV lasers and to the size of skyrmions for the given parameters. We can also use electron vortex
beams to achieve this wavelength. The optimal wavelength would be generically determined by the size of skyrmions.
Therefore for chiral ferromagnetic films with large skyrmions like CoFeB/Ta68,76, optical vortices of visible lights

FIG. 7. Time evolution of the z-component of spins for a particular trial with parameters Bz = 0.01, D = 0.15, t0 = 500, and
T0 = 1.5. We still use vortex beam with p = 0 and m = 5 but the beam waist is set to be small: w = 6a. Due to the small
beam waist, the topological singularity in the temperature profile is smeared and as a result, an ordinary skyrmion is created.
The system consists of 150 times 150 sites and periodic boundary condition is imposed.
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would be appropriate ones.

FIG. 8. Success probability of creating skyrmion duplexes by vortex beams with p = 0 and m = 5, for J = 1, D = 0.15,
and α = 0.1. (a) Probability for Bz = 0.01, (b) Bz = 0.0125, and (c) Bz = 0.015. The local temperature T (t, ~r) is set to be
proportional to the intensity of the beam: T (t, ~r) = T (t)

(
|uLG(ρ, φ, 0)|2/max(|uLG(ρ, φ, 0)|2)

)
. Here the time dependence of

the temperatures is given as panel (d): T (t) = T0

(
1− t

t0

)
Θ(t)Θ(t0 − t) with t0 = 500. The highest probability is achieved

when the magnetic field is small and the beam waist satisfies w ∼ 11.5a for which the wavelength of the beam is comparable
with the size of skyrmions. We also show where the chosen magnetic fields Bz locate in the phase diagram.

We numerically confirm that the size of SkDs grows up with decreasing Bz and it is impossible to create stable
SkDs in the ferromagnetic phase of the present model. As we decrease the magnetic field Bz, the ferromagnetic initial
state we assume would become more fragile in reality, while SkDs themselves are easier to create and energetically
stabler.

We note that creation of SkDs using an electric current pulse with period of a few hundred pico-seconds is discussed
recently in Ref. 73. In their case, the timescale of the creation is a few hundred pico seconds for J ' 94 meV. For
this strength of J , the time unit is ~/J = 0.75 fs, and t0 = 500 corresponds to 380 fs, so that our scheme using
vortex beams is 1000 times faster than the method with current pulse, though our assumption for local equilibration
no longer holds in this timescale. Moreover, their scheme using current pulse cannot induce multi-ring defects like
quadplex and cannot be applied to insulating materials unlike our scheme.

Finally, we comment on the recent experimental study which observes various intricate magnetic defects including
skyrmioniums in a ferrimagnetic film71. In this study, simple laser pulse without OAM is used to cause ultrafast
magnetization reversal to the system. Due to the strong anisotropy energy in the direction perpendicular to the film,
this system allows skyrmions to appear even in the absence of external magnetic field. In this case, the single-domain
ferromagnetic state is less stable than our model where the external magnetic field explicitly breaks the degeneracy
between two ferromagnetic states aligned along the field direction. Hence, by perturbing the spin structure sufficiently,
there can appear various magnetic defects, though the species of the defects created in that way are not well controlled
as opposed to those by our scheme.

IV. CHIRAL ANTIFERROMAGNET

Next we move onto chiral AFMs. The basic idea is the same as the ferromagnetic case. Namely, we consider of
printing the spatial structure of vortex beams to two-dimensional film of chiral AFMs as topological defects. We
model the application of vortex beams as heating which realizes temperature proportional to the local intensity of the
beams, and examine the time evolution of spins by sLLG equation.
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We first review the phase diagram of a canonical model of chiral AFMs. Then we show the emergence of anti-
ferromagnetic analogue of skyrmion multiplexes after the laser irradiation and discuss how to achieve high success
probability of their creation.

A. Static properties

We use the following canonical model of two-dimensional chiral AFMs on a square lattice

HAF = J
∑
~r

~m~r ·
(
~m~r+a~ex + ~m~r+a~ey

)
+
∑
~r

~Di · (~m~r × ~m~r+a~ei)−A
∑
~r

(mz
~r)

2, (13)

where a spin localized at ~r is represented as ~m~r with its norm normalized to unity. The exchange coupling is antifer-
romagnetic (J > 0) and A is the anisotropy energy along the z-axis. The DM interaction stabilizes antiferromagnetic

skrmions in this model. For example, if we choose ~Dx = D~ey, ~Dy = −D~ex, Néel-type antiferromagnetic skyrmion
[shown in Fig. 9(a)] appears. The study of such antiferromagnetic solitons in noncentrosymmetric 2-dimensional
AFMs itself has rather long history55,56, but recently, their presence in the field of magnetism is rapidly increasing in
the context of antiferromagnetic spintronics57–59.

When A/J = 0.055, the phase diagram of this model58 with ~Dx = D~ey, ~Dy = −D~ex is given in Fig. 10. For
D/J < 0.22, the ground state is a Néel state, but we can divide this phase into two regions. In the region with
D/J < 0.16, antiferromagnetic skyrmions are unstable while if D/J > 0.16, they are energetically stable as isolated
topological defects with very long lifetime. Following Ref. 58, we call the latter region as antiferromagnetic skyrmion
(AFMS) region. For larger DM interaction, skyrmions deform (d-AFMS region) and eventually turn into warm
domains (WD region). In lower panels of Fig. 10 we show typical states in these phases as staggered spinsmz

~r×(−1)|~r| ≡
mz
~r=(i,j) × (−1)i+j . We note that WDs can be regarded as a collection of strongly deformed skyrmions, so that the

boundary between the d-AFMS region and WD region is unclear from our LLG calculations in a finite size system.

FIG. 9. Schematics of a Néel-type antiferromagnetic (a) skyrmion and (b) skyrmion duplex. There are two magnetic sublattices
in Néel ordered states in the square lattice, and a skyrmion and skyrmion duplex can be seen as bound states of their
ferromagnetic counterparts living in different magnetic sublattices. Just as Fig. 1, the colors of arrows represent the z-component
of spins.

B. Antiferromagnetic skyrmion multiplex

We focus on the AFMS region in Fig. 10 and take ~Dx = D~ey, ~Dy = −D~ex in the following. We treat the effect
of applied vortex beams by the sLLG equation, assuming temperature proportional to the beam intensity. Then
we observe Néel-type antiferromagnetic SkDs, whose spin texture is defined in Fig. 9(b), after the irradiation in the
proper manner (see Sec. IV D). Observing the spin texture carefully, we find that an antiferromagnetic SkD consists
of two ferromagnetic SkDs in the two magnetic sublattices. Antiferromagnetic SkDs are energetically stable and their
lifetime is longer than our calculation periods. Just as the ferromagnetic case, there can appear a family of stable
ring-shaped defects, antiferromagnetic skyrmion multiplexes (corresponding objects of ferromagnetic ones). Besides,
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FIG. 10. Phase diagram of the canonical model of chiral AFMs Eq. (13) for A/J = 0.055. When DM interaction is very weak,
we have antiferromagnetic (AFM) region where we cannot have skyrmions. As we increase DM interaction D, antiferromagnetic
skyrmions become energetically stable at D/J ∼ 0.16 as isolated defects. For larger DM interaction (D/J ≥ 0.22), skyrmions
deform to lower their energy (d-AFM state) and eventually warm domains are formed (WD). The phase boundary between
d-AFM and WD is unclear from our calculations. We visualize the spin texture of typical states in each phase obtained from
LLG calculations by using staggered spins mz

~r × (−1)|~r| ≡ mz
~r=(i,j) × (−1)i+j .

as we will see below, in chiral AFMs, even the simplest vortex beam with p = 0 can create variety of topological
defects other than skyrmionium. In the case of AFMs, experimental observation of their spin textures with Lorentz
TEM is difficult. In Ref. 57, instead, neutron scattering and X-ray magnetic linear dichroism are proposed as a probe
of antiferromagnetic skyrmions. We expect that these methods are also applicable to antiferromagnetic skyrmion
multiplexes.

FIG. 11. Time evolution of staggered spins mz
~r × (−1)|~r| ≡ mz

~r=(i,j) × (−1)i+j for a particular trial with parameters D/J =
0.205, A/J = 0.055, T0/J = 1, w = 12.5a, and α = 0.1. The ring-shaped heating caused by vortex beams with p = 0 and
m = 5 creates magnetic domains different from the background Néel order. These domains merge to form an antiferromagnetic
skyrmion duplex. A time step corresponds to 0.7 ps for J = 1 meV.

C. Formation of skyrmion multiplex

Following the analysis in the ferromagnetic case, we study the time evolution of spins under the beam-induced
temperatures. The sLLG equation for the antiferromagnetic Hamiltonian (13) is

d ~M~r

dt
= −γ ~M~r ×

(
−∂HAF

∂ ~M~r

+ ~hT (~r)(t)

)
+

α

M
~M~r ×

d ~M~r

dt
, (14)

where ~M~r = ~γ ~m~r, and ~hT (~r)(t) is again the random field satisfying Eq. (12) and σ(~r) = 2kBT (~r)α. We take a
system with 150 × 150 sites and impose periodic boundary condition. The time step of Heum method is set to
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FIG. 12. Time evolution of staggered spins mz
~r×(−1)|~r| ≡ mz

~r=(i,j)×(−1)i+j for a particular trial for D/J = 0.21, A/J = 0.055,
and α = 0.1. We superimpose two vortex beams (m = 1 and m = 20) with T0/J = 0.50 and w = 20a, to realize temperature
with double-ring profile. We see that the heating leads to formation of antiferromagnetic skyrmion quadplex. The system is a
periodic square lattice with 200 times 200 sites.

∆t = 0.03. Hereafter we take J = 1 and fix D = 0.205 and A = 0.055. After several trials and errors, we find that it is
advantageous to keep the temperature constant for long periods to achieve high success probability of defect creation.
Therefore we assume the time dependence of the temperature induced by vortex beams as T (t) = T0Θ(t0 − t)Θ(t)
[shown in Fig. 13(d)] and examine the probability for several values of t0 = 3000, 5000, and 7000. Here T0 is set
to be proportional to the local intensity of vortex beams with p = 0 and m = 5, and Θ(x) is the step function. In
Fig. 11, we show time evolution within a particular trial. We see that under the static heating, domains of a Néel
state different from the background one grow. These domains merge and result in an antiferromagnetic SkD. We
also show the formation process of an antiferromagnetic skyrmion quadplex in Fig. 12. Here, instead of using vortex
beams with p = 1, we superimpose two vortex beams (p = 0) with different ring size to achieve the double-ring shaped
temperature profile.

D. Optimal way of applying vortex beams

Here we optimize the way we apply vortex beams to achieve high success probability of creating antiferromagnetic
SkDs. We try calculations 20 times for each set of (T0, t0, w) and obtain the success probability in the same way as
the ferromagnetic case for vortex beams with m = 5 and p = 0. The numerical calculations are performed in the
AFMS region of chiral AFMs where the ground state is a Néel ordered state. Therefore, we are choosing a stable Néel
state as the initial state of our calculations. This is in contrast with the ferromagnetic case where we assumed the
metastable ferromagnetic initial state.

Contrary to the ferromagnetic case, here even the simplest vortex beam with p = 0 can create various topological
defects other than skyrmions and SkDs though not well controlled. In Fig. 13(e) we show z-component of staggered
spins for several examples of topological defects we observed, including that of an SkD. In the case of chiral FMs,
due to the external magnetic field Bz, complicated magnetic structures are energetically unfavored and only SkDs are
observed within our calculations for the vortex beam with p = 0. However, since there is no corresponding “staggered
magnetic field” in the present model, two possible Néel states are energetically degenerate. Therefore, even if the spin
texture of a topological defect is intricate, it costs energy only at the domain boundaries and can be energetically
stabler than that in chiral FMs (the same situation of Ref. 71). All these defects have ring-shaped structures and
reflect the spatial profile of our vortex beams. We confirm that they have lifetime longer than our calculation periods
and call them also as skyrmion multiplex.

The obtained success probability of creating defects for vortex beams with p = 0 and m = 5 is summarized in
Fig. 13(a). Here we regard each trial to be in success if one of ring-shaped defects [some examples shown in Fig. 13(e)]
is generated. The optimal beam waist is found to satisfy w ∼ 11.5a. If the lattice constant is a = 5Å and the beam
is focused well w ∼ 0.5λ, the wavelength λ ∼ 12 nm, again close to the size of (antiferromagnetic) skyrmions and in
the EUV region. Just as the ferromagnetic case, we expect that the wavelength can be lifted by using materials with
larger antiferromagnetic skyrmions.
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FIG. 13. Success probability of creating antiferromagnetic skyrmion multiplexes by vortex beams with p = 0 and m = 5. We
fix J = 1, D = 0.205, A = 0.055, and α = 0.1, with which the system is in the AFMS region (see Fig. 10). The initial state at
t = 0 is a Néel ordered ground state and the temperature is varied in accord with (d) for (a) t0 = 3000, (b) t0 = 5000, and (c)
t0 = 7000. The probability is high when the wavelength of vortex beams is of the same order of the size of antiferromagnetic
skyrmions, and the period of the irradiation of vortex beams is long. (e) Skyrmioin multiplexes observed after the irradiation
of vortex beams. We show z-component of staggered spins for visibility.

V. CONCLUSION

We proposed a new application of optical vortex1 or electron vortex beam3 to magnetism. These vortex beams
carry orbital angular momentum and have ring-shaped profile of the intensity. We numerically demonstrated that
the spatial pattern of those beams can be “printed” to chiral magnets as a class of ring-shaped topological magnetic
defects.

Considering the mismatch between time and length scales of chiral magnets, we modeled the effect of vortex beams
as heating. The heating realizes spatially modulated temperature proportional to the local intensity of the beams.
By solving stochastic Landau-Lifshitz-Gilbert equation105 for canonical models of chiral ferro-91 and antiferro-58

magnets [Eq. (8) and (13)], we found that the ring-shaped profile of the vortex beams, which originates from their
non-vanishing orbital angular momentum, can be transferred to chiral magnets as topological defects. We confirmed
that by changing beam parameters we can create a variety of topological defects including ordinary skyrmions50 and
general nπ-vortices (skyrmion multiplexes). We confirmed that skyrmion multiplexes in chiral FMs are energetically
stable in the skyrmion crystal phase. That is, they are stable within the framework of our LLG calculations. For
chiral AFMs, they are stable in the broad region of the phase diagram reflecting the degeneracy of Néel states.

We gave optimized way of applying vortex beams to achieve high probability of creating skyrmion multiplexes
in chiral magnets (Fig. 8 for the ferromagnetic case and Fig. 13 for the antiferromagnetic case). The appropriate
wavelength of vortex beams is found to be of the same order of the size of skyrmions. Typically the size of skyrmions in
chiral magnets is O(1)∼O(10) nano meter so that the proper wavelength is in the extreme ultraviolet region. However,
recently much larger skyrmions68,76–80 are observed in chiral magnetic films in which the optimal wavelength would
be lifted to the visible light region. Moreover, we can utilize recent developments in plasmonics87–89 to overcome this
mismatch issue.

Our method using vortex beams has the advantage that the approach is applicable to both metallic and insulating
chiral magnets and works for both chiral ferro- and antiferro- magnets in the identical manner. Moreover, by changing
beam parameters it is also possible to create general nπ-vortex. These properties stand in strong contrast with those
of recently proposed scheme using current-pulse73, whose applicability is so far limited to 2π-vortex in metallic chiral
ferromagnets.
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