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Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for studying the structural
and electronic properties of paramagnetic solids. However, the interpretation of paramagnetic NMR
spectra is often challenging as a result of the interactions of unpaired electrons with the nuclear spins
of interest. In this work, we extend the formalism of the paramagnetic NMR shielding in the presence
of spin-orbit coupling towards solid systems with multiple paramagnetic centres. We demonstrate
how the single-ion Electron Paramagnetic Resonance (EPR) g-tensor is defined and calculated in
periodic paramagnetic solids. We then calculate the hyperfine tensor and the g-tensor with density
functional theory (DFT) to show the validity of the presented model and we further demonstrate
how these interactions can be combined to give the overall paramagnetic shielding tensor, σs. The
method is applied to a series of olivine-type LiTMPO4 materials (with TM=Mn, Fe, Co and Ni)
and the corresponding 7Li and 31P NMR spectra are simulated. We analyse the effects of spin-orbit
coupling and of the electron-nuclear magnetic interactions on the calculated NMR parameters. A
detailed comparison is presented between contact and dipolar interactions across the LiTMPO4

series, in which the magnitudes and signs of the non-relativistic and relativistic components of the
overall isotropic shift and shift anisotropy are computed and rationalized.

I. INTRODUCTION

Materials containing paramagnetic centres with un-
paired electron spins, such as transition metal (TM) ions,
are widely used in the fields of biochemistry [1, 2], catal-
ysis [3–5], and electrochemistry [6–8]. Nuclear Magnetic
Resonance (NMR) spectroscopy is a powerful technique
for analysing the local structure in paramagnetic solids,
as the unpaired electrons of the TM ions induce a para-
magnetic shift and shift anisotropy that provide detailed
information concerning the structural and chemical envi-
ronment of the NMR observed centre (OC) [9–13]. How-
ever, the interpretation of these spectra proves very chal-
lenging, as the presence of the paramagnetic centres re-
sults in multiple effects on the observed NMR lineshapes
[14–17]. The through-bond transfer of unpaired-electron
spin density onto the nuclear position of the OC in-
duces a so-called Fermi contact shift, which is a direct
measure of the electronic structure of the TM, the elec-
tronic spin transfer through the TM-O-OC bond and the
degree of interaction between the relevant orbitals [18].
The through-space hyperfine dipolar interaction between
the magnetic moments of the unpaired-electron spin den-
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sity and that of the observed nucleus results in a signif-
icant broadening of the spectrum. In the presence of
spin-orbit coupling, the deviation of the g-tensor from
the free-electron g-factor, known as the g-shift, modifies
both the Fermi-contact and dipolar contributions to the
shift. In particular, the combination of the anisotropy of
the g-tensor and the zero-field splitting interaction with
the dipolar coupling lead to a through-space contribution
to the paramagnetic shift, referred to as pseudo-contact
shift. The spin-orbit correction to the Fermi contact term
via the isotropic g-shift also adds a contribution to the
NMR shift. All these terms depend on the electronic
structure of the TM. The pseudo-contact term depends
on the distance between the OC and the paramagnetic
centre(s), and on the relative orientation of the g- and
hyperfine tensors, and the contact term depends on the
through-bond transfer of unpaired electron density to
the OC. In addition, the coupling between the g-shift
and the hyperfine dipolar tensor modifies the NMR shift
anisotropy. To help with the often challenging interpre-
tation of the paramagnetic NMR spectra, first-principles
quantum-mechanical studies can provide detailed insight
at the atomic and electronic level. Substantial progress
has been made in the theoretical description of various
contributions to the NMR shift of molecular systems with
a single paramagnetic centre. After the pioneering work
of Kurland and McGarvey [16], Moon and Patchkovski
derived a formalism to describe the entire shift tensor
including the effects of spin-orbit coupling [19], later ex-
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tended to the presence of zero-field splitting by Vaara et
al. [20, 21] and Soncini and Van den Heuvel [22], with the
consequent extensive study of the NMR shift of paramag-
netic molecules [23–28]. The shift mechanisms in param-
agnetic transition metal-containing extended solids have
been studied by Carlier, Grey and co-workers and the
effects of multiple paramagnetic centres on the isotropic
Fermi contact shift and its relation to the bulk magnetic
properties of the solid have been qualitatively [13], and
subsequently more quantitatively [29], rationalised. In
their work the spin-orbit coupling effects on the NMR
shift are included in an empirical effective magnetic mo-
ment. The explicit inclusion of the g-tensor in the de-
scription of the NMR spectrum is less extensively formu-
lated for solid systems, and has mainly been presented
for isolated paramagnetic centres [23, 25, 27], with only
a preliminary study on paramagnetic networks [30]. This
work extends the current methodology to include a de-
scription of the g-tensor in solids with multiple TM cen-
tres, and to investigate the resulting effects of spin-orbit
coupling on the NMR spectra of periodic solids, which
is of central importance in the analysis of many tech-
nologically relevant systems, such as battery materials.
An analysis of the g- and hyperfine tensors in periodic
solids is presented. A model for the derivation of the
paramagnetic shielding is described, that allows the sep-
aration of the contributions to the isotropic shift and shift
anisotropy. The method is applied to the investigation
of the 7Li and 31P NMR shifts of olivine-type LiTMPO4

(TM=Mn, Fe, Co and Ni). These materials, and in par-
ticular LiFePO4 [31] and its Mn-substituted derivatives
[32], are commercially relevant lithium-ion battery pos-
itive electrode (cathode) materials. Computational re-
sults from solid-state Density Functional Theory (DFT)
are compared to the experimental shifts obtained for the
corresponding powder samples [33, 34] and a method to
extract individual g-tensors in solids containing high con-
centration of paramagnetic centres from DFT calcula-
tions is demonstrated.

II. THEORY

In paramagnetic systems, the coupling between the nu-
clear magnetic moment of the OC and the average spin
magnetic moment of the unpaired electrons results in the
paramagnetic shielding tensor, σs. [35] In the presence
of a single paramagnetic centre, the specific form of σs

is derived to be [17, 19, 20]

σs = − µB S(S + 1)

3 ~ γN KB T
g · A (1)

where the general form of the hyperfine tensor (up to
second-order perturbation theory), A, and the g-tensor,
g, are [17]

A = (AFC + AFC,2)1 + Adip + Adip,2

g = (ge + ∆giso)1 + ∆g̃
(2)

In eq. 1, µB is the Bohr magneton, S the electronic
spin quantum number, ~ the reduced Planck constant,
γN the gyromagnetic ratio of the observed nucleus, KB

the Boltzmann’s constant and T the absolute tempera-
ture. The complete form of the shielding tensor includes
also the orbital component that is typically approximated
to the shift measured for an analogous diamagnetic sys-
tem [17]. In eq. 2, the hyperfine tensor is expanded
as the non-relativistic Fermi contact and dipolar contri-
butions (AFC1 + Adip) and the relativistic spin-orbit
isotropic and dipolar terms, (AFC,21 + Adip,2). AFC

depends on the unpaired-electron spin density delocal-
ized or polarized into the OC, whereas Adip accounts for
the through-space dipolar interaction between the mag-
netic moment of the unpaired-electron spin density and
the nuclear magnetic moment of the OC. The g-tensor in
eq. 2 breaks down as ge, the non-relativistic free-electron
g value (2.002319), and ∆giso1 + ∆g̃, the relativistic
isotropic and anisotropic parts of the g-shift tensor ∆g.
The overall ∆g corresponds to the deviation from the
ge as a consequence of the spin-orbit coupling on the
paramagnetic centre when the electronic structure has a
non-zero orbital angular momentum, or on heavy atoms
with some fraction of unpaired-electron spin density. The
individual cross terms contributing to the paramagnetic
shielding tensor can be shown by substituting in eq. 1
the expressions for A and g in eq. 2. As discussed in
Ref. 20, by retaining only the terms that contain at
most one leading-order spin-orbit coupling term in the
product g · A, the resulting contributions can be sepa-
rated based on the nature of the involved hyperfine term.
This corresponds to retaining terms up to fourth order in
the fine-structure constant. The breakdown of the vari-
ous contributions arising from the product in eq. 1 are
summarised in Table I. The first group of terms named
’CONTACT’ depends on the delocalization of unpaired-
electron spin density to the nuclear position of the OC;
the second ’DIPOLAR’ group gathers terms that depend
on the electron-nuclear magnetic dipolar interaction, and
therefore on the spatial position of the unpaired electrons
relative to the OC and the relative orientation of their
magnetic moments.

Another useful distinction for the interpretation of σs

in terms of the structural and electronic properties con-
cerns the rank of the spherical tensors corresponding to
the various terms in Table I. The rank-zero terms lead
to an isotropic paramagnetic shift, whereas the rank-two
terms represent a shift anisotropy. Rank-one terms do
not give rise to observable features in the spectrum under
high-field conditions, and so are not considered further.
In particular, the non-relativistic Fermi contact shift cor-
responds to the element of the shielding tensor arising
from the coupling in term (a) of Table I [14]. This con-
stitutes the isotropic contribution that depends on the
electronic structure of the TM and on the degree of co-
valency and the orbital overlap in the bond linking the
OC and the TM. Term (a) is commonly the dominant
isotropic contact contribution in systems where the delo-
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TYPE TERM EXPRESSION RANK

CONTACT

a) geAFC 0

b) geAFC,2 0

c) ∆gisoA
FC 0

d) AFC∆g̃ 1,2

DIPOLAR

e) geAdip 2

f) geAdip,2 2

g) ∆gisoA
dip 2

h) ∆g̃Adip 0,1,2

TABLE I. Comparison of the terms contributing to the para-
magnetic shielding tensor in eq. 1 from the coupling between
the hyperfine and g-tensors in eq. 2. The terms are gathered
into two groups. The terms in the first group are due to an
isotropic contact hyperfine interaction (CONTACT), and the
second group contains terms due to an anisotropic electron-
nuclear dipolar hyperfine interaction (DIPOLAR); for each
product, the ranks of the resulting irreducible spherical ten-
sor(s) contributions to the shielding are given.

calization of the unpaired-electron spin density from the
TM sites towards the s orbitals of the OC is prominent
[36]. Terms (b), (c) and (d) represent the spin-orbit cou-
pling contributions to the total contact shielding, either
via the g-shift or the spin-orbit-based AFC,2 term. In
particular, term (c) accounts for the spin-orbit deviation
of the isotropic g-shift from the free-electron value, giv-
ing rise to a contribution proportional to AFC. It will be
shown later how this term turns out to contribute sig-
nificantly to the total isotropic shift of the OC, in the
systems studied in this work. In doublet systems, term
(h) in Table I is commonly referred to as the pseudo-
contact shift. It derives from the coupling between the
non-relativistic dipolar component of the hyperfine ten-
sor and the g-anisotropy due to spin-orbit coupling [15].
As the pseudo-contact term arises from the dipolar hy-
perfine interaction, it leads to a shift that depends on the
spatial position and orientation of the magnetic moment
of the unpaired-electron spin density relative to the nu-
clear magnetic moment of the OC. Considering the rank-
two terms of Table I, these contribute to the spectrum
in the form of the shift anisotropy. Term (e) of Table I
represents the only non-relativistic dipolar contribution
to the anisotropy, and it depends on the magnitude of
the electronic and nuclear magnetic moments involved in
the dipolar interaction, on their relative orientation and
on their separation in space. All the other terms of the
group - (f), (g) and the rank-two contribution of term
(h) - account for the spin-orbit corrections to this dipo-

lar anisotropy. The other relativistic contribution to the
shift anisotropy comes from the rank-two term (d), which
is due to the g-anisotropy and the isotropic Fermi con-
tact component of the hyperfine interaction. For solids
in which the TM ions are a major constituent of the lat-
tice, the total paramagnetic shielding at the OC is the
combination of the various contributions to the isotropic
shift and shift anisotropy from all the TM sites. Solid-
state density functional theory (DFT) calculations have
been shown to be extremely helpful in unravelling the
NMR response of paramagnetic solids containing multi-
ple paramagnetic centres [13, 29, 37, 38]. The approach
for the calculation of the Fermi contact shifts and shift
anisotropy in paramagnetic solids [12] is here extended
to include the spin-orbit coupling effect. In Ref. 12, the
methodology for computing Fermi contact interactions
in solids was developed in which, among other systems,
the olivine-type LiTMPO4 materials were used as model
systems. In the following discussion of the treatment of
spin-orbit coupling effects in solids the same systems are
used to allow direct comparison with prior work.

A. Analysis of the g-tensor in solids

The unit cell of the olivine-type LiTMPO4 structure
with an orthorhombic Pnma space group is shown in Fig-
ure 1. In order to explore the relationship between the
overall magnetic structure of the LiTMPO4 unit cell and
that of an individual magnetic centre, we now explore the
symmetry relationships between the different TM sites.
The four TM sites I − IV occupy the same 4 c Wyckoff
positions and have the following coordinates:

I : x+
1

2
,

1

4
, z̄ +

1

2

II : x̄,
3

4
, z̄

III : x̄+
1

2
,

3

4
, z +

1

2

IV : x,
1

4
, z

(3)

These equivalent positions are related by symmetry op-
erations as defined by the space group. For example, if
we focus on the metal ion in site I, it transforms into
site II via either a two-fold screw rotation with the axis
parallel to c, or a diagonal glide reflection with the plane
perpendicular to a; it transforms into III via either a
rotoinversion or a two-fold screw rotation with the axis
parallel to b and it transforms into IV via either a two-
fold screw rotation with the axis parallel to a or an axial
glide reflection with the plane perpendicular to c [39–41].
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a)

b)

FIG. 1. (1a) Structure of the repeating unit of the olivine-
type phase of LiTMPO4 (TM=Mn, Fe, Co, Ni) consisting of
a distorted hexagonal close-packed oxygen (red) framework.
Phosphorus (pink) occupies an eighth of the tetrahedral sites,
while the two octahedral sites are occupied by lithium (green)
and the TM (blue). (1b) The four octahedral TM sites are
labelled I, II, III, IV and occupy different spatial positions:
their environments (in pink, orange, light blue and blue re-
spectively) are related to one another as according to the or-
thorhombic symmetry of the Pnma space group.

All these relations are summarised in eq. 4:

I↔ II : 2(0, 0,
1

2
)

1

4
, 0, z ; n(0,

1

2
,

1

2
)

1

4
, y, z

I↔ III : 1̄ 0, 0, 0 ; 2(0,
1

2
, 0) 0, y, 0

I↔ IV : 2(
1

2
, 0, 0) x,

1

4
,

1

4
; a x, y,

1

4

(4)

In the case where the system contains a unique TM
species in a particular electronic state in the weak
exchange-coupling regime [42], the orientations of the
site-specific g-tensors are related by the same operations
defining the symmetry of the unit cell. In the Pnma
space group discussed here, these are the same opera-
tions summarised in eq. 4 [43, 44]. Consider for instance
the g-tensor of site I in Figure 1b and its relation with
those of the other sites: because of the operations given
above, when expressed with respect to the same reference
frame, such as the unit-cell frame, the g-shift tensors of

sites I− IV are found to be:

∆gI =

∆gx,xI ∆gx,yI ∆gx,zI
∆gy,xI ∆gy,yI ∆gy,zI
∆gz,xI ∆gz,yI ∆gz,zI

 (5a)

∆gII =

 ∆gx,xI −∆gx,yI − ∆gx,zI
− ∆gy,xI ∆gy,yI ∆gy,zI
− ∆gz,xI ∆gz,yI ∆gz,zI

 (5b)

∆gIII =

 ∆gx,xI − ∆gx,yI ∆gx,zI
− ∆gy,xI ∆gy,yI − ∆gy,zI

∆gz,xI − ∆gz,yI ∆gz,zI

 (5c)

∆gIV =

 ∆gx,xI ∆gx,yI − ∆gx,zI
∆gy,xI ∆gy,yI − ∆gy,zI

− ∆gz,xI − ∆gz,yI ∆gz,zI

 (5d)

As a result of the symmetry relations among the var-
ious TM environments in the orthorhombic group, the
overall repeated-unit deviation from ge results in a diag-
onal tensor, ∆gr.u., being the sum of the ∆g values of
all the spin centres in the cell, with the form shown in
eq. 6. Thus, the diagonal components of the per-site ∆g
are obtained by dividing the repeated-unit g-shift by the
number of TM centres of the cell. It is important to stress
that this result is not general and only occurs when all
of the g-tensors of the individual transition metal centres
are constrained to be collinear by the symmetry opera-
tions inherent to the space group symmetry of the lattice.
We present a more general approach below that can be
utilised under conditions where this is not the case.

∆gr.u. = ∆gI + ∆gII + ∆gIII + ∆gIV

=

4 ∆gx,xI 0 0
0 4 ∆gy,yI 0
0 0 4 ∆gz,zI

 (6)

B. Analysis of the hyperfine tensor in solids

The hyperfine tensor determining the paramagnetic
shift of a particular observed site modulates the con-
tact and dipolar interactions between the nuclear spin
of the OC and the total spin of the unpaired electrons.
In a system such as the above example where the weakly
exchange-coupled TM ions are a major constituent of the
lattice, the hyperfine tensor defined at the OC nuclear
position is equal to the sum of the contact and dipo-
lar interactions with each of the surrounding TM sites.
It has been shown that the total Fermi contact term,
AFC, can be decomposed into the sum of all relevant pair-
wise TM-O-OC bond-pathway contributions, allowing the
unpaired-electron spin density transferred for each indi-
vidual TM site to the nuclear position of the OC to be
computed [12]. For the dipolar component of the hyper-
fine tensor, the long-range anisotropic electron-nuclear
interaction depends on the position vector originating at
the OC which connects it to the unpaired-electron spin
density of each TM site. For the olivine structure (Figure
2) the dipolar interaction between an OC, such as Li A,
and a particular paramagnetic site, such as TM-I, is dif-
ferent to the interaction between Li A and TM-II because
of their respective orientation. Also, the strength of the
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dipolar interaction weakens with the distance between
the involved centres, r, as 1/r3 [45].

C. Treatment of the Paramagnetic Shielding in
Solids via DFT

a)

b)

FIG. 2. (2a) Repeating unit of the olivine-type LiTMPO4

delimited by the dashed box. The solid lines represent the
pair-wise TM-O-Li bonds and denote the pathways of delo-
calization of unpaired-electron spin density from each TM site
to the nuclear position of the OC, here the lithium site labelled
A, as in Ref. 12. (2b) Periodic expansion of the LiTMPO4 re-
peating unit; the arrows highlight the TM-OC pairs interact-
ing via magnetic dipolar coupling, and specifically underline
the interactions between the lithium site labelled A and one of
the four inequivalent TM sites, here labelled as I, throughout
the periodically repeating units.

A detailed insight into the NMR response in solids
containing multiple paramagnetic centres is obtainable
directly via periodic solid-state DFT studies. Previous
works described how the bond-pathway decomposition
of the isotropic Fermi contact component of the total
hyperfine tensor can be calculated with DFT via the
so-called spin-flipping approach [12]. In this method,
the total Fermi contact term is calculated from the spin
density at the OC nuclear position in a ferromagnetic
state. The individual shift contribution of a TM-O-OC
pathway is then calculated by flipping the spin of the
TM ion in the repeated unit. The difference in the
spin density between the ferromagnetic and the flipped

states gives the Fermi contact contribution of the
corresponding pathway. In general the approach proves
particularly accurate [12] because the unpaired-electron
delocalization is a short-range interaction. In the
present study, we demonstrate how the total dipolar
hyperfine coupling can be decomposed using a similar
method. Firstly, the total dipolar hyperfine tensor
is calculated at the OC as a result of its magnetic
interactions with all the TM sites in the ferromagnetic
state. Subsequently, the TM-specific contributions
to the total dipolar term are obtained separately by
flipping each of the four TM spins labelled I − IV in
the cell in Figure 2b. The difference in the OC dipolar
tensor due to the flip gives the contribution from each
TM site. As shown in Figure 2b for TM-I, flipping the
spin of a paramagnetic centre in the unit cell results
in the spins of the same site in all neighbouring cells
being flipped. The resulting contribution to the dipolar
tensor calculated at a particular OC, such as Li A in
Figure 2b, is then due to the interaction of its nuclear
moment with the electronic moment of all the TM I ions
throughout the lattice. This approach ensures that the
spatial and orientational dependence of the coupling are
properly treated via the periodic boundary conditions
(PBC). The additivity of the contributions can be as-
sessed by comparison with the ferromagnetic alignment
of all the TM spins, as for the Fermi contact analysis [12].

In the current DFT approach, the g-tensor for a ma-
terial containing multiple paramagnetic centres is calcu-
lated by linear response [46, 47], which results in a single
overall g-tensor for the cell. The contribution to the g-
tensor from a particular TM site can be calculated by
replacing the other TM sites in the cell with diamagnetic
atoms. Care must be taken in order to make sure that
the resulting local distortions are negligible and that the
repeated unit is expanded enough so to avoid long-range
interactions between TM sites through the PBC. Using
this procedure, the only source of spin-orbit coupling is
due to the remaining paramagnetic centre and hence we
obtain the g-tensor of this ion. By calculating the ∆g for
each TM site, the off-diagonal components of the g-tensor
are computed, which are required to give an accurate de-
scription of the coupling with the Adip tensor. Once the
g and Adip tensors have been computed, they are com-
bined to give the shielding tensor in eq. 1. As a result
of the limitations of the available computational meth-
ods for solid-state DFT, to the best of our knowledge
the calculation of the hyperfine relativistic corrections
(AFC,2,Adip,2) are not currently possible, and so we do
not comment further on terms (b) and (f) of Table I,
which are expected to be small for ligand hyperfine cou-
plings, except for nuclei directly bonded to truly heavy
centres [48, 49]. The overall isotropic paramagnetic shift
for an OC is calculated as the sum of the contact terms
(a) and (c) and the rank-zero component of term (h). For
the former two terms, we calculate the total AFC in the
ferromagnetic state and the sum of the four TM-specific
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∆giso separately; for the latter we calculate separately the
coupling between the ∆g of each of the four TM sites and
the corresponding Adip tensor isolated via the aforemen-
tioned spin-flip approach. To obtain the total shielding
tensor, we sum the various products of these contribu-
tions and extract the corresponding isotropic, anisotropic
and asymmetry values.

III. COMPUTATIONAL METHODS

First-principles solid-state DFT calculations were per-
formed within the Linear Combination of Atomic Orbital
(LCAO) scheme with the CRYSTAL09 Code [50, 51] and
the Generalized Gradient Approximation (GGA) scheme
with the QuantumEspresso Package [52]. The calcula-
tion of the hyperfine properties was performed in CRYS-
TAL09 as previous studies [12, 53] have shown that the
use of hybrid functionals in an all-electron treatment pro-
vides good agreement with experiments. For this, three
hybrid exchange-correlation functionals were used: the
PBE0 incorporating 25% Hartree-Fock (HF) exchange
[54, 55], shown to provide satisfactory performances for
the electronic and magnetic structures of the class of ma-
terials of interest [53], and the related 20% HF hybrid
(PBE20) and 35% HF hybrid (PBE35). The choice of
studying these systems with a range of hybrid functionals
was motivated by the known sensitivity of the electronic
delocalisation and spin polarisation on the percent of HF
exchange included [12, 53, 56, 57]. Two levels of all-
electron atom-centered basis set were used, a smaller set
used for structure optimisation and a more extended one
used for hyperfine calculations [12]. A total energy tol-
erance of 10−7 a.u. was chosen and the reciprocal-space
sampling was performed with k -point grids of 2 × 3 × 4
points in the LiTMPO4 unit cell. Full details of the com-
putational method are reported in the S.I.

As spin-orbit coupling effects are not treated in the
version of CRYSTAL used in this study, the Projector
Augmented Wave (PAW) [58] QuantumEspresso package
was used to calculate g-tensors for the same systems,
supported by previously presented results obtained
within this scheme [30]. For these calculations, the PBE
exchange functional was chosen [54]. Scalar-relativistic
norm-conserving pseudopotentials with nonlinear core
correction were used, and the all-electron information
was reconstructed using PAW and gauge-including
projector augmented-wave (GIPAW) [46, 47]. A plane
wave cutoff energy of 900 eV was chosen, yielding an
energy convergence to within 6 meV per atom. The
same energy tolerance and k-mesh sampling as used
in the CRYSTAL calculations were once again used.
For the calculation of per-site g-tensors, a 1 × 2 × 2
supercell expansion of the crystallographic primitive cell
was required, associated with a k-sampling of 2× 2× 2.
These supercells were made almost entirely diamagnetic
by substituting all but the TM site under study with
Mg2+ ions. In the GIPAW implementation in the

Quantum-Espresso package, a mean-field approximation
to the many-body Hamiltonian is made and as a result,
the spin-orbit and spin-other-orbit operators are repre-
sented as a sum of one-electron terms, according to Ref.
47. Hybrid functionals were not used as the calculation
of the g-tensor via the linear response method is not
currently supported with these. Hence, calculations
of g-tensors were compared for a pure GGA method
and a GGA+U method with the PBE functional. As
will be discussed below, the former is more appropriate
for g-tensor calculations. The latter method, which is
widely used in periodic DFT calculations of transition
metal-contain systems, is an alternative approach to
the hybrid treatment and it involves the addition of a
Hubbard U correction [59] to specific subshells - here
the 3d TM orbitals - to correct for effects due to the
incorrect treatment of electron correlations with the
DFT approach [60]. This has previously been shown
to improve the description of the magnetic coupling
constants and the electronic structure of transition
metal oxide systems [61–64], and to accurately predict
the respective ground-state d-level splitting pattern [65].
The rotationally invariant treatment of U proposed by
Dudarev et al. was here used [66], in which a single
Ueff parameter is applied to the d electrons of the
transition metal species. The values of Ueff were chosen
from previous self-consistent determinations [61] and
are reported in Table II. The effect and validity of the
addition of U to g-tensor calculations is explored.

The structures of LiMnPO4 [67], LiFePO4 [68] and
LiNiPO4 [67] were fully relaxed with both DFT packages
independently. For LiCoPO4, the experimental struc-
ture (Ref. 69) was used without further relaxation in
order to avoid the difficulties in optimising the distinct
sublattice anions, as described in detail by Middlemiss et
al. [12]. Furthermore, as derived in Ref. 29, the bulk
magnetic properties of the materials affect the param-
agnetic shift. These effects are included in the treat-
ment by modifying the temperature dependence of the
shift via the inclusion of the Weiss constant Θ. Hence,
the prefactor in eq. 1 used to calculate all terms in the

σs becomes − µBS(S+1)
3~γNKB(T−Θ) . The temperature used in

this work was 320 K to approximate the frictional heat-
ing due to Magic Angle Spinning (MAS). The Weiss
constants used for LiMnPO4, LiFePO4, LiCoPO4 and
LiNiPO4 are summarised in Table II [33]. For all of
the materials considered, the magnitude of the Weiss
constant was found to be much lower than the exper-
imental temperature T = 320 K, which suggests that
the spins can be treated as being essentially uncoupled
from each other as a result of thermal fluctuations. For
every calculated tensor, λ, the resulting isotropic term
λiso, symmetric anisotropic value ∆λ and asymmetry pa-
rameter η were calculated following the convention in
Ref. 70. For any symmetric tensor in the principal axis
frame, the diagonal components are ordered such that
|λzz − λiso| > |λyy − λiso| > |λxx − λiso|, with λiso being
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the isotropic value defined in eq. 7, together with the
second-rank tensor anisotropy, ∆λ, and the asymmetry
parameter, η:

λiso =
λxx + λyy + λzz

3
∆λ = λzz − λiso

η =
λxx − λyy

∆λ

(7)

For the systems studied in this work, no explicit calcula-
tion of the orbital component of the shielding tensor was
included [17], as this contribution is very close to 0 ppm
for the diamagnetic analogue material LiMgPO4 [71].

Phosphate S µtheo
eff

a µexpt
eff

a Θ a Ueff
b

[µB] [µB] [K] [eV]

LiMnPO4 2.5 5.91 5.4 -58 3.92

LiFePO4 2 4.89 6.8 -161 3.71

LiCoPO4 1.5 3.87 5.0 -77 5.05

LiNiPO4 1 2.82 3.1 -60 5.26

TABLE II. Summary of the parameters used in the calculation
of hyperfine shifts: S, the spin quantum number of the TM
ion involved in each phosphate; the theoretical (µtheo

eff ) and
experimental (µexpt

eff ) magnetic moments in terms of the Bohr
magneton (µB); Θ, the Weiss constant in Kelvin; Ueff , the
effective Hubbard correction applied to the relative TM ion
in eV. a Ref. 33. b Ref. 61.

IV. RESULTS AND DISCUSSION

For all the olivine LiTMPO4 structures considered in
this work, the experimentally observed unit cell param-
eters were in reasonable agreement with the optimised
unit cell parameters obtained from hybrid functionals
(LCAO), GGA and GGA+U approaches, as shown in
Table S1 of the S.I. The results of the g-tensor calcu-
lations are also shown in detail in the S.I. As discussed
in Section II for systems of orthorhombic symmetry, for
all the studied phosphates the spin-orbit coupling ef-
fects at each TM site of the repeated unit are found to
lead to g-tensors with the same principal components,
which are oriented relative to each other according to
the symmetry operations of the cell (eq. 5). The site-
specific g-tensors and the values obtained for the whole
repeated unit comprising all paramagnetic ions are com-
pared in the S.I., the sum of the per-site g-tensors being
very close to the repeated unit gu.c. as expected from
eq. 6. Table III shows the isotropic giso values cal-
culated for an individual TM site for the four studied

g̃aa, g̃bb, g̃cc giso

TM TM conf. gexpt
iso

GGA GGA+U GGA GGA+U

Mn2+ t32g e
∗2
g 2.00 2.00 2.00 2.00 2.00 a

Fe2+ t42g e
∗2
g 2.17, 2.23, 2.10 2.06, 2.03, 2.11 2.17 2.07 2.02 – 2.22 b

Co2+ t52g e
∗2
g 2.26, 2.40, 2.39 2.16, 2.12, 2.12 2.35 2.13 2.17 – 2.36 c

Ni2+ t62g e
∗2
g 2.25, 2.23, 2.25 2.14, 2.14, 2.13 2.24 2.14 2.15 d

TABLE III. Comparison of the electronic configuration and
the calculated g-tensors for each different TM site in an oc-
tahedral crystal field as involved in the studied systems. For
each ion, the occupation of the 3d orbitals in an octahedral
field is specified. For each calculated TM-specific g-tensor
the corresponding principal components (g̃aa, g̃bb, g̃cc) and
isotropic value (giso), calculated with pure GGA and with
GGA+U, are reported and compared with theisotropic g
value determined experimentally with EPR (gexpt

iso ). a Ref.
72, 73. b Ref. 74, 75. c Ref. 74, 76, 77. d Ref. 78.

phosphates. Firstly it is clear from Table III that the
range of experimentally-determined isotropic g values ob-
tained from electron paramagnetic resonance (EPR) is
broad for this class of LiTMPO4 olivine systems, justify-
ing further calculations to extract this parameter. All the
calculated values of giso show a positive deviation from
the free-electron g-value as expected for TM ions with
a more-than-half-filled 3d shell. The results reflect the
trends expected based on the electronic structure of the
involved ions [45, 79]. The deviation from ge is found to
be negligible for Mn2+ as it has zero spin-orbit coupling
as a result of the half-filled 3d shell. For Fe2+, the effects
of spin-orbit coupling result in a small deviation from ge,
with a calculated isotropic g-shift that falls within the
experimental values shown in Table III. The effect of the
spin-orbit coupling increases for octahedral Co2+, largely
due to the increased value of the spin-orbit coupling pa-
rameter moving across the 3d series, which results in a
larger deviation from ge.

The dependence of ∆giso on the applied Ueff was stud-
ied, and the results are shown in Figure 3. In all cases
the deviation from the free-electron g-value is found to
decrease with increasing Ueff (converging to a plateau at
high Ueff [80]). This is at first sight surprising, as it is
known that the Fermi contact shift for the same systems
[81] decreases with increasing Ueff , due to a reduction of
the spin delocalisation from the 3d orbitals to the nu-
cleus of interest - which, in the study in Ref. 81, is Li.
One would expect the resulting larger spin density at
the metal centre to enhance the g-tensor, due to larger
spin-orbit contributions from the heavier centre. This is
what one observes in g-tensor calculations on molecular
3d-complexes, where adding more exact exchange to a
hybrid functional increases the g-tensors [57]. Then why
do Hubbard +U corrections provide a change in the op-
posite direction? The reason is the increased energy gap,
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FIG. 3. Calculated isotropic value of the g-tensor shift, ∆giso,
as a function of the Ueff correction applied on Mn2+ (in red
prisms), Fe2+ (in green squares), Co2+ (in blue circles) and
Ni2+ (in magenta triangles). For each case the isotropic value
obtained with the Ueff value used in prior DFT+U studies is
indicated with a cross.

which weakens the spin-orbit response contributions to
the g-tensor (the gap enters the energy denominator of
the perturbation expressions). While the same increase
of the gap also occurs with increasing HF exchange in hy-
brid functionals, in the latter case the effect is overcom-
pensated by the enhanced coupling terms contributed by
the non-local HF exchange potential [57], leading to an
overall increased linear response. Such coupling terms
are absent in the DFT+U scheme, and thus the Hubbard
terms move the results in the wrong direction. While
comparison with experimental ∆giso (Table III) might
suggest improved agreement for DFT+U, this would in-
deed be due to compensation with other errors. We thus
have to conclude that, while DFT+U improves hyperfine
interactions, magnetic moments, band gap, and other as-
pects of electronic structure in the present LiTMPO4 sys-
tems [63, 82–86], it is not suitable for response properties,
unless one finds a way to mimic the response coupling
terms. A correct treatment of solid-state g-tensors with
hybrid functionals may provide a better route for future
improvement. Here we will pragmatically use the uncor-
rected GGA results for the g-tensors and will combine
them with hybrid-functional data for the hyperfine ten-
sors. The results obtained within the GGA+U scheme
are reported in the S.I. for completeness.

The paramagnetic shielding tensor is calculated by
combining the g-tensor data with the hyperfine results
according to eq. 1. The breakdown of the contribut-
ing terms presented in Table I is shown for the studied
systems in Table IV. The hyperfine parameters are sen-
sitive to the amount of Hartree-Fock exchange in the hy-
brid functional, as smaller amounts of HF exchange lead
to more delocalization of the d orbitals. For simplicity,
in Table IV we only show the PBE0 results, while the
PBE20 and PBE35 results, which can be considered as

upper and lower bounds of the acceptable range [12, 53],
are shown in Tables 2-5 of the S.I. We now draw attention
to the contributions to the isotropic shift resulting from
the non-relativistic - term (a) - and relativistic - terms
(c) and (h). With regards to the Fermi contact shift (a),
the value of the isotropic term depends on the fraction
of unpaired-electron spin density transferred from the d
orbitals of the TM onto the s orbitals of the OC and on
the covalency of the TM-O-OC bonds. From the 31P re-
sults, the Fermi contact shift is found to decrease across
the series going from Mn2+ towards Ni2+, in line with
the decrease of the number of unpaired electrons in the
t2g orbitals of the d-shell of the respective ions. Different
unpaired-electron spin density transfer mechanisms are
involved in the different bond-pathway configurations, as
elucidated by Carlier et al. [13] for oxide based systems.
This can be seen by comparing the values of term (a) in
Table IV for 7Li: after the decrease of the Fermi contact
shift from the Mn2+ to Fe2+, caused by the smaller num-
ber of unpaired t2g electrons, we see that the sign of the
shift, and hence of the transferred spin density, inverts
on going from Fe2+ to Co2+ and Ni2+. For the Fe site,
there is an equal contribution of spin density transferred
via a 90◦ pathway from the unpaired electrons in t2g or-
bitals and a 180◦ pathway from the unpaired electrons
in eg orbitals towards the Li site. In the first case this
corresponds to a positive transfer via a delocalization
mechanism while in the second case, this leads to a neg-
ative transfer via a polarization mechanism. Hence the
overall 7Li Fermi contact shift in LiFePO4 is the result
of these opposite contributions. For the high-spin Co2+

case, the majority of spin density is transferred from eg
orbitals and the overall sign of the resulting Fermi con-
tact shift becomes negative; finally for the Ni2+ case all
the spin density is transferred from the eg orbitals of the
TM, leading to a larger and still negative shift. Regard-
ing the term (c) in Table IV, this contribution to the
isotropic shift represents the spin-orbit coupling correc-
tion to the Fermi contact interaction via the isotropic
g-shift. By comparing the results for the different cases,
this term scales with the extent of spin-orbit coupling
for the involved TM ion. Term (c) for 7Li is negligible
for the Mn2+ case (0.3 ppm) and becomes progressively
more significant when going from Fe2+ (9.0 ppm) to Ni2+

(-31.4 ppm). This term depends on the strength of the
Fermi contact interaction, and it is interestingly shown
to be non-negligible, particularly for the 31P shift, due
to the magnitude of AFC for this nucleus.

We focus now on the isotropic term resulting from the
product (h) in Table IV corresponding to the aforemen-
tioned pseudo-contact shift. We notice how the combina-
tion of spin-orbit coupling and dipolar interaction results
in a non obvious trend for this isotropic shift. Although
the deviation from the g-value almost doubles in going
from Fe2+ to Co2+, the dipolar interaction is reduced
to the point where the magnitude of the overall pseudo-
contact shift is larger for the former than for the latter.
This result suggests that although the 7Li shift is dom-



9

CONTACT TERMS DIPOLAR TERMS ISOTROPIC TERM

a) geAFC c) ∆gisoA
FC d) AFC∆g̃ e) geAdip g) ∆gisoA

dip h) ∆g̃Adip DFT EXP

δiso ∆δ η δiso ∆δ η δiso ∆δ η δiso ∆δ η δiso ∆δ η δiso ∆δ η δiso δiso
[ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

7Li

LiMnPO4 109.9 0 — 0.3 0 — 0 0.1 0.3 0 1234.2 0.2 0 0.9 0.2 -0.1 0.2 0.4 110.1 57a, 68b

LiFePO4 27.2 0 — 9.0 0 — 0 -3.6 0.9 0 881.0 0.2 0 72.7 0.2 -1.2 -15.3 0.7 35.0 -15a, -8b

LiCoPO4 -19.6 0 — -13.5 0 — 0 3.6 0.1 0 700.3 0.2 0 121.0 0.2 -17.8 -14.5 0.4 -50.9 -92a, -86b

LiNiPO4 -64.8 0 — -31.4 0 — 0 2.0 0.1 0 433.8 0.2 0 52.6 0.2 -0.9 -1.6 0.3 -97.1 -49b, -41a

31P

LiMnPO4 8397.3 0 — 25.3 0 — 0 11.3 0.3 0 795.9 0.5 0 -1.2 0.5 -0.1 0.2 0.3 8404.5 7296a

LiFePO4 3219.0 0 — 1062.9 0 — 0 -432.2 0.96 0 795.4 0.4 0 65.7 0.4 -2.4 13.4 0.2 4279.5 3352a

LiCoPO4 2012.6 0 — 1391.5 0 — 0 -369.3 0.1 0 652.6 0.4 0 112.8 0.4 -3.8 9.2 0.6 3400.3 2756a

LiNiPO4 1658.7 0 — 804.3 0 — 0 -50.4 0.4 0 576.1 0.1 0 69.9 0.1 1.1 -2.2 0.1 2462.1 1706a

TABLE IV. Comparison of the various terms contributing to the shielding tensor for the series of LiTMPO4 compounds (TM=
Mn, Fe, Co, Ni) at the 7Li and 31P sites broken down into the contact and dipolar isotropic shift (δiso, ppm), symmetric
anisotropic value (∆δ, ppm) and asymmetry parameter (η, dimensionless). The hyperfine tensor for this Table is obtained with
the PBE0 hybrid functional and the g-tensor is calculated at PBE GGA level. Every tensorial term of the Table is reported

oriented with respect to its own principal axis frame. All the reported terms are scaled by the pre-factor − µBS(S+1)
3~γNKB(T−Θ)

, with

the respective Weiss constant of the system reported in Table II. The last column compares the sum of the calculated isotropic
terms (a, c, h) with the experimental isotropic shift. a Ref. [34]. b Ref. [33].

7Li 31P

δiso
a ∆δDFT ∆δFIT ηFIT δiso

a ∆δDFT ∆δFIT ηFIT

[ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

LiMnPO4 67.9 1241.3 1159.9 0.8 7879 1098.9 963.3 0.8

LiFePO4 -16.8 884.6 1115.1 0.7 3558 -830.6 -865.0 0.7

TABLE V. Results of the DFT calculated and fitted shielding anisotropy for 7Li and 31P spectra of LiMnPO4 (shown in Figure
4a and 4c respectively) and of LiFePO4 (shown in Figure 4b and 4d respectively). The results are reported as the isotropic shift
(δiso, ppm), the symmetric anisotropic value (∆δ, ppm) and the asymmetry parameter (η, dimensionless). a The experimental
spectra as well as the reported values for the isotropic shifts (δiso) are taken from Ref. 37.

inated by the contact contribution, the pseudo-contact
term can be non-negligible in these systems. The agree-
ment between the total isotropic shift obtained with DFT
and the experimental value is still not particularly good
for the 7Li site. Part of the discrepancy is thought to
be due to the neglect of the zero-field splitting effects.
Also, a careful analysis of the basis set and of structural
optimization is under investigation by some of the au-
thors of this work, which are expected to have an effect
on the accuracy of the spin-density calculated at the nu-
clear position. For 31P the agreement is more satisfac-
tory, mainly because of the predominance of the Fermi

contact contribution to the total shift, as previously de-
scribed. We now discuss the terms in Table IV contribut-
ing to the shift anisotropy, both non-relativistic (e) and
due to spin-orbit coupling ((d), (g), (h)). Focusing on the
dipolar component of the hyperfine tensor, Adip, there is
a decrease along the series from Mn to Ni, hence giving a
progressively smaller contribution to the shift anisotropy,
as seen by comparing terms (e) of Table IV. The calcu-
lated tensor with no spin-orbit coupling inclusion corre-
sponds to the dipolar interaction between the magnetic
moments of the observed nucleus and magnetic moment
of the TM ion [29, 36]. Following the trend of µtheo

eff for
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FIG. 4. Experimental (in solid red line) and fitted (in dashed blue line) 7Li and 31P spectra of LiMnPO4 (Figure 4a and 4c
respectively) and LiFePO4 (Figure 4b and 4d respectively). Isotropic peaks are marked with an asterisk. The experimental
spectra are taken from Ref. 37.

the considered ions reported in Table II, a progressively
weaker dipolar interaction is observed when going from
Mn2+ towards Ni2+. The trend is more complex when
spin-orbit coupling is included, as seen from Tables II
and III: the ∆g and Adip tensors involved in terms (g)
and (h) of Table IV follow opposite trends along the se-
ries of studied systems. The contributions to the shift
anisotropy are the product of these two terms, resulting
in an increase in the anisotropy when going from Mn2+

to Fe2+ and a decrease when going from Fe2+ to Ni2+.
For 31P the relativistic corrections to the shift anisotropy
are found to contribute significantly to the total value.
For LiMnPO4 and LiFePO4, the total shift anisotropy
∆δDFT is calculated from the coupling of the full A and
g tensors as in eq. 1. We stress that these values can-
not be obtained by directly summing the relevant terms
- terms (d), (e), (g) and (h) in Table IV - since each of
these terms is expressed with respect to its own principal
frame, which is not necessarily unique for all the tensorial
products. Thus, the direct sum of the reported ∆δ val-
ues is not necessarily appropriate because of the different
reference frames of the various terms. By coupling the

whole hyperfine tensor and g-tensor we then obtain for
7Li ∆δDFT(Mn) = 1241.3 ppm and ∆δDFT(Fe) = 884.6
ppm, while for the 31P, ∆δDFT(Mn) = 1098.9 ppm and
∆δDFT(Fe) = −830.6 ppm. These values can be com-
pared with the values of spin-dipolar anisotropy obtained
by fitting the solid-state MAS 7Li and 31P NMR spec-
tra of the LiMnPO4 and LiFePO4 powders (previously
reported and shown in Figure S1 and Figure 1 of Ref. 37
for 7Li and 31P respectively). The results of the fitting
carried out within the DMFIT software [87] are shown
in Figure 4 and summarised in Table V. We point out
that the values for the 7Li and 31P isotropic shifts mea-
sured in Ref. 34 and in Ref. 37, and reported in this
work in Tables IV and V respectively, are not exactly
equal. The NMR spectra of the two studies were ac-
quired at different MAS speeds - 22.5 KHz in Ref. 34
and 60 KHz in Ref. 37. Hence, the discrepancy between
the measured isotropic shifts is thought to be mainly due
to the different temperatures experienced by the powder
sample during the acquisition due to frictional heating
caused by MAS. It is interesting to note that the DFT
results predict, for the 7Li spectra, a sideband pattern
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of comparable width and anisotropy for both LiMnPO4

and LiFePO4, while for the 31P spectra of the two phos-
phates the patterns are calculated to be of comparable
width but of opposite anisotropy. These results are in
reasonable agreement with the fitting of the experimental
NMR spectra, as summarised in Table V. Of note, with-
out the inclusion of spin-orbit coupling we would not have
been able to reproduce the correct sign of the anisotropy
for the 31P shift of LiFePO4. Errors between the fits and
the observed spectra are largely caused by bulk magnetic
susceptibility (BMS) effects, which vary from particle to
particle and within a particle; BMS effects also contribute
to the discrepancy between the calculations and the fits
[88]. Despite our neglect of this term, this work rep-
resents to the best of our knowledge the first example
of a paramagnetic NMR anisotropy pattern simulation
where hyperfine and spin-orbit coupling parameters are
obtained from first principles.

V. CONCLUSIONS

We have presented a method to include spin-orbit cou-
pling effects in the calculation of the paramagnetic NMR
shielding for solid systems with multiple paramagnetic
centres. We demonstrate how to combine the Fermi
contact and dipolar hyperfine interactions between the
NMR-observed nucleus and multiple TM sites, with the
g-tensor. The hyperfine interactions and g-tensors in this
study are calculated from first principles through the use
of solid-state DFT calculations. An accurate description
of spin-orbit coupling effects on the NMR signal of such
systems can only be obtained by including the g-tensor
associated with each individual paramagnetic site of the
solid. A calculation performed for a system containing
multiple paramagnetic ions leads to an overall g-tensor
for the whole unit cell. If the system contains paramag-
netic ions with principal components along different di-
rections (as dictated by the symmetry operations of the
crystallographic space group of the material), or differ-
ent types of paramagnetic ions, then the overall tensor is
not a simple sum of the individual tensors of the differ-

ent ions, unless they are all expressed with respect to a
common reference frame. Furthermore, the overall com-
puted tensor cannot be used to determine the tensors for
the individual ions. Since the NMR and EPR parameters
are influenced by the g-tensor of the individual ions, we
adopted a simple approach to extract these parameters,
which involved substituting all but one ion within the
cell by diamagnetic ions. The first-principles approach
is used to study the NMR response of a series of olivine
LiTMPO4 materials (TM=Mn, Fe, Co, Ni). In particu-
lar, we show the importance of including spin-orbit cou-
pling effects in combination with the hyperfine interac-
tion in order to obtain an accurate description of the
observed NMR chemical shift and shift anisotropy. The
approach outlined here can be readily applied to aid in
the interpretation of the NMR spectra of a wide range of
solid systems with multiple (and different) paramagnetic
centres, allowing more detailed structural and electronic
information to be extracted from these systems.
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