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We investigate the zero-temperature quantum phase transitions of the disordered three-color
quantum Ashkin-Teller spin chain by means of large-scale Monte Carlo simulations. We find that
the first-order phase transitions of the clean system are rounded by the quenched disorder. For
weak inter-color coupling, the resulting emergent quantum critical point between the paramagnetic
phase and the magnetically ordered Baxter phase is of infinite-randomness type and belongs to the
universality class of the random transverse-field Ising model, as predicted by recent strong-disorder
renormalization group calculations. We also find evidence for unconventional critical behavior in
the case of strong inter-color coupling, even though an unequivocal determination of the universality
class is beyond our numerical capabilities. We compare our results to earlier simulations, and we
discuss implications for the classification of phase transitions in the presence of disorder.

PACS numbers: 75.10.Nr, 75.40.-s, 05.70.Jk

I. INTRODUCTION

Zero-temperature quantum phase transitions can be
classified into continuous or first-order just as classical
thermal phase transitions. First-order quantum phase
transitions have gained considerable attention recently,
not only because of their fundamental interest but also
because experimentally important transitions turn from
being continuous at higher temperatures to first-order at
lower temperatures. A prominent example of this be-
havior is the itinerant ferromagnetic transition.1,2 (For a
recent review of metallic quantum ferromagnets see Ref.
3.)

As real materials always contain a certain amount of
vacancies, impurities, or other defects, understanding the
influence of such quenched disorder is of both conceptual
and practical importance. Theoretical research on con-
tinuous quantum phase transitions in the presence of dis-
order has predicted a number of exotic phenomena such
as infinite-randomness critical points,4–6 quantum Grif-
fiths phases,7,8 and smeared phase transitions.9 More re-
cently, several of these phenomena have been observed in
experiments.10–13 A classification of strong-disorder ef-
fects was developed in Ref. 14 and refined in Ref. 15, see
also Refs. 16 for reviews.

In contrast, less is known about first-order quantum
phase transitions in the presence of disorder. Green-
blatt et al.17 proved a quantum version of the classical
Aizenman-Wehr theorem18–20 that states that first-order
phase transitions cannot exist in disordered systems in
d ≤ 2 space dimensions. (If the disorder breaks a con-
tinuous symmetry, the marginal dimension is d = 4.)
This agrees with a few available explicit results: Senthil
and Majumdar21 predicted that quenched randomness
turns the first-order quantum phase transitions of the
quantum Potts and clock chains into infinite-randomness
critical points in the random transverse-field Ising uni-
versality class. The same was found by Goswami et
al.22 for the disorderedN -color one-dimensional quantum
Ashkin-Teller model23 in the weak-coupling regime (weak

interactions between the colors). In the strong-coupling
regime, the critical point between the paramagnetic and
Baxter phases is still of infinite-randomness type, but it
is predicted to be in a different universality class.24,25

All these results were obtained using versions of the
strong-disorder renormalization group26 which becomes
controlled in the limit of infinitely strong disorder. It
is therefore highly desirable to verify that the predic-
tions also hold for realistic, weakly or moderately disor-
dered systems. A recent Monte Carlo study of the quan-
tum Ashkin-Teller model27 provided evidence for the ac-
tivated scaling expected at an infinite-randomness crit-
ical point. However, the authors could not verify the
predicted random transverse-field Ising universality class
and suggested that the discrepancy stems, perhaps, from
the first-order origin of this transition.

To shed some light onto this question, we map the dis-
ordered three-color quantum Ashkin-Teller chain onto a
(1+ 1) dimensional classical Hamiltonian with columnar
disorder. We investigate this classical model by means
of large-scale Monte Carlo simulations for systems with
up to 3.6 million lattice sites (10.8 million spins). In
the weak-coupling regime, we find universal critical be-
havior in the random transverse-field Ising universality
class, as predicted by the strong-disorder renormalization
group. We also perform exploratory simulations in the
strong coupling regime that establish the phase diagram
and confirm unconventional activated dynamical scaling.
However, because the efficient cluster Monte Carlo algo-
rithms we use in the weak-coupling regime are not valid
for strong coupling, we can not quantitatively verify the
distinct critical behavior predicted in Refs. 24 and 25.

The rest of the paper is organized as follows. In Sec.
II, we introduce the quantum Ashkin-Teller chain and
the mapping onto a classical Hamiltonian. We also sum-
marize the predictions of the strong-disorder renormal-
ization group calculations. Section III is devoted to the
Monte Carlo simulations and their results. We conclude
in Sec. IV.
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II. MODEL AND THEORY

A. Quantum Ashkin-Teller chain

TheN -color quantum Ashkin-Teller chain23,28 is a gen-
eralization of the original model suggested by Ashkin and
Teller many decades ago.29 It is made up of N coupled
identical transverse-field Ising chains each containing L
spins. The quantum Hamiltonian can be expressed as

H = −
N
∑

α=1

L
∑

i=1

(

Jiσ
z
α,iσ

z
α,i+1 + hiσ

x
α,i

)

(1)

−
N
∑

α<β

L
∑

i=1

(

Kiσ
z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + giσ

x
α,iσ

x
β,i

)

.

Here, σx and σz are Pauli matrices describing the spin
degrees of freedom. i denotes the lattice sites while α
and β are color indices. The ratios ǫh,i = gi/hi and
ǫJ,i = Ki/Ji characterize the strengths of the inter-color
coupling. In the following, we are interested in the case
of positive interactions Ji, Ki and fields hi, gi. Besides
its fundamental interest, different versions of the Ashkin-
Teller model have been used to describe absorbed atoms
on surfaces30, organic magnets, current loops in high-
temperature superconductors31,32, as well as the elastic
response of DNA molecules.33

In the clean quantum Ashkin-Teller chain, the inter-
actions Ji ≡ J , transverse fields hi ≡ h, as well as the
inter-color coupling ratios ǫJ,i ≡ ǫJ and ǫh,i ≡ ǫh are uni-
form in space. The ground state phases of this model are
easily understood qualitatively. If the inter-color cou-
pling ratios ǫJ , ǫh ≪ 1, the behavior is dominated by
the transverse-field Ising chain terms in the first line of
Eq. (1). The system is thus in the paramagnetic phase
if the transverse fields are larger than the interactions,
h ≫ J , but in the ordered (Baxter) phase for h ≪ J .
In the Baxter phase, each color orders ferromagnetically
but the relative orientation of different colors is arbitrary.
An additional phase, the so-called product phase, can
appear between the paramagnetic and Baxter phases for
strong inter-color coupling, ǫJ , ǫh ≫ 1. In this phase,
products σzα,iσ

z
β,i of two spins of different colors develop

long-range order while the spins σzα,i themselves remain
disordered. (For a qualitative overview of the phases, see
Fig. 1 which shows the phase diagram of the disordered
Ashkin-Teller model for a particular set of parameters;
here the classical temperature Tc encodes the ratio h/J .)
For at least three colors, the direct quantum phase tran-
sition between the paramagnetic and Baxter phases is
known to be of first-order.23,28,34 The quantum Ashkin-
Teller chain is therefore a paradigmatic model for study-
ing the effects of disorder on a first-order quantum phase
transition.
Note that the form of the Hamiltonian (1) is invari-

ant under the duality transformation σzα,iσ
z
α,i+1 → σ̃xα,i,

σxα,i → σ̃zα,iσ̃
z
α,i+1, Ji ⇄ hi, and ǫJ,i ⇄ ǫh,i, where σ̃

x
α,i

and σ̃zα,i are the dual Pauli matrices35. Self-duality there-

fore requires that a direct transition between the para-
magnetic and Baxter phases (for ǫh = ǫJ) must occur
exactly at h = J .

B. Renormalization group predictions

We now briefly summarize the results of several strong-
disorder renormalization group calculations for the N -
color random quantum Ashkin-Teller chain. Goswami
et al.22 analyzed the weak-coupling regime and found
that the inter-color coupling ratios ǫJ,i, ǫh,i renormal-
ize to zero, and the renormalization group flow becomes
asymptotically identical to that of the one-dimensional
random transverse-field Ising model.4 More specifically,
this happens if all initial (bare) ǫJ,i and ǫh,i are smaller
than a critical value

ǫc(N) =
2N − 5

2N − 2
+

√

(

2N − 5

2N − 2

)2

+
2

N − 1
. (2)

(For three colors, ǫc ≈ 1.281.) In the weak-coupling
regime, the strong disorder renormalization group thus
predicts that the first-order quantum phase transition
of the clean chain is rounded to a continuous one,
with infinite-randomness critical behavior in the random
transverse-field Ising universality class.4

The strong-coupling regime of the random quantum
Ashkin-Teller chain was studied in Refs. 24, 25, and 36.
Using a different implementation of the strong-disorder
renormalization group, these papers demonstrated that
the inter-color coupling ratios ǫJ,i and ǫh,i renormalize
to infinity if their initial (bare) values are larger than
ǫc. This implies that the four-spin interactions and the
two-spin field terms in the Hamiltonian dominate the be-
havior of the system.
If ǫJ,i = ǫh,i, the model is self-dual at the critical point.

In this case and for at least three colors, there is still a
direct transition between the paramagnetic and Baxter
phases, i.e., spins and products order at the same point.
This transition occurs at Jtyp = htyp where Jtyp and
htyp refer to the typical values (geometric means) of the
random interactions and fields. The critical behavior of
this transition is of infinite randomness type but it is not
in the random transverse Ising universality class because
products and spins both contribute to observables.24,25 In
the general case, ǫJ,i 6= ǫh,i, a product phase can appear
between the paramagnetic and Baxter phases (this also
happens for two colors, even in the self-dual case).36 The
phase transition between the paramagnetic and product
phases as well as the transition between the product and
Baxter phases are both expected to belong to the random
transverse-field Ising universality class.

C. Quantum-to-classical mapping

To test the renormalization group predictions by
Monte Carlo simulations, we now map the random quan-
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tum Ashkin-Teller chain onto a (1+1)-dimensional clas-
sical Ashkin-Teller model. This can be done using stan-
dard methods, e.g., by writing the partition function as
a Feynman path integral in imaginary time (see also Ref.
37). The resulting classical Hamiltonian reads:

Hcl = −
∑

α,i,t

(

J
(s)
i Sαi,tS

α
i+1,t + J

(t)
i Sαi,tS

α
i,t+1

)

−
∑

α<β,i,t

(

ǫ
(s)
i J

(s)
i Sαi,tS

α
i+1,tS

β
i,tS

β
i+1,t

)

−
∑

α<β,i,t

(

ǫ
(t)
i J

(t)
i Sαi,tS

α
i,t+1S

β
i,tS

β
i,t+1

)

. (3)

Here, Sαi,t = ±1 is a classical Ising spin of color α at po-
sition i in space and t in (imaginary) time. The classical

interactions J
(s)
i , J

(t)
i and inter-color coupling ratios ǫ

(s)
i ,

ǫ
(t)
i as well as the classical temperature T are determined
by the parameters of the original quantum Hamiltonian
(1). (The classical temperature T does not equal the
physical temperature of the quantum system (1) which is
encoded in the system size Lt in time direction.) Specifi-

cally, the inter-color coupling ratio ǫ
(s)
i is identical to ǫJ,i

of the quantum Hamiltonian but ǫ
(t)
i is not identical to

ǫh,i. Instead, it is a complicated function of the trans-
verse field and the two-color field terms. We also note
that the quantum-to-classical mapping generates further
terms in the classical Hamiltonian in addition to those
shown in (3). These extra terms contain higher products
of up to N colors.
As we are interested in the critical behavior which is

expected to be universal, the precise values of J
(s)
i , J

(t)
i ,

ǫ
(s)
i , and ǫ

(t)
i are not important and can be chosen for

computational convenience (see Sec. III). Moreover, we
can neglect the terms that contain products of more than
two colors.38

III. MONTE CARLO SIMULATIONS

A. Overview

We perform large-scale Monte Carlo simulations of
the classical Hamiltonian (3) for the case of N = 3
colors by employing an Ising embedding method simi-
lar that used in Ref. 39. It can be understood as fol-
lows. If we fix the values of all spins with color α 6= 1,
the Hamiltonian (3) acts as an (1+1)-dimensional Ising

model for the spins S
(1)
i,t with effective interaction Jeff

ij =

J + ǫJ(S
(2)
i S

(2)
j + S

(3)
i S

(3)
j ). This embedded Ising model

can be simulated by means of any Ising Monte Carlo al-
gorithm. We use a combination of the efficient Swendsen-
Wang multicluster algorithm40 and the Wolff single clus-
ter alorithm.41 Analogous embedded Ising models can be

constructed for the spins S
(2)
i,t and S

(3)
i,t , and by perform-

ing cluster updates for all three embedded Ising models

we arrive at a valid and efficient algorithm for the Ashkin-
Teller model.
The Swendsen-Wang and Wolff cluster algorithms re-

quire all interactions to be nonnegative, Jeff ≥ 0.42 This
is only guaranteed if the coupling ratio ǫ does not exceed
1/(N − 1) = 1/2. For larger ǫ, we perform exploratory
simulations using the less efficient Metropolis algorithm43

as well as the Wang-Landau method.44

By means of these algorithms, we simulate systems
with linear sizes L = 10 to 60 in space direction and
Lt = 2 to 60,000 in (imaginary) time direction, using pe-
riodic boundary conditions. The largest system had 3.6
million lattice sites, i.e., 10.8 million spins. To imple-

ment the quenched disorder, we consider J
(s)
i and J

(t)
i to

be independent random variables drawn from a binary
probability distribution

W (J) = cδ(J − Jh) + (1 − c)δ(J − Jl) (4)

where c is the concentration of the higher value Jh of the
interaction while 1 − c is the concentration of the lower
value Jl. The inter-color coupling ratios are uniform,

ǫ
(s)
i = ǫ

(t)
i = ǫ (implying that the disorders in K and

g are identical to those in J and h, respectively).45 As

J
(s)
i and J

(t)
i only depend on the space coordinate i but

not on the time coordinate t, the resulting disorder is
columnar, i.e., perfectly correlated in the time direction.
In the simulations, we use Jh = 1, Jl = 0.25, and c = 0.5
while ǫ takes values between 0 and 5. All observables are
averaged over 10,000 to 40,000 disorder configurations,
unless otherwise noted.
When using cluster algorithms (ǫ ≤ 0.5), we equilibrate

each sample using 100 full Monte Carlo sweeps. Each full
sweep is made up of a Wolff sweep for each color (con-
sisting of a number of single-cluster flips such that the
total number of flipped spins equals the number of lat-
tice sites) and a Swendsen-Wang sweep for each color.
The Swendsen-Wang sweep aims at equilibrating small
clusters of weakly coupled sites that may be missed by
the Wolff algorithm. The actual equilibration is signifi-
cantly faster than 100 sweeps.46 The measurement period
consists of another 100 full Monte Carlo sweeps with a
measurement taken after each sweep. To deal with biases
introduced by using such short measurement periods, we
employ improved estimators.46 Simulations for ǫ > 0.5
that use the Metropolis and Wang-Landau methods re-
quire much longer runs, details will be discussed below.
During the simulation runs, we measure the following

observables: energy, specific heat, total magnetization

m =
1

3LLt

∑

α

∣

∣

∣

∣

∣

∣

∑

i,t

Sαi,t

∣

∣

∣

∣

∣

∣

(5)

and its susceptibility χm. A particularly useful quantity
for the finite-size scaling analysis is the Binder cumulant

gav =

[

1− 〈m4〉
3〈m2〉2

]

dis

(6)
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FIG. 1. (Color online) Phase diagram of the classical Hamil-
tonian (3) for N = 3 colors and disorder distribution (4) with
Jh = 1, Jl = 0.25, and c = 0.5. The dots and triangles mark
the numerically determined transitions between the Baxter,
product, and paramagnetic phases. The solid lines are guides
to the eye only. The dashed line marks ǫc = 1.281 [see Eq.
(2)] which separates the weak and strong coupling regimes in
the strong-disorder renormalization group calculations.

where 〈. . .〉 denotes the thermodynamic (Monte Carlo)
average and [. . .]dis is the disorder average. In addition,
we also measure the product order parameter

p =
1

3LLt

∑

α<β

∣

∣

∣

∣

∣

∣

∑

i,t

Sαi,tS
β
i,t

∣

∣

∣

∣

∣

∣

, (7)

the corresponding product susceptibility χp, and the
product Binder cumulant gp.
The phase diagram of the classical Hamiltonian (3) re-

sulting from these simulations is shown in Fig. 1. In the
weak-coupling regime, ǫ < ǫc, we find a direct transition
between the magnetically ordered Baxter phase at low
temperatures and the paramagnetic high-temperature
phase. For strong coupling, ǫ > ǫc, these two phases are
separated by a product phase. Interestingly, the value
of ǫc agrees within the numerical errors with the strong-
disorder renormalization group prediction (2) of about
1.281 (even though the disorder is not infinitely strong,
and we have modified the classical Hamiltonian as dis-
cussed at the end of Sec. II C). In the following, we study
the critical behaviors of the transitions separating these
phases in detail, and we compare them to the renormal-
ization group predictions.

B. Weak coupling regime

In the weak-coupling regime, ǫ < ǫc, we perform sim-
ulations for coupling ratios ǫ = 0, 0.3 and 0.5 employing
the Wolff and Swendsen-Wang cluster algorithms as dis-
cussed above. Because the disorder breaks the symme-
try between the space and (imaginary) time directions in
the Hamiltonian (3), the finite-size scaling analysis of the

data to find the critical exponents becomes more compli-
cated. This is caused by the fact that the system sizes L
and Lt in the space and time directions are expected to
have different scaling behavior. Thus, the correct aspect
ratios Lt/L of the samples to be used in the simulations
are not known a priori.
To overcome this problem we follow the iterative

method employed in Refs. 47–50 which is based on the
Binder cumulant. As the renormalization group calcu-
lations predict infinite-randomness criticality with acti-
vated dynamical scaling, the scaling form of the Binder
cumulant (which has scale dimension 0) reads

gav(r, L, Lt) = Xg(rL
1/ν , ln(Lt/L

0
t )/L

ψ) . (8)

Here r = (T − Tc)/Tc denotes the distance from criti-
cality, Xg is a scaling function, and ψ and ν refer to the
tunneling and correlation length critical exponents. L0

t is
a microscopic reference scale. (For conventional power-
law scaling, the second argument of the scaling function
would read Lt/L

z with z being the dynamical exponent.)
For fixed L, gav has a maximum as function of Lt at posi-
tion Lmax

t and value gmax
av . The position of the maximum

yields the optimal sample shape for which the system
sizes L and Lt behave as the correlation lengths ξ and ξt.
At criticality Lt must thus behave as ln(Lmax

t /L0
t ) ∼ Lψ,

fixing the second argument of the scaling function Xg.
Consequently, the peak value gmax

av is independent of L
at criticality, and the gav vs. r curves of optimally shaped
samples cross at T = Tc. Once the optimal sample shapes
are found, finite-size scaling proceeds as usual.51,52

To test our simulation and data analysis technique,
we first consider the case ǫ = 0 for which the quantum
Ashkin-Teller model reduces to three decoupled random
transverse-field Ising chains whose quantum phase tran-
sition is well understood.4 We perform simulations for
sizes L = 10 to 50 and Lt = 2 to 20000 and find a critical
temperature Tc ≈ 1.24. At this temperature, we confirm
the activated scaling (8) of the Binder cumulant with the
expected value ψ = 1/2. We also confirm the scaling of
the magnetization at Tc (for the optimally shaped sam-
ples), m ∼ L−β/ν with β = 0.382 and ν = 2.
After this successful test, we now turn to the Ashkin-

Teller model proper. We perform two sets of simulations:
(i) ǫ = 0.5 using system sizes L = 10 to 60, Lt = 2 to
60000 and (ii) ǫ = 0.3 with system sizes L = 10 to 50,
Lt = 2 to 40000. In each case, we start from a guess for
the optimal shapes and find an approximate value of Tc
from the crossing of the gav vs. T curves for different L.
We then find the maxima of the gav vs. Lt curves at this
temperature which yield improved optimal shapes. After
iterating this procedure two or three times, we obtain Tc
and the optimal shapes with reasonable precision.
Figure 2 shows the resulting Binder cumulant gav for

ǫ = 0.5 as function of Lt for different L at the approxi-
mate critical temperature of Tc = 2.08(5). As expected
at Tc, the maxima gmax

av of these curves are independent
of L (the slightly lower values at the smallest L can be at-
tributed to corrections to scaling). Moreover, the figure
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FIG. 2. (Color online) Binder cumulant gav as a function of Lt

for several L at the critical temperature Tc = 2.08 for ǫ = 0.5.
The statistical error of gav is smaller than the symbol size.
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t ) according to Eq. (8). The micro-
scopic scale L0

t = 0.06. Inset: Power-law scaling gav/g
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vs. Lt/L
max
t .

shows that the gav vs. Lt domes rapidly become broader
with increasing spatial size L, indicating non-power-law
scaling. To analyze this quantitatively, we present a scal-
ing plot of these data in Fig. 3. For conventional power-
law dynamical scaling, the curves for different L should
collapse onto each other when plotted as gav vs. Lt/L

max
t .

The inset of Fig. 3 clearly demonstrates that this is not
the case. In contrast, the Binder cumulant scales well
when plotted versus ln(Lt/L

0
t )/ ln(L

max
t /L0

t ) as shown in
the main panel of the figure. (Here, we treat the micro-
scopic scale L0

t as a fit parameter). This behavior is in
agreement with the activated scaling form (8).

We perform the same analysis for ǫ = 0.3 at the ap-
proximate critical temperature of Tc = 1.76(3), with
analogous results. To verify the value of the tunneling
exponent ψ, we now analyze the dependence of Lmax

t on
L. Figure 4 shows that the data for both ǫ = 0.3 and 0.5
can be well fitted with the relation ln(Lmax

t /L0
t ) ∼ Lψ
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FIG. 4. (Color online) ln(Lmax
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t ) vs. L0.5 at criticality for
ǫ = 0.3 and 0.5. The data for ǫ = 0.3 are shifted upwards by
0.3 for clarity. The solid lines are linear fits. Inset: Double
logarithmic plot of Lmax

t vs. L.
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FIG. 5. (Color online) Left: Double logarithmic plot of m vs.
L for optimally shaped samples at criticality for ǫ = 0.3 and
0.5. The solid lines are fits to the predicted power-law m ∼

L−β/ν with β/ν = 0.191. Right: χ/Lt vs. [ln(Lt/L
0
t )]

2φ−2 for
optimally shaped samples at criticality for ǫ = 0.3 and 0.5.
The solid lines are linear fits. The statistical errors of the
data in both panels are smaller than the symbol size.

with ψ = 1/2 as predicted by the strong-disorder renor-
malization group. The inset of this figure clearly demon-
strates that the relation between Lmax

t and L cannot
be described by a power law. We can define, how-
ever, an effective (scale-dependent) dynamical exponent
zeff = d ln(Lmax

t )/d ln(L). For ǫ = 0.5, it increases from
about 2 for the smallest system sizes to almost 4 for the
largest ones.
We now turn to the critical behavior of magnetiza-

tion and susceptibility. At the critical temperature, the
magnetization of the optimally shaped samples is pre-
dicted to show a power-law dependence on the spatial
system size, m ∼ L−β/ν with β = 2 − φ ≈ 0.382 and
ν = 2. Here, φ = (

√
5 + 1)/2 is the golden mean. In

the left panel of Fig. 5, we therefore present a double
logarithmic plot of m vs. L for ǫ = 0.3 and 0.5. The
data for both coupling ratios can be fitted well with
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FIG. 6. (Color online) Slope dgav/dT of the Binder cumulant
vs. L0.5 at the critical temperature for ǫ = 0.3 and 0.5. The
solid lines are linear fits.

the predicted power law. While the magnetization fol-
lows a conventional power law dependence on the sys-
tem size, the susceptibility is affected by the activated
scaling. Its predicted system size dependence at critical-
ity can be expressed in terms of the temporal size Lt as
χ ∼ Lt[ln(Lt/L

0
t )]

2φ−2. We test this prediction in the
right panel of Fig. 5 by plotting χ/Lt vs. [ln(Lt/L

0
t )]

2φ−2

for the optimally shaped samples. As the leading power
law is divided out, this plot provides a sensitive test
of the logarithmic corrections. The figure shows that
the susceptibility indeed follows the predicted Lt depen-
dence for system sizes L > 20. The deviations for the
smaller sizes can likely be attributed to corrections to
scaling stemming from the crossover between the clean
first-order phase transition and the infinite-randomness
critical point that governs the asymptotic behavior. The
clean first-order phase transition is stronger for ǫ = 0.5
than for 0.3; accordingly, χ shows stronger corrections to
scaling for ǫ = 0.5.
Finally, we analyze the slope dgav/dT of the Binder

cumulant at criticality. It is expected to vary with system
size as dgav/dT ∼ L1/ν with ν = 2. As is shown in
Fig. 6, our slopes indeed follow the power-law dependence
predicted by the strong-disorder renormalization group
for both coupling ratios, ǫ = 0.3 and 0.5.

C. Strong coupling regime

In the strong-coupling regime ǫ > ǫc ≈ 1.281, we per-
form simulations for coupling ratios ǫ = 1.7, 2.5, 3.5, and
5. These simulations greatly suffer from the fact that the
embedded Wolff and Swendsen-Wang cluster algorithms
are not valid for ǫ > 0.5. We are thus forced to em-
ploy the Metropolis single-spin algorithm. In this algo-
rithm, the required equilibration and measurement times
increase significantly with system size, reaching several
hundred thousand sweeps for moderately large lattices.
This severely limits the available sizes and the accuracy
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FIG. 7. (Color online) Left: Specific heat C vs. classical
temperature T for ǫ = 3.5, system sizes L = 10, Lt = 100
and 5000 disorder configurations (using 140,000 Monte Carlo
sweeps). Notice two distinct peaks corresponding to two sepa-
rate phase transitions. Right: Binder cumulant gav as a func-
tion of Lt for several L at the critical temperature Tc = 3.65
for ǫ = 1.7.

of the results. For comparison, we also perform Wang-
Landau simulations but the available system sizes are
restricted as well.
As the classical Hamiltonian (3) is not self-dual, we can

expect a product phase to appear for ǫ > ǫc. Indeed, for
all studied ǫ values, we find two distinct phase transitions.
(This can already be seen from the specific heat data
shown in the left panel of Fig. 7.) The product order
parameter p, Eq. (7), develops at a higher temperature
T pc while the magnetization becomes nonzero only below
a lower temperature Tmc (see phase diagram in Fig. 1). In
the following, we look at these two transitions separately.
To analyze the transition between the product and

Baxter phases (at which the magnetization becomes crit-
ical), we use the same procedure based on the Binder
cumulant gav as in Sec. III B. The right panel of Fig. 7
shows the Binder cumulant at the estimated critical tem-
perature Tmc = 3.65 for ǫ = 1.7 as a function of Lt for
several L between 10 and 25. As expected at criticality,
the maximum value for each of the curves does not de-
pend on L. The figure also shows that the domes become
broader with increasing L, indicating non-power-law scal-
ing. The largest spatial system size, L = 25 requires
an enormous numerical effort, we averaged over 20,000
disorder configurations each using 700,000 Monte Carlo
sweeps. Nonetheless the Binder cumulant at the right
end of the dome (Lt = 200) is not fully equilibrated as its
value shifts with increasing number of sweeps. Because of
the limited system size range and the equilibration prob-
lems for the larger sizes we are not able to quantitatively
analyze the critical behavior of this transition.
Similar problems, though slightly less severe, also

plague the transition between the paramagnetic and
product phases at which the product order parameter
p becomes critical. Figure 8 shows the Binder cumu-
lant gp for the product order parameter at the estimated
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critical temperature T pc = 7.55 and ǫ = 3.5 as a func-
tion of Lt. The maxima of the different curves are again
independent of L, as expected at the critical tempera-
ture. Moreover, the domes broaden with increasing sys-
tem size. A scaling analysis of these data is presented in
Fig. 9. The inset shows that the behavior of gp is not
compatible with conventional power-law scaling. In con-
trast, the data scale reasonably well when plotted versus
ln(Lt/L

0
t )/ ln(L

max
t /L0

t ) as shown in the main panel of
the figure. This behavior is in agreement with activated
scaling in analogy to Eq. (8) for the Binder cumulant gav
of the magnetization. The deviations from data collapse
for large Lt (ie., at the right side of the domes) stem from
the fact that these systems do not equilibrate properly
despite us using up to 500,000 Monte Carlo sweeps for
each of the 20,000 disorder configurations (the gp values
still drift with increasing number of sweeps). This also
prevents us from studying larger system sizes.

If we ignore the small system size range and the equi-

libration problems and analyze (along the lines of Sec.
III B) the system size dependencies of Lmax

t , the product
order parameter p, and its susceptibility χp, we obtain
critical exponents that are roughly compatible with the
random transverse-field Ising universality class (as ex-
pected from the strong-disorder renormalization group).
We do not believe, however, that this constitutes a quan-
titative confirmation, and we cannot rule out a different
universality class with somewhat different critical expo-
nents.

IV. CONCLUSIONS

In summary, we have studied the fate of the first-
order quantum phase transition in the three-color quan-
tum Ashkin-Teller spin chain under the influence of
quenched disorder. To this end, we have mapped the ran-
dom quantum Ashkin-Teller Hamiltonian onto a (1+ 1)-
dimensional classical Ashkin-Teller model with colum-
nar disorder. We have then performed large-scale Monte
Carlo simulations for systems with up to 3.6 million lat-
tice sites (10.8 million spins). In agreement with the
quantum version of the Aizenman-Wehr theorem, we
have found that the first-order transition of the clean
system is rounded to a continuous one in the presence of
bond randomness.
For weak inter-color coupling ǫ, efficient cluster Monte

Carlo algorithms have allowed us to simulate large sys-
tems. Our data for the quantum phase transition are
in full agreement with the results of the strong-disorder
renormalization group calculation22 that predicts univer-
sal critical behavior in the random transverse-field Ising
universality class. Specifically, we have confirmed for
two different values of ǫ the activated dynamical scal-
ing with a tunneling exponent ψ = 1/2, the correlation
length exponent ν = 2, and the order parameter expo-
nent β = 2 − φ with φ the golden mean. We have also
confirmed the behavior of the magnetic susceptibility.
In contrast, our simulations for large inter-color cou-

pling ǫ have been restricted to smaller system sizes, and
they have suffered from equilibration problems because
efficient cluster algorithms are not available. Conse-
quently, we have not been able to fully test the renormal-
ization group calculations in this regime. Our numerical
data provide evidence for activated dynamical scaling at
the quantum phase transitions between the paramagnetic
and product phases as well as between the product and
Baxter phases. For the latter transition we have also de-
termined rough estimates of the critical exponents and
found them compatible with the random transverse-field
Ising universality class. However, a quantitative verifica-
tion of the critical behavior is beyond our current numer-
ical capabilities.
Let us compare our results with earlier simulations.

While our critical behavior (in the weak-coupling regime)
fully agrees with the random transverse-field Ising univer-
sality class, some exponents calculated in Ref. 27 show
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sizable deviations. This is particularly interesting be-
cause the spatial system sizes L used in both simulations
are comparable (the largest L in Ref. 27 is actually larger
than ours). We believe that the results of Ref. 27 do not
agree with the renormalization group predictions because
the simulations are still crossing over from the clean first-
order transition to the disordered critical point, probably
because the chosen parameters lead to relatively weak
disorder. This would mean that the measured exponent
values are effective rather than true asymptotic expo-
nents. Support for this hypothesis can be obtained from
comparing the dynamical scaling in the present paper
and in Ref. 27. An infinite-randomness critical point fea-
tures activated dynamical scaling, i.e., the temporal sys-
tem size Lt scales exponentially with the spatial size L
via ln(Lt) ∼ Lψ. This implies that the conventional dy-
namical exponent z = ∞. The optimal temporal system
size (defined, e.g., via the maximum of the Binder cumu-
lant) therefore must increase very rapidly with L. Indeed,
the inset of Fig. 4 shows that Lmax

t increases from 18 to
about 2000 while L varies only from 10 to 60. The corre-
sponding effective (scale-dependent) dynamical exponent
zeff = d ln(Lmax

t )/d ln(L) reaches almost 4 for the largest
sizes. In contrast, Lmax

t reaches only 224 for L = 96 in
Ref. 27 and zeff stays below 2, placing the system further
away from the asymptotic regime zeff → ∞.
To conclude, as our numerical results (in the weak-

coupling regime) fully agree with the renormalization

group predictions, we have not found any indications
that the asymptotic critical behavior of the disordered
system “remembers” the first-order origin of the tran-
sition. This supports the expectation that the general
classification of disordered critical points developed in
Refs. 14–16 also holds for critical points emerging from
the rounding of first-order (quantum) phase transitions.
However, the crossover from the clean to the disordered
behavior is certainly affected by the first-order nature of
the clean transition. The breakup length beyond which
phase coexistence is destroyed by domain formation in-
creases with decreasing disorder and may exceed the sys-
tem size. For sufficiently weak disorder, the true asymp-
totic behavior is then unobservable in both simulations
and experiment. This crossover will be even slower in
(2+1)-dimensional systems because d = 2 is the marginal
dimension for the Aizenman-Wehr theorem, suggesting
an exponential dependence of the breakup length on the
disorder strength.53,54
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C. Geibel, P. Gegenwart, A. P. Pikul, and F. Steglich,
Phys. Rev. Lett. 102, 206404 (2009).

12 S. Ubaid-Kassis, T. Vojta, and A. Schroeder, Phys. Rev.
Lett. 104, 066402 (2010).
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