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Thin film multilayered spin glass CuMn/Cu structures display glassy dynamics. The freezing tem-
perature, Tf , was measured for forty layers of CuMn films of thickness L = 4.5, 9.0, and 20.0 nm,
sandwiched between non-magnetic Cu layers of thickness ≈ 60 nm. The Kenning effect, Tf ∝ ℓnL,
is shown to follow from power law dynamics where the correlation length grows from nucleation as
ξ(t, T ) = c1a0(t/τ0)

c2(T/Tg), leading to [(Tf/Tg)c2ℓn(tco/τ0)] + ℓnc1 = ℓn(L/a0). Here, Tg is the
bulk spin glass temperature, c1 and c2 are constants determined from the spin glass dynamics, tco is
the time for the correlation length to grow to the film thickness, τ0 is a characteristic exchange time
≈ ~/kBTg, and a0 is the average Mn − Mn separation. For t ≥ tco, the magnetization dynamics
are simple activated, with a single activation energy ∆max(L)/kBTg = (1/c2)[ℓn(L/a0)− ℓnc1] that
does not change with time. Values for all these parameters are found for the three values of L

explored in these measurements. We find experimentally ∆max(L)/kB = 907 K, 1,246 K, and 1,650
K, respectively, for the three CuMn thin film multilayer thicknesses, to be consistent with power
law dynamics. We perform a similar analysis based on the activated dynamics of the droplet model,
and find a much larger spread for ∆max(L) than found experimentally.

PACS numbers: 71.23.Cq, 75.10.Nr, 75.40.Gb, 75.50.Lk

I. Introduction

The dynamical properties of spin glasses are strongly
dependent on dimension, with recent interest in the
“mesoscopic” regime [1], defined by length scales, L,
less than 50 nm. For example, recent experiments [2,
3] on Ge89Mn11, with L = 15.5 nm, have displayed
dimensional crossover from D = 3 to D = 2 as a function
of time and temperature. This crossover occurs because
the time-dependent (t) and temperature dependent
(T ) spin glass correlation length, ξ(t, T ), grows from
nucleation at t = 0 to L at a time designated as tco. At
ξ(tco, T ) = L, the spin glass becomes two dimensional
for t ≥ tco. Because the lower critical dimension for
spin glasses is D ∼= 2.5 [4,5], this leads to a spin glass
transition temperature Tg = 0. This means that there is
no further growth of ξ(t, T ) in either the perpendicular
or parallel directions if the temperature is fixed. The
remaining spin glass correlations for length scales less
than of order L represent an excellent “laboratory” for
exploration of dynamical properties at fixed length scales.

Experimentally one observes a time dependent “freez-
ing” temperature, Tf , in mesoscopic thin film spin
glasses below which irreversible behavior is exhibited.
In this sense, the mesoscopic spin glass behaves as a
conventional glass, where the value of Tf depends upon
the observation time. We shall show this explicitly with
our experimental values of Tf for the different values
of L we investigated (L = 4.5, 9.0, and 20 nm) for
Cu88.3Mn0.117.

There are two competing theories for spin glass
dynamics, one based on Parisi’s mean field solution

[6] of the Sherrington-Kirkpatrick infinite range spin
glass Hamiltonian [7], and the other on the “droplet”
model developed by Fisher and Huse [8-12] “moti-
vated by the results of the numerical ‘domain-wall’
renormalization-group studies” [8, 13, 14]. The former
assumes power law dynamics for the growth of ξ(t, T ),
while the latter assumes activated dynamics for the
growth of ξ(t, T ). Although the two approaches are
fundamentally different physical pictures, it has been
very difficult to distinguish either experimentally or
numerically between the two. Some attempts are given
in Refs. [15-18]. The experiments detailed in our paper
distinguish between these two approaches by direct
measurement of a microscopic parameter, the system’s
maximum barrier height, ∆max(L), when ξ(t > tco, T ) is
fixed at L. Before going into more detail, it is important
to outline the analysis utilized in this paper.

When the spin glass correlation length ξ(t, T ) has
reached L at a time tco, the crossover time, D = 3
spin glass correlations remain for length scales ≤ L,
and generate dynamical spin glass behavior. When
t > tco, any property dependent on ξ(t, T ) is fixed
at the value it has at tco. A particular consequence
is that the dynamics follow a simple Arrhenius law,
with a single activation energy ∆max(L) that does not
change with time. The two approaches referred to
above for the value of ∆max(L) are both scaled by the
bulk spin glass transition temperature, Tg, but differ
on the dependence of ∆max(L) on L. Beyond their
theoretical differences (and there are many), there is
also the prediction that the presence of a magnetic field
H will destroy the spin glass state in the Fisher-Huse
droplet model [6], while the Parisi approach leads to
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a Tg(H,T ) as predicted by de Almeida and Thouless [19].

The next section is a brief review of the experi-
mental background for mesoscale spin glass dynamics.
Sec. III introduces explicit forms for ξ(t, T ) for the two
different physical models, and provides a derivation of
the expressions for ∆max(L) for each. In Section IV
we present the multilayer sample preparation and the
measurement protocols. The measurement protocols are
different from those applied to bulk spin glasses because
of what we shall show are time dependent freezing
temperatures, and hence glassy dynamics for mesocopic
spin glasses. Section V contains the experimental
results, for both the L dependent freezing temperatures
and activation energies. The analysis, and comparison
with the two models for spin glass dynamics discussed
above, comprise Section VI. Our results are summarized
in Section VII.

II. Experimental background for thin film

spin glasses

The first research to address either finite scaling or
the crossover from three-dimensional to two dimensional
behavior in long-range Ruderman-Kittel-Kasuya-Yosida
(RKKY) spin glasses, after initial reports [20], was
Kenning et al. [21]. In their landmark paper, they
took note of the reduction in the freezing temperature,
Tf , with decreasing spin glass thickness in multilayer
samples of Cu1−xMnx/Cu. They determined Tf by
plotting the zero-field cooled susceptibility, χZFC(T ),
and the field cooled susceptibility, χFC(T ), as functions
of temperature. For D = 3 spin glasses, the two are
equal for temperatures above the spin glass transition
temperature, Tg. Below Tg, the two differ from each
other, signaling irreversibility setting in at Tg. For
mesoscopic spin glasses, an analogous separation occurs,
but at a freezing temperature Tf < Tg.

The irreversible magnetization, MFC(T ) − MZFC(T ),
increases as the temperature is lowered. For thin film
spin glasses, the onset of irreversibility with decreasing
temperature is both thickness and time dependent.
Representative plots of MFC(T ) and MZFC(T ) vs tem-
perature T for the three thicknesses investigated in our
work (L = 4.5, 9.0, and 20.0 nm), are exhibited in Fig.
1. Similar findings were shown in Fig. 14 of Ref. 21.
They listed values for Tf in their Table VII for their
range of L at each of their three concentrations for their
CuMn/Cu multilayers. Their Fig. 21 plotted the ratio,
Tf/Tg as a function of ℓnL. We display their results
in Fig. 2, but with L divided by the relevant average
Mn-Mn separation, a0 (we estimate a0 = 0.523 nm for
the CuMn concentration in our films: see below). It is
seen that Tf/Tg rises roughly linearly with increasing
ℓn (L/a0) out to about L/a0 ≈ 5, beyond which it
flattens off to the bulk value Tg.
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FIG. 1: Freezing temperature measurements in a
magnetic field of 40 G: (a) 4.5 nm CuMn thin film
exhibits a freezing temperature near 25 K; (b ) 9 nm
CuMn thin film exhibits a freezing temperature near 35
K; (c) 20 nm CuMn thin film exhibits a freezing
temperature near 46 K.

Fig. 2 represents the first systematic study of the
freezing temperature, Tf , differing from the spin glass
transition temperature, Tg, as a function of diminishing
length scale ℓnL, and is termed the “Kenning effect.”
We shall show in Sec. VII that it represents “glassy
dynamics” in that Tf will be a function of the time scale
of the experiment. This is based on the assumption
that the correlation length ξ(t, T ) has reached the film
thickness L, so that there will be activated dynamics
with an activation energy ∆max(L). The freezing
temperature Tf is then set by the approximate time
scale τ0 exp[∆max(L)/kBTf ], where 1/τ0 is an exchange
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FIG. 2: The freezing temperatures (Tf ) from Table VII
of Ref. 21 for different Mn concentrations plotted
against ℓn(L/a0). The straight line is a best fit to the
data for films up to and including L/a0 ≤ 5. The two
points omitted are for film thicknesses of 1,000 nm for
CuMn 14 at.%, and 500 nm for CuMn 7 at.%. These
two films are sufficiently thick that Tf ∼ Tg.

rate ∼ kBTg/~ ≈ 6.9 × 1012 sec−1 for Tg ≈ 53 K
from measurements of our thick film samples. As L

increases, the correlation length ξ(t, T ) continues to
grow in time, with a concomitant increase in tco, and as
Eq. (7) will show below, Tf will approach Tg as in Fig. 2.

III. Correlation length growth and activa-

tion energy

Spin glass dynamics depend upon the cooling pro-
tocol to reach the final measurement temperature, Tm.
For example, the dynamics will be different if the sample
is quenched from an initial temperature above the spin
glass transition temperature, Tg, to the measurement
temperature, Tm, as compared to a temperature change
from an initial temperature below Tg to Tm. This was
the essence of an analysis of previous experimental data
[22, 23] in reference [24]. For the data presented here,
the measurements of the dynamics at different Tm were
all initiated from temperatures T > Tg so that the
initial state was always in the paramagnetic temperature
regime.

The spin glass state grows in size from nucleation
as a function of time, t, with the size scale the spin glass
correlation length ξ(t, T ). The growth of ξ(t, T ) differs
in the two approaches discussed in the Introduction. For
power law dynamics [25 -29],

ξ(t, T ) = c1a0

(

t

τ0

)c2(T/Tg)

, (1)

where a0 is the average distance between magnetic

moments, c1 and c2 are constants determined from our
experimental data with values of 1.448 and 0.104, re-
spectively (see below). These values are to be compared
with theoretical estimates [25 -29] that predict c1 of
order unity, and c2 lying between 0.104 - 0.169.

The largest barrier height separating free energy
states is a function of ξ(t, T ) [22], and saturates at
a maximum value when ξ(tco, T ) = L. Because the
number of states increases exponentially with increasing
ξ(t, T ), the dynamics are controlled by the largest
barrier, ∆max(L). Its value is determined using the
equation [16],

∆max(L)

kBTg
=

1

c2

[

ℓn

(

L

a0

)

− ℓnc1

]

. (2)

The maximum barrier height controls the dynamics
through the usual Arrhenius law,

1

τ
=

1

τ0
e−∆max(L)/kBT . (3)

Considering next activated dynamics [8 - 12], the corre-
lation length grows as,

ξ(t, T ) = αa0

[(

T

Tg

)

ℓn

(

t

τ0

)]1/ψ

, (4)

where α is of order unity, and ψ is a critical exponent.
Experiments [30 - 32] and simulations [33, 34] find values
of ψ between 0.65 and 1.1, with most values close to unity.
The spin glass dynamics obey Eq. (3) with,

∆max(L)

kBTg
=

(

L

αa0

)ψ

. (5)

The two relationships for the dependence of ∆max(L)
on L, Eqs. (2) and (5), have different dependences on
L. As a consequence of these differences, the spread
in observed values of ∆max(L) as a function of length
scale L will be less for power law dynamics (varying as
ℓnL) as compared to activated law dynamics (varying
as a power of L). Our measured values of ∆max(L) for
L = 4.5 nm, 9 nm, and 20 nm will be compared to these
predictions.

IV. Cu:Mn multilayers preparation and measure-

ment protocols

The CuMn/Cu multilayer samples consisted of 40
bilayers of either 4.5, 9.0, or 20 nm of CuMn and 60
nm of Cu. The multilayer samples were DC sputtered
onto 99.99% Cu foil at an Argon pressure of 2 mTorr.
Two different 99.999% CuMn targets were utilized (a
set of 4.5, 9.0, and 20 nm CuMn multilayers from each)
with nominal Mn concentrations of 13.5 at.%. The Cu
target was 5-nines Cu. Two 1 micron thick CuMn films
were grown, one from each target, and magnetometry
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measurements on these “bulk” samples yielded similar
magnetic properties with a spin glass temperature,
Tg, of 54 ± 1 K for one target, and 52 ± 1 K for the
other. For simplicity, we shall take Tg = 53 K in what
follows. Using the extrapolation of Refs. [35, 36], this
translates to a thin film Mn concentration of ≈ 11.7 at.%.

The experimental data on the multilayers were ob-
tained in two laboratories. The measurements at The
University of Texas at Austin were performed on a
Quantum Design SQUID magnetometer, while those
at Indiana University of Pennsylvania were performed
on a home-built SQUID magnetometer. The former
measured the time dependent zero-field cooled and field
cooled magnetizations, MZFC(t, T ) and MFC(t, T ), while
the latter measured the thermoremanent magnetization
MTRM(t, T ). In both laboratories, the CuMn mesoscale
multilayer samples were quenched from a temperature
≈ 90 K to a measurement temperature Tm < Tg at a
rate of ∼ 10 K/min.

The Indiana University of Pennsylvania apparatus
is operated in a stationary mode, as opposed to relying
on motion through pick up coils, reducing mechanical
noise. In addition, the system has two SQUIDS with
the sample located in one set of gradiometer coils
measured by SQUID A, while a second gradiometer
set measured by SQUID B determined the background
electromagnetic noise as well as other possible spuri-
ous fluctuations. These artifact contributions to our
signal were then removed from the sample signal by sub-
tracting the response of SQUID B from that of SQUID A.

The measurements of the two systems are com-
plementary as shown by the extended principle of
superposition [37],

MZFC(t, T ) +MTRM(t, T ) =MFC(t, T ) . (6)

In our experiments, as those in Ref. 37, “...MZFC(t, T )
yields a direct measure of the response function....” The
field cooled magnetization, MFC(t, T ) is time dependent
in both, so that the time dependence of the irreversible
magnetization, MTRM(t, T ), from a zero field cooled
experiment is the difference between the two time de-
pendent quantities, MFC(t, T ) −MZFC(t, T ). Thus, two
independent measurements must be made to obtain the
the time dependence of the irreversible magnetization.
For t ≥ tco, the slope of the irreversible magnetization
as a function of ℓn t is the activation energy ∆max(L).

For the data in Fig. 1, the sample was quenched
from an initial high temperature, Th, well above the
bulk spin glass temperature, Tg, to the beginning
measurement temperature, Tm; then a magnetic field of
40 G was applied, and MZFC(t, T ) was measured as a
function of increasing temperature to the value Th. The
magnetization was then measured as the sample was
cooled from Th to Tm with the magnetic field remaining

constant at 40 G, generating MFC(t, T ).

At first glance, this protocol may seem reasonable,
but it is insufficient for dynamical measurements for
the following reason. When the magnetic field is first
applied, the spin glass states with energy barriers
∆(t, T ) ≤ EZ, where EZ is the change in Zeeman energy,
are quenched. This allows instantaneous transitions of
those states in the initial M = 0 manifold to the new
free energy ground state manifold with M =MFC(t, T ).

Because MFC(t, T ) changes with time, when the mag-
netic field is applied, some (small) magnetization arises
from states that transition before magnetization mea-
surements can be made. This time varying magnetization
must be subtracted from the measured time dependent
difference in magnetizations, MFC(t, T ) − MZFC(t, T ),
to obtain the true measured irreversible magnetization.
The manner in which this is accomplished is to measure
the ratio MZFC(t, T )/MFC(t, T ) ≡ α(t) as a function of
time t until it reaches a final constant value αf , to within
measurement error bars. For αf = 1, this would signify
that MZFC(t, T ) has reached the field cooled value for
the magnetization, MFC(t, T ). However, because of the
time interval for which the measurement of MZFC(t, T )
is “blind”, αf < 1, requiring a subtraction of the con-
tribution to MFC(t, T ) that occurred during that time
interval. This is accomplished by subtracting an amount
ǫ = 1 − αf from the measured MFC(t, T ). The irre-
versible magnetization, (1 − ǫ)MFC(t, T ) − MZFC(t, T ),
then approaches zero in the long time limit. Typically,
ǫ is found to be small, on the order of 0.005. Values of
1− ǫ are included in the figure caption for Fig. 3.

The time dependence of the field-cooled magnetiza-
tion MFC(t, T ) is much stronger for mesoscale spin
glasses than for bulk because of the finite number of
magnetic moments at the mesoscale, giving rise to
“glassy” dynamics. Given that the average distance
between Mn spins at our sample concentration of 11.7
at.% is 0.523 nm, we find for ξ(t ≥ tco, T ) = L = 4.5 nm,
9 nm, and 20 nm, a total of ≈ 334, 2, 668, and 29, 281
moments in the correlation volume, respectively. The
consequences will be exhibited in the experimental
results in the next Section, and in the Summary and
conclusion, Sec. VII.

V. Experimental results

The time dependent MZFC(t, T ) and MFC(t, T ) of
the multilayer samples were measured in a commercial
Quantum Design SQUID magnetometer. As previously
explained, because MFC(t, T ) is time dependent, it was
necessary to perform time dependent measurements for
both MZFC(t, T ) and MFC(t, T ) with exactly the same
time and temperature protocol as outlined in Sec. IV.
Specifically, a magnetic field of 40 G was applied 135 sec
after reaching Tm and the temperature was stabilized;
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the magnetization was then measured as a function of
time until well beyond the crossover time, tco. Then
the temperature was increased back to ∼ 90 K with the
magnetic field held constant, and then quenched at the
same rate as before to the same Tm. The MFC(t, T )
was then measured for the same time period as the
MZFC(t, T ). The time dependent values of MZFC(t, T )
and MFC(t, T ) are displayed in Fig. 3 for each of the
three Cu:Mn thin film thicknesses L at a respective
representative temperature.

Fig. 3 (a∼c) is representative of MFC(t, T ) and
MZFC(t, T ) for the three thicknesses. The difference,
(1 − ǫ)MFC(t, T ) −MZFC(t, T ) as derived in Sec. IV, is
the time and temperature dependence of the irreversible
component of the spin glass magnetization, and is
displayed in Fig. 3 (d∼f). From Eq. (1), there exists a
time, tco when ξ(t, T ) = L. For times longer than tco,
the irreversible magnetization dynamics are activated
[2], with activation energy ∆max(L) given by Eq. (2); the
two are related through Eq. (3). Hence, the time t = tco,
when (1 − ǫ)MFC(tco, T ) −MZFC(tco, T ) crosses over to
activated behavior, is related to ∆max(L) through Eqs.
(1) and (2), as well as Eqs. (4) and (5), and can be deter-
mined from the slope of ℓn [(1−ǫ)MFC(t, T )−MZFC(t, T )]
vs t for t ≥ tco. From both Eqs. (2) and (5), ∆max(L)
should be independent of the measurement temperature
Tm. Most important is the determination of ∆max(L) as
a function of the different film thicknesses L, because of
the different proportionality of ∆max(L) to L between
Eqs. (2) and (5).

A representative fitting of an exponential decay curve
to (1 − ǫ)MFC(t, T ) −MZFC(t, T ) for times longer than
tco are displayed in Fig. 3 (d∼f) for each of the three
film thicknesses. Table I lists the values of ∆max(L) at
three different measurement temperatures for each film
thickness. As can be seen, ∆max(L) is independent of the
measurement temperature within experimental error,
and is only a function of film thickness L, as postulated
in Sec. III.

Taking the mean values for ∆max(L)/kB from Ta-
ble 1, we arrive at ∆max(4.5 nm)/kB ≃ 907 K;
∆max(9.0 nm)/kB ≃ 1, 246 K; and ∆max(20.0 nm)/kB ≃

1, 650 K.

An independent check on the above analysis was
performed on the 4.5 nm multilayer sample from ther-
moremanent magnetization data, MTRM(t, T ), measured
over a broad temperature range in a magnetic field of
20 G. A representative plot of the MTRM(t, T ) vs time t
is displayed in Fig. 4 at Tm = 23.25 K. The cross-over
time for this temperature and film thickness (4.5 nm) is
tco ≈ 1.4 × 104 sec (see also the data exhibited in Fig.
2), so that the fitted slope is well within the activated
dynamical range. The activation energy extracted from
Fig. 4 is ∆max(4.5 nm)/kB = 909 ± 5 K, in the middle

TABLE I: ∆max(L)/kB extracted at different
temperatures for each multilayer CuMn thin film.

L Tf Tm ∆max(L)/kB

4.5nm 25K
22.5K 907±2K
23K 910±7K
23.5K 904±2K

9nm 35K
31K 1243±8K
31.5K 1243±13K
32K 1252±10K

20nm 46K
41K 1648±4K
41.5K 1650±2K
42K 1652±8K

of the values reported in Table I. The agreement of this
independent measurement of ∆max(L) for L = 4.5 nm
from MTRM(t, T ) measurements, complementary to
those reported for MZFC(t, T ) in Table I, gives confi-
dence in the rather complex analysis required for the
latter.

Measurements of MZFC(t, T ) and MFC(t, T ) display
a separation at a temperature that we designate as
the “freezing temperature,” Tf (L) [21], as discussed
earlier. The values of Tf (L) are film thickness depen-
dent, as illustrated in Fig. 1 for each of the thin film
thicknesses L. The values extracted from Fig. (1)
are Tf(4.5 nm) ≈ 25 ± 1K, Tf (9.0 nm) ≈ 35 ± 1K,
Tf(20 nm) ≈ 46± 1K, and are listed in Table I.

VI. Analysis and comparison with theories

The value of Tf (L) is a function of the time scale
of the experiment, as was first observed for the “knee” in
the MFC(T ) data in Ref. [22]. The time dependence of
Tf(L) is reminiscent of the conventional glass transition
[38], that “is not a thermodynamic transition at all,
since Tg is only empirically defined as the temperature
below which the material has become too viscous to flow
on a ‘reasonable’ time scale....”

For power law dynamics, Eq. (2) relates the domi-
nating maximum barrier height, ∆max(L), to L when
the correlation length ξ(t, T ) has reached the film
thickness L at tco. This sets the time scale for our
experiments, texp, through Eq. 3, and fixes Tf . Solving
Eq. (3) for ∆max(L) when τ = tco, and substituting this
into Eq. (2), yields,

Tf
Tg

c2 ℓn

(

tco
τ0

)

+ ℓn c1 = ℓn

(

L

a0

)

. (7)

We extract Tf from the experimental data as the
temperature at which the irreversible magnetization
first appears approaching Tg from above; that is,
when MZFC(t, Tf) = MFC(t, T ). Because MFC is time
dependent, MZFC(t, T ) is “chasing” a moving target,
(1 − ǫ)MFC(t, T ). In general the time dependence of
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(d) 4.5nm measured at 23K
Exponential fit
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(e) 9nm measured at 31.5K
Exponential fit
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(f) 20nm measured at 41.5K
Exponential fit

FIG. 3: (a∼c) The measured magnetizations, MFC(t, T ) and MZFC(t, T ), plotted against time for the three CuMn
multilayer thin films at a representative temperature. (d∼f) (1− ǫ)MFC(t, T )−MZFC(t, T ) and its exponential fit to
activated dynamics. (a)(d) 4.5nm film at 23K, 1− ǫ = 0.994, (b)(e) 9.0 nm film at 31.5K, 1− ǫ = 0.994, and (c)(f)
20 nm film at 41.5K, 1− ǫ = 0.995.
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FIG. 4: The MTRM(t, T = 23.25 K) SQUID voltage
plotted against time t. For t ≥ tco ≈ 1.4× 104 sec,
MTRM(t, T = 23.25) K displays activated behavior with
∆max(L = 4.5 nm) = 909± 5 K.

MZFC(t, T ) is much faster than (1− ǫ)MFC(t, T ) so that
one can consider the end of irreversibility to take place at
the when MZFC(t, T ) has reached (1 − ǫ)MFC(t, T ). For
mesoscopic spin glass films, the time scale of the growth
of MZFC(t, T ) is roughly τ0 exp(∆max/kBT ). Hence,

∆max sets the time scale for irreversibility to vanish, or,
concomitantly, for the freezing temperature Tf . Thus,
for a given time scale of the experiment, texp, the freezing
temperature is set by texp ∼ τo exp(∆max/kBTf), similar
in concept to the conventional glass transition. But
from Eq. (2), ∆max ∝ ℓnL. This scaling relationship of
Tf ∝ ℓnL for reasonably constant texp is the basis for
the “Kenning effect” [21].

For activated dynamics, Fisher and Huse [8] find a
power law relationship between Tf (L)/Tg and L given
by:

Tf(L)

Tg

[

ℓn

(

τ(L)

τ0

)]1/(1+ν2ψ2)

=

(

L

a0

)(ψ3+ψ2ν2θ3)/(1+ψ2ν2)

(8)
where the subscripts denote the dimensionality of the
parameters. To evaluate this equation, we need values
for ψ2, ψ3, ν2, and θ3. From Refs. [30-33], ψ2 ≃ 1.0
and Ref. [39] finds ν2 ≃ 3.45, leading to the product for
ψ2ν2 ≃ 3.45. This contrasts with the fitted experimental
value ψ2ν2 = 1.6 ± 0.2 from Ref. [22]. The exponent
θ3 ≈ 0.2 from Ref. [8]. Putting the theoretically derived
numbers together with the experimental value for ψ2, one
finds,

(

Tf (L)

Tg

)4.45

ℓn

(

τ(L)

τ0

)

=

(

L

a0

)(ψ3+0.69)

. (9)
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For the 9.0 nm film, Tf (L)/Tg = 0.66, so that Eq. (9)
becomes,

ℓn

(

τ(9.0 nm)

τ0

)

= 6.338× (17.2)(ψ3+0.69) . (10)

Ref. 8 finds ψ3 ≥ θ3 ≈ 0.2, and even taking the smallest
possible value for ψ3 = 0.2 from θ3 given above, yields
an impossibly large value for τ(9.0 nm) ∼ 1021 sec. Using
the experimental value [20] for ψ2ν2 = 1.6 results in,

ℓn

(

τ(9.0 nm)

τ0

)

= 2.941× (17.2)(ψ3+0.32). (11)

Taking again the smallest possible value for
ψ3 = 0.2 yields an impossibly small value for
τ(9.0 nm) ∼ 5 × 10−8 sec. Setting τ(9.0 nm) equal
to tco for power law dynamics, τ(9.0 nm) ≈ 416 sec,
would require ψ3 = 0.56, a not-unreasonable value.
Using this value for ψ3, one can calculate ℓn[τ(L)/τ0]
for the other two thicknesses. Using Eq. (8) with
ψ3 = 0.56 yields a value for τ(4.5 nm) ∼ 2.3 × 107 sec,
much longer than we find from our experiments, and
for τ(20.0 nm) ∼ 284 sec, shorter. This large spread
of times is a consequence of the power law relation of
τ(L) to L for activated dynamics as opposed to the
logarithmic relation of τ(L) to L for power law dynamics.

In addition to the freezing temperatures, the experi-
mental results of Sec. V also generated the activation
energies for the three thin film thicknesses, ∆max(L).
Repeating from Sec. V; ∆max(4.5 nm)/kB = 907 K,
∆max(9.0 nm)/kB = 1, 246K, and ∆max(20.0 nm)/kB =
1, 650K. Eqs. (2) and (5) give values for ∆max(L) for
power law dynamics and activated dynamics, respec-
tively.

For power law dynamics, values for c1 = 1.448 and
c2 = 0.104 can be extracted from the values for ∆max(L)
using Eq. (2). Because we have three thicknesses L,
c1 and c2 are over determined. A best fit results in
c1 = 1.448 and c2 = 0.104. Using these values for c1 and
c2, ∆max(L) can in turn be evaluated as a function of L
from Eq. (2). The results are displayed in Fig. 5, where
the closeness of the calculated values to the straight
line is a display of the consistency of fit for power law
dynamics.

For activated dynamics, one needs the value of the
coefficient α in Eq. (5), and that requires a value for the
exponent ψ ≡ ψ2 in this case. Using the value ψ2 = 1.0,
consistent with Refs. [30 - 32], and fitting to the
measured value for ∆max(9.0 nm)/kB = 1, 246K, we find
α = 0.73 from Eq. (5), close to unity as expected from
Refs.[8 - 12]. Using these values for ψ and α, we can cal-
culate ∆max(L) for the other two film thicknesses to test
for consistency. We find ∆max(4.5 nm)/kB = 623K and
∆max(20.0 nm)/kB = 2, 769 K. They are much smaller
and much larger, respectively, than the experimental

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
ln(L/a0)

16

18

20

22

24

26

28

30

32

∆
m
a
x
/
k
B
T
g

FIG. 5: A plot of the calculated values of ∆max(L) as a
function of ℓn (L/a0) using c1 = 1.448 and c2 = 0.104 in
Eq. (2). The closeness to the drawn straight line, a
requirement of Eq. (2), is an indication of the
consistency of fit for power law dynamics

values.

The spread of values for ∆max(L) differ substan-
tially between the two descriptions because of the
differing dependences on L. The power law dynamics
proportionality to ℓn (L/a0) increases much more slowly
with increasing L/a0 than the algebraic proportionality
to (L/a0)

ψ of activated dynamics.

VII. Summary and conclusions

We have presented the first systematic study of
thin film spin glass dynamics as a function of length
scale L. As noted in the Introduction, when the spin
glass correlation length ξ(t, T ) reaches L, the system
crosses over to the dimension D = 2. This is below the
lower critical dimension of a spin glass (≈ 2.5), and thus
ξ(t, T ) is fixed at L. Varying L allows measurement of
the length scale dependence of the maximum barrier
height, ∆(L), and the (glassy-like) freezing temperature
Tf(L).

Predictions for the length scale dependence of both
∆(L) and Tf(L) were calculated from two competing
theories. Quantitative agreement between the exper-
imental data and power-law dynamics for ξ(t, T ) are
found, while use of reasonable values for the parameters
in activated dynamics predict a much greater variation
with L than found experimentally.

The thicknesses explored in these experiments con-
tain a modest number of magnetic spins N , sufficiently
small that direct comparisons with simulations are
possible. As discussed in Sec. IV, the dynamical
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measurements reported here are for N ≈ 334 spins
(L = 4.5 nm), N ≈ 2, 668 spins (L = 9.0 nm), and
N ≈ 29, 281 spins (L = 20.0 nm). Simulations using the
Janus special purpose computer have reported equilib-
rium properties for millions of Ising spins [40]. It seems
possible that simulations of non-equilibrium dynamical
properties of Ising spins are possible for numbers of spins
comparable to those contributing in our experiments [41].

Finally, these experiments have established the dy-
namical properties of spin glasses as a function of length
scale for fixed temperatures and magnetic fields. The
issue of dynamics associated with changes in these
parameters is yet to be explored. To quote Ref. 42, “An
experimental measurement of TC [temperature chaos]
is still missing” (but see Ref. [3] where temperature
chaos is reported for a mesoscopic GeMn amorphous
spin glass). Now that the dynamical properties of spin
glasses at fixed temperature are in hand, systematic
exploration of temperature changes under conditions
leading to temperature chaos in conventional spin glasses
(e.g. CuMn) should be possible. Further, a similar
opportunity is present for magnetic field chaos, an effect
that has been explored theoretically much less than
temperature chaos [43]. Spin glasses at the mesoscale
can serve as a laboratory for further explorations under
controlled conditions.
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