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ABSTRACT 

A robust molecular dynamics simulation method for calculating dislocation core energies 

has been developed. This method has unique advantages: it does not require artificial boundary 

conditions, is applicable for mixed dislocations, and can yield converged results regardless of the 

atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method 

in aluminium to calculate the dislocation core energy as a function of the angle β between the 

dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic 

aluminium explored, the dislocation core energy follows the same functional dependence on β as 

the dislocation elastic energy: Ec = A·sin2β + B·cos2β, and this dependence is independent of 

temperature between 100 and 300 K. By further analysing the energetics of an extended 

dislocation core, we elucidate the relationship between the core energy and core radius of a 

perfect versus an extended dislocation. With our methodology, the dislocation core energy can 

be accurately accounted for in models of dislocation-mediated plasticity. 
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I. INTRODUCTION 

With low hydrogen solubility and high strength-to-weight ratio, aluminium alloys are 

attractive for both hydrogen energy and transportation applications that require, respectively, 

high resistance to hydrogen embrittlement and light weight. Dislocation dynamics (DD) 

simulations [1] provide a tool for studying the mechanical properties of metals and alloys. One 

key input for DD simulations that is often overlooked is the core energy of dislocation lines, and 

its variation with the character angle β formed between the line and Burgers vector. The core 

energy contributes to the dislocation line tension, and alters the behaviour of dislocation lines as 

they bow out to bypass obstacles and react to form junctions. Unfortunately, dislocation cores 

cannot be described by linear elasticity theory, and hence their study requires a computational 

tool with atomistic resolution. Despite the pioneering work by Cai et al [2,3,4], much remains 

poorly understood concerning the nature of dislocation cores and their energies. 

Dislocation core energies can be calculated using quantum mechanical or empirical 

atomistic simulations under either continuum [5,6,7,8], free [9], or periodic [1,2,3,4,10,11,12,13, 

14,15] boundary conditions. Continuum boundary conditions are challenging to use when 

dislocation configurations are unknown a priori, such as in face-centred-cubic (fcc) metals like 

aluminium where perfect dislocations dissociate into partial dislocations separated by a stacking 

fault. Periodic boundary conditions are usually implemented using a so-called quadruple 

dislocation configuration [10], where positive and negative dislocations (lying in z) alternate in 

sign in both the x and y directions, so that a negative dislocation can recover the crystal 

periodicity destroyed by the preceding positive dislocation in both x and y directions. While the 
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quadruple configuration requires an orthorhombic computational cell to include four 

dislocations, it can be replicated with a non-orthorhombic cell containing only two dislocations 

[10,16]. A potential difficulty with this method is that, because positive and negative dislocations 

are on the same slip plane (x direction), they can glide and annihilate. This configuration cannot 

be used unless a barrier like the Peierls stress is sufficiently strong to pin the dislocations in 

place. A more general dislocation configuration that enables an offset of dislocations on different 

slip planes may solve this problem [2,3,4,16]. Dislocation core energies of aluminium have also 

been calculated using the generalized stacking fault energy obtained from density functional 

theory [17]. Because core relaxation is not treated directly in this model, however, it is unclear 

how this method compares with the direct atomistic simulation approach. 

Recently, we have used molecular dynamics (MD) to calculate core energies of edge 

dislocations under periodic boundary conditions [18]. In our approach, we eliminate the 

alternation of dislocations in x, which prevents annihilation by glide. The purpose of the present 

paper is threefold: (a) further extend this method to mixed dislocations and generate a complete 

set of aluminium dislocation core energies over the full range of possible character angles; (b) 

establish a generic analytical equation for the dislocation core energy in aluminium; and (c) 

further our understanding of the physics of dislocation cores in fcc metals. For our calculations, 

we utilize a high-fidelity Al-Cu bond order potential (BOP) [19]. 

II. METHODS 

The overall approach we will use for computing the core energy is similar to the other 

methods discussed above. Using atomistic simulations, we will compute the total energy per unit 

length of dislocation, Γ, of a multipolar dislocation system. This line energy can be expressed in 

terms of two contributions as 
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Γ(β ) = Ec (β)+ Eel (β) (1) 

where Ec and Eel are, respectively, the core and elastic energies per unit length of the dislocation, 

and β is the character angle. Using elasticity theory, the elastic energy can be computed 

analytically in isotropic theory (see Appendix A) and numerically using anisotropic theory (using 

the MadSum code [2,20]), allowing for the core energy to be uniquely determined from MD 

simulations for a given character angle. We use both isotropic and anisotropic theory for these 

calculations. This is because most discrete dislocation dynamics codes use isotropic theory to 

compute dislocation interactions and the analytical expressions of isotropic theory allow us to 

rationalize our results. 

A. Edge Dislocations (β = 90º) 

The geometry of the method for edge dislocations is shown in Fig. 1. The system has 

dimensions of Lx, Ly, and Lz in the x, y, and z direction, respectively. When the system is aligned 

in [ 011 ] x- and [111] y- directions, an edge dislocation dipole with a Burgers vector [ 011 ]a/2 

and a dislocation line parallel to the [ 211 ] z- direction can be created by removing a ( 011 ) plane, 

or equivalently two ( 022 ) planes, as indicated by the white line in Fig. 1. The height of the 

dipole, d, equals the height of the missing planes. Under periodic boundary conditions, the 

dislocations form an infinite array along x and y. Each dislocation has infinite length in the z 

direction, and the dislocation spacing in the x direction, Sx, equals the system dimension, Lx. 
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Fig. 1.  Geometry for β=90º (edge) dislocation dipoles (dislocation spacing Sx equals system 
dimension Lx). 

 
Using this atomistic configuration, we compute the total energy of the system with and 

without a dislocation dipole present using time-averaged MD simulations (discussed below). 

Note that the number of atoms in the dislocation-containing system, Nd, may not equal the 

number of atoms in the dislocation-free system, N0, due to the missing planes of the edge 

component of dislocations. Fortunately, each atom in the dislocation-free system is identical, and 

as a result, the energy of the dislocation-free system can be scaled by a factor Nd/N0 to match the 

number of atoms in the dislocation-containing system. Under this condition, the energy due to 
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the dipole array is the difference of the energies (after the scaling) between these two 

configurations. As shown in the appendix, the dipole array energy can be expressed analytically 

using isotropic linear elasticity theory for a chosen core radius r0. As discussed in Section III.C, 

fitting the MD data to this analytical equation then allows us to determine the core energy [18].  

B. Screw (β = 0º) and Mixed Dislocations (0º < β < 90º) 

The method described above cannot be applied to screw and mixed dislocations because the 

shear deformation of the screw component destroys the crystal periodicity. As shown in Fig. 

2(a), if the dipole distance is exactly half of the system dimension, i.e., d = Ly/2, we can always 

create a dislocation dipole symmetrically as long as the two half regions (the dark and light 

regions) are displaced equally by ±½b. Note that we found this symmetrical condition necessary 

to ensure the correct results. By then introducing multiple dislocation dipoles, we can always 

satisfy periodic boundary conditions; however, the number of dipoles necessary depends on the 

character angle of the dislocation lines. As an example, Fig. 2(b) shows a common slip plane for 

β = 0o (screw) and 60o dislocations where the dislocation line aligns with z [ 101 ], the screw 

Burgers vector of b0 = [ 011 ]a/2 forms a β = 180o (or equivalently β = 0o) angle, and the β = 60o 

Burgers vector of b60 = [ 110 ]a/2 forms a β = 120o (or equivalently, β = 60o) angle. The plane 

stacking in the x [ 211 ] direction is ABCDEFABCDEF… It can be seen that an arbitrary C plane 

can recover to another C plane if it is shifted by 2b60. Hence, periodic boundary conditions can 

be maintained for the β = 60o dislocation if we create four dislocation diploes in the 

computational cell as shown in Fig. 2(a). Likewise, an arbitrary E plane can recover to another E 

plane if it is shifted by b0. Hence, periodic boundary conditions can be used for the screw 

dislocation if we create two dislocation dipoles. Similarly, the β = 30o dislocation shown in Fig. 

2(c) can also be simulated under periodic boundary conditions by creating four dislocation 
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dipoles per cell. Using similar arguments, the character angles 10.89o, 19.11o, 40.89o, 49.11 o, 

70.89o, and 79.11o can be simulated using 28 dislocation dipoles. These observations allow our 

method to be extended to screw and mixed dislocations. 

 

 

Fig. 2.  Geometry for screw and mixed dislocations: (a) Three-dimensional configuration; (b) 
top-view of β = 0o (screw) and β = 60o (mixed) dislocation slip plane; and (c) top-view of 
β = 30o dislocation slip plane. 

 
The approach described above requires adding more dislocation to the simulation cell, 

causing the size of the atomistic system to increase. With this approach, all simulation cells are 

orthorhombic. While it is possible to reduce the number of dislocations by making the axes of 

the cell non-orthorhombic [1], we have opted for orthorhombic cells because there is less 

possibility for artifacts due to improper enforcement of periodicity and/or pressure-free boundary 

conditions.  
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C. Time-Averaged MD Simulations 

We have found that while molecular statics (MS) energy calculations based on the 

conjugate gradient method can give low relative errors, they produce large total errors that 

increase as the system dimension increases [18]. This is not satisfactory for calculating 

dislocation energies, which are related to total energies of (dislocated and perfect) systems if the 

length along dislocation is fixed. Time-averaged properties of long time MD simulations, on the 

other hand, are found to converge satisfactorily regardless of the system dimensions [18]. This 

sounds surprising at a first sight but can be understood because the time averaged MD 

calculations not only average out the thermal noises, but also are analogous to performing 

ensemble averages of many MS simulations with different perturbations of initial configurations. 

Additionally, MS pertains only to 0 K whereas finite temperature effects are incorporated in MD. 

Moreover, finite temperature systems are less likely to become trapped in metastable states, 

making them more robust for determining the minimum energy core configuration. 

The majority of our simulations are performed at 300 K while selected other temperatures 

are also used to explore the temperature effects. All properties presented in this paper are time-

averaged from 4 ns MD simulations using a time step of 0.004 ps. After discarding the first 0.8 

ns to allow for equilibration, the system energy and dimension are averaged over all the time 

steps for the remaining 3.2 ns. Unless otherwise indicated, our simulations use a zero pressure 

NPT (constant number of atoms, pressure, and temperature) ensemble with the dimension in the 

dislocation line direction (z) further fixed to match the plane strain assumption used in the 

classical dislocation theories. We also perform simulations that allow the z dimension to change 

but the same results are obtained as will be shown below. MD code LAMMPS [21,22] is used 

for all of our simulations. 
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III. RESULTS AND DISCUSSION 

A. Edge Dislocations (β = 90º) 

Two series of simulations are performed. In the first series, the crystal contains 72 ( 022 ) 

planes in x, 174 (111) planes in y, 30 ( 422 ) planes in z, and the dislocation dipole distance d 

varies from 3 to 171 (111) planes. The same series of simulations are repeated for both 300 K 

and 100 K temperatures. The resulting total dislocation line energies (including both the core and 

elastic energies) and their standard deviation are shown as a function of the dipole height in Fig. 

3(a). The thin black solid line in the figure corresponds to an isotropic fit to few representative 

MD data (marked by the brown stars in both Fig. 3 and Fig. 4) using Eq. (A1) after selecting an 

appropriate core radius of r0 = 10 Å. Additionally, we show the fit using anisotropic elasticity 

theory (with C11 = 118.4, C12 = 62.6, and C44 = 33.5 GPa*) as a thick orange solid line. We defer 

a discussion on the fitting process and the effects of the core radius until later. 

It can be seen from Fig. 3(a) that the statistical errors of all of our MD data are near zero 

within the numerical resolution demonstrated in the figure. A related consequence of the “zero” 

errors is that all of our MD data falls right on top of the continuum line despite the fact that many 

MD data are not used in the fitting. This strongly validates our MD approach for calculating 

dislocation energies, which also corroborates well our derived isotropic continuum expressions 

for periodic dislocation arrays, Eqs. (A1) - (A5) in the Appendix. Interestingly, the isotropic 

curve matches the anisotropic curve perfectly, justifying the validity of the isotropic approach for 

aluminium analysis. One important observation from Fig. 3(a) is that the temperature does not 

                                                 
* These elastic constants differ slightly from the 0 K constants of the interatomic potential (C11 = 114.9, C12 = 62.6, 
and C44 = 31.6 GPa). We used slightly different values in order to achieve an optimal fit with the MD results which 
were obtained at 300 K. 
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impact the core energy. This is because differences in entropies and thermal energies between 

perfect and dislocated systems are both negligible [23]. 

 

 
Fig. 3.  Edge dislocation line energy as a function of (a) dislocation dipole distance d and (b) 

dislocation spacing Sx (= Lx). Error bars represent the standard deviation of MD data. 
Note that in Fig. 3(a), the solid and dashed lines differ only by the constant core energy. 
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For reference, the thin black dashed line in Fig. 3(a) is the isotropic continuum result 

without the constant core energy. The difference between the thin dashed and solid lines, 

corresponding to the constant core energy, is a significant fraction of the overall line energy for 

the range of dipole configurations considered. Clearly the error caused by ignoring the core 

energy is significant, demonstrating that our approach is a sensitive method for studying 

dislocation energies. 

Fig. 3(a) shows that the dislocation energies are symmetric with respect to dipole height d. 

This is because when d goes to zero, the dislocations in the dipole annihilate, leading to a small 

energy. When d is large (close to Ly), dislocations and their other dipole counterparts (periodic 

images) also annihilate, leading to a small energy. Capturing this phenomenon is one strong 

validation of our MD data. 

The second series of simulations examines the dislocation energy as a function of the 

lateral spacing Sx of the dislocation dipoles. For this series, the crystal contains 174 (111 ) planes 

in y, 30 ( 422 ) planes in z, the dislocation dipole distance d equals 87 (111 ) planes, and the x 

dimension of the system varies from 120 to 240 ( 022 ) planes. The same method is used to 

calculate the dislocation energies. The corresponding results are shown in Fig. 3(b) as a function 

of dislocation lateral spacing Sx (= Lx). Again, Fig. 3(b) indicates that the MD results fit the 

continuum model (both isotropic and anisotropic) very well. 

B. Mixed (0o < β < 90o) and Screw (β = 0o) Dislocations 

Mixed dislocations with regular angles β = 60o and 30o and non-regular angles β = 10.89o, 

19.11o, 40.89o, 49.11 o, 70.89o, and 79.11o, as well as the screw dislocation with β = 0o, are all 

studied. For β = 60o, the crystal contains 174 (111 ) planes in the y, 16 ( 022 ) planes in z, the 

dislocation dipole distance d equals 87 (111 ) planes, and the x dimension of the system varies 
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from 216 to 456 ( 422 ) planes. For β = 30o, the crystal contains 174 (111 ) planes in y, 30 ( 422 ) 

in z, d equals 87 (111 ) planes, and the x dimension varies from 120 to 240 ( 202 ) planes. Four 

dislocation dipoles are created in the computational cell as shown in Fig. 2(a), so that the lateral 

dislocation spacing Sx equals Lx/4. The crystals used for dislocations with β = 10.89o, 49.11o, and 

70.89o contain 174 (111 ) planes in y, 54 (
7
45

7
36

7
9 − ) planes in z, 87 (111 ) planes for the 

dislocation dipole height d, and various x dimensions from 1050 to 2625 (
7

15
7

30
7
45− ) planes. The 

only difference among the 10.89o, 49.11 o, and 70.89o dislocations is that they have different 

Burger vectors b = [ 101 ]a/2, [ 011 ]a/2, and [ 101 ]a/2, respectively. For dislocations with β = 

19.11o, 40.89o, and 79.11o angles, the crystals contain 174 (111 ) planes in y, 45 (
7

15
7

30
7
45 −− ) 

planes in z, 87 (111 ) planes for the dislocation dipole height d, and various x dimensions from 

1512 to 3024 (
7
45

7
36

7
9 − ) planes. The Burgers vectors for the 19.11º, 40.89º, and 79.11º 

dislocations correspond to b = [ 101 ]a/2, [ 011 ]a/2, and [ 101 ]a/2 respectively. Unlike the 60o and 

30o regular angle dislocations, the non-regular angles 10.89o, 19.11o, 40.89o, 49.11 o, 70.89o, and 

79.11o require 28 dislocation dipoles to be used in the computational cell to maintain periodic 

boundary conditions. As a result, Sx = Lx/28. Following the same method as described above, 

total dislocation line energies are calculated as a function of Sx, and the results are shown in Fig. 

4(a) for the regular angles (30o or 60o), and in Fig. 4(b) for the non-regular angles. Again, the 

MD results are very well characterized by the continuum model. 
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Fig. 4. Line energies as a function of dislocation spacing Sx for (a) 30o and 60o, (b) 10.89o, 

19.11o, 40.89o, 49.11 o, 70.89o, and 79.11o, and (c) 0o dislocations. Error bars represent 
the standard deviation of MD data. 
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The β = 0o case imposes challenges for fcc metals due to the annihilation of screw 

dislocations by cross-slip. As a result, the core energy of a screw dislocation in an fcc metal has 

never been computed atomistically to our knowledge. Through extensive iterations, we find that 

when the y dimension is increased above 522 (111 ) planes to reduce the attraction between 

opposite dislocations, and when the temperature is reduced below 10 K to trap dislocations in 

metastable locations, the combination of both conditions can prevent cross-slip. Fortunately, the 

use of a low temperature does not impact the results as has been shown in Fig. 3(a). Hence, we 

perform simulations at 10 K for the β = 0o case using crystals that contain 522 (111 ) planes in y, 

16 ( 022 ) planes in z, a dipole height d of 261 (111 ) planes, and various x dimensions from 108 

to 228 ( 422 ) planes. The results obtained for the 0o dislocations are shown in Fig. 4(c). Again, 

the data points fall right on top of the continuum line. 

The MD simulations discussed above use a fixed z dimension assumed in the dislocation 

elastic theories (plane strain). We have also performed similar MD simulations where the z 

dimension is allowed to relax, and the results are included in Fig. 4(a). Interestingly, the flexible 

z condition produces exactly the same results as the fixed z condition. 

C. Dislocation Core Energies  

To compute the core energy using anisotropic theory, we use the cubic elastic constants 

given above in conjunction with the MadSum code [2,20]. In the isotropic theory, the continuum 

expression for the energy of periodic dislocation arrays, Eq. (A1), involves four parameters: 

dislocation core radius r0, core energy Ec, and elastic constants G and ν. These parameters can be 

obtained by fitting to the MD data. However, the magnitude of the core radius r0 is not unique. 

Conventionally, the only requirement for r0 is that any region outside r0 satisfies linear elasticity 

theory. Obviously, there exists a minimum value r0
min so that any r0 ≥ r0

min can be taken as a valid 
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core radius. This is because elasticity theory breaks down very near the dislocation core, causing 

the elastic energy to go to infinity as the core radius goes to zero. Hence, the core radius must be 

large enough to exclude this unphysical region. On the other hand, the core energy is really just a 

correction to the linear elastic theory at a given reference core radius r0. As a result, any value of 

r0 (including r0 = 0) can be taken as a valid core radius if the core energy is allowed to be 

negative. Here we define the minimum value r0
min so that any r0 ≥ r0

min will always lead to 

positive core energies for all values of β. Through trial-and-error fitting, r0
min is determined to be 

2.0 Å and 2.5 Å for isotropic and anisotropic theory, respectively. 

Unlike the curves shown in Figs. 3 and 4 that are fitted to few MD data points, we now fit 

all MD data to yield the most precise fit. Table I shows our fitted dislocation core energies with 

r0 = 10 Å obtained for different character angles, using both anisotropic and isotropic theory. Fits 

for different core radii all result in identical isotropic elastic constants of G = 0.1830 eV/Å3 (29.3 

GPa) and ν = 0.3874, very close to the values of G = 0.169 eV/Å3 (27 GPa) and ν = 0.34 

commonly cited for aluminium [24]†, confirming the robustness of our results. Comparing the 

isotropic and anisotropic core energies, we find that despite the nearly isotropic behaviour of 

aluminium, the core energies predicted by the two theories are different. For this value of the 

core radius, anisotropic theory gives that the core energy varies by nearly a factor of two from β 

= 0° to 90° while in isotropic theory the core energy is nearly independent of character angle. 

Note, however, different core energies do not mean that the two theories are inconsistent. In fact, 

the two theories yield exactly the same total dislocation energies as shown in Fig. 3. The 

                                                 
† Note that while aluminium is elastically anisotropic like most crystalline solids, it exhibits a relatively weak 
anisotropy ratio of A = 1.2 in both experiments [24] and our potential [19]. 
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differences just mean that the two theories have different allocations of the total dislocation 

energies to the core and the elastic components.  

To reiterate, our results are strongly validated from numerous aspects: 1) the convergence 

to a single core energy at different dislocation spacings for a given character angle and a given 

core radius, 2) the convergence to a single set of isotropic elastic constants for all dislocation 

spacings, orientations, and core radii, and 3) the strong match between MD results and both the 

isotropic and anisotropic continuum results. 

  
Table I.  Dislocation core energies iso

cE  and aniso
cE  (eV/Å) obtained from isotropic and 

anisotropic elasticity theories for a core radius of r0 = 10 Å. 
Dislocation angle β iso

cE  aniso
cE

00.00o 0.295 0.170
10.89o 0.291 0.197
19.11o 0.296 0.233
30.00o 0.306 0.271
40.89o 0.298 0.254
49.11o 0.308 0.267
60.00o 0.314 0.297
70.89o 0.320 0.293
79.11o 0.316 0.294
90.00o 0.315 0.318

 
 
D. Analytical Expression of Core Energy as a Function of Angle β  

Using our MD results and isotropic elasticity theory, we can derive an analytical expression 

for the dislocation core energy at any character angle and with any core radius. To do so, we 

make the following assumption: increases in the core energy as the core radius increases beyond 

the minimum core radius are due to elastic energy. Hence, the core energy can be written as  

( ) ( ) ref
ref
cc r

rGbErE
0

0
2

2
2

0 ln
1

sincos
4

, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
++=

ν
ββ

π
ββ . (2) 



 

 17

The first term is the core energy at a reference core radius, refr0  ( refr0  ≥ min
0r ), and the second 

term is the change in elastic energy attributed to the core upon changing the core radius from refr0  

to r0 (r0 ≥ min
0r ) [25]. Note that the same reasoning could be applied using anisotropic elasticity, 

however an analytical expression is not readily available. To complete this expression, we need 

to develop an analytical form for the core energy ( )βref
cE  at a chosen reference core radius refr0 . 

In principle, ( )βref
cE  should depend on crystal structure. For example, in body-centred-cubic 

materials, screw dislocations have non-planar cores whereas edge dislocations have planar cores 

so that these two types of dislocations could have different core energies [26]. Examining our 

data, however, we find that the ( )βref
cE  can be expressed in the same form as the elastic energy 

[25]:  

( ) βββ 22 cossin ⋅+⋅= BAEref
c  (3) 

For example, if we choose a reference radius of refr0  = 30 Å, then the parameters A = 0.5294 

eV/Å and B = 0.4528 eV/Å, which correspond respectively to the edge and screw dislocation 

core energies derived from MD simulations described above. In Fig. 5 we plot our core energy 

data for core radii of r0 = 2, 10, 20, 30, 40, and 50 Å with curves generated using Eq. (2) and (3) 

at refr0  = 30 Å. The figure indicates that the core energies of aluminium very well satisfy Eqs. (2) 

and (3) for all character angles and core radii; this constitutes the major result of the present 

work. We are currently implementing this finding in dislocation dynamics simulation models. 
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Fig. 5. Dislocation core energies as a function of dislocation angle β at different core radii r0. 
 
E. Effects of Dislocation Core Structures  

We have used elastic energy expressions for perfect dislocations to compute the core energy 

of a dislocation in an fcc solid that has dissociated into two partial dislocations bounding a 

stacking fault. Furthermore, we have found that the minimum core radius for this analysis is 

much smaller than the separation distance between these partial dislocations (shown below). 

With analysis of the core structure of an isolated dislocation, we can gain further insight into the 

physics of extended dislocation cores. 

The front-view (x-y) of the atomic configuration with β = 90o (edge) dislocations is 

examined in Fig. 6(a). As expected, the perfect dislocation with a b
v

 = [ 011 ]a/2 Burgers vector 

splits into two partials with Burgers vectors of Ib
v

 = [ 112 ]a/6 and IIb
v

 = [ 121 ]a/6. Because 

aluminium has a large stacking fault energy of ηsf = 133 mJ/m2 [19], a relatively small separation 
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distance of λ ≈ 14 Å between the two partials is observed. However, this separation distance is 

significantly larger than the minimum core radius discovered above.  

 

Fig. 6. Dissociated core configuration of a β = 90o (edge) dislocation. (a) Front view of MD 
configuration; (b) schematic of the perfect dislocation; (c) schematic of the two partials 
separated by min

ptr , and (d) schematic of the two partials separated by λ. 
 

To better understand how the energetics of the dissociated structure relates to our results, we 

compute the energy change when a perfect edge dislocation dissociates into two partials (similar 

to the approach used by [27]). Since we are focusing on the core structure, we only consider an 

isolated extended dislocation in an infinite medium (rather than periodic arrays of dislocations 

like we did above). The line energy of a perfect edge dislocation in isotropic elasticity can be 

stated as [25] 

( ) pfr
RGbo

pfrpfcEpf ln
14

2
90,, νπ

β
−

+⎟
⎠
⎞⎜

⎝
⎛ ==Γ  (4) 

where the subscript pf denotes a perfect dislocation, ⎟
⎠
⎞⎜

⎝
⎛ = o

pfrpfcE 90,, β  is the core energy 

associated with the core radius pfr , and R is the outer cut-off radius. The energy change ΔΓ when 
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the two partials move apart is the work done by the stress fields of the partials plus the energy of 

the stacking fault. To compute these quantities, we consider two stages of separation. First, the 

separation distance of the two partials increases from λ = 0 to λ = 2 ptr  as shown in Fig. 6(c), 

where ptr  is the core radius of a partial dislocation so that 2 ptr  is the overlap region of the two 

partial dislocation cores. During this stage of separation we lump all of the work done into a 

change in the core energy, leading to an energy change of [18] 

( ) pfcEsfptrptcE ,2,21 −⋅+=ΔΓ η  (5) 

i.e., the core energy of the perfect dislocation pfcE ,  is replaced by the core energies of two 

partials 2 ptcE ,  plus a stacking fault energy (ηsf refers to the stacking fault energy per unit of area). 

The work done to further separate the two partials from λ = 2 ptr  to λ > 2 ptr , as shown in Figs. 

6(c) and 6(d), can be obtained from linear elasticity [18]. Adding in the energy from the stacking 

fault then gives an energy change of 

( ) sfptr
ptr

Gb ηλλ
νπ

⋅−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=ΔΓ 2
2

ln
1

1
3
1

8

2
2  (6) 

Hence, the total energy difference between the dissociated dislocation, Fig. 6(d), and the perfect 

dislocation, Fig. 6(b), can be expressed as 
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If we assume ptr  = 1.0 Å, b = 2.8634 Å, and use corresponding parameters mentioned above, the 

elastic and stacking fault components give sf
ptr
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νπ

⋅+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
2

ln
1

1
3
1

8

2
 = -0.0345 eV/Å. The 

negative value drives the dissociation of the perfect dislocation.  
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The total line energy of the extended dislocation is now Γ = Γpf + ΔΓ. Using Eqs. (4) and (7) 

and after some manipulation, we have that 
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Only the last term contributes to the long-range elastic component of the line energy, so we 

recognize that the core energy we have computed and given in Table I corresponds to the 

remaining terms:  
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This analysis demonstrates the connection between the line energy expression for a perfect 

dislocation, and the line energy expression for an extended dislocation. Note that comparing the 

long-range elastic interaction terms in Eqs. (4) and (8) shows that rpf is equivalent to rpt, meaning 

that the minimum core radius we have obtained with our atomistic computations actually 

corresponds to the minimum core radius of the partial dislocations, rather than the overall 

extended dislocation. This explains why we find a minimum core radius that is much smaller 

than the separation distance between the partials. 

IV. CONCLUSIONS 

A robust MD model has been developed to calculate the core energies of mixed 

dislocations. This model does not require continuum boundary conditions, is applicable for the 

full character angle range 0° ≤ β ≤ 90°, produces strongly convergent results, and is constructed 

from orthorhombic systems under the plane strain condition consistent with the classical 

dislocation theories. Based on a high-fidelity bond order potential, we have used this model to 
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study dislocation core energies of aluminium as a function of dislocation angle β. The following 

conclusions have been obtained: 

1. While dislocations are dissociated, the apparent (mathematical) dislocation core radius in 

aluminium is as small as r0 = 2.0 Å with isotropic elasticity theory and 2.5 Å with 

anisotropic elasticity theory, despite the fact that the extended core has a width of greater 

than 14 Å. This is because the core radius pertains to the partial dislocations in the core; 

2. Values of r0 > 2.0 Å can also be used. A larger radius in general leads to a larger core 

energy. In particular, the increase in core energy always equals the elastic strain energy of 

the added volume due to the increase in the core radius; 

3. In isotropic elasticity theory, dislocation core energy as a function of character angle 

satisfies an expression of the form Ec(β) = A sin2β + B cos2β, which is similar to the elastic 

energy. 

4. Dislocation energies are independent of temperature over the temperature range considered 

here (100 – 300 K).  
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VI. APPENDICES 

A. Dislocation Energy under Periodic Boundary Conditions  
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Following the previous approach for edge dislocations [18], the dislocation line energy Γ 

for periodic mixed dislocations with a mixed angle β can be derived as: 
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In Eqs. (A1) – (A5), Ec and r0 are the core energy and core radius of an isolated dislocation, Ga is 

an Euler gamma function, coth and cosh are hyperbolic functions, G is shear modulus, ν is 

Poisson’s ratio, b is Burgers magnitude, and α is an angle measuring the dislocation dipole 

direction (in particular, α = 0o means vertical dislocation dipole studied in the present work and 

α = 90o means horizontal dislocation dipole). Note that Eqs. (A1)-(A3) involve numerous 

changes compared to the previous work [18]. First, the core radius r0 defined here is equivalent 

to 2r0 defined previously [18]. Second, there is a constant 
( ) α

νπ
2cos

14

2
⋅

−
Gb  in Eq. (A1) that is counted 

as elastic contribution whereas in the previous work this constant term is lumped into the core 
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energy. These two modifications have a zero impact on the model because they do not change 

the total energy of dislocations; they only change the definition of dislocation core radius and 

core energy. We modify these definitions so that they are consistent with Hirth and Lothe [25]. 

Finally, the second term in the parenthesis “{}” of the right hand side of Eqs. (A2) and (A3) is 

now expressed as 
⎟
⎟

⎠

⎞

⎜
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⎝

⎛ −

yL

dyL
ln  whereas it was expressed as 

⎟
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⎞

⎜
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⎝

⎛

−

−

02
ln

ryL

dyL  in the previous work [18]. The 

new expression is more rigorous but the effect is negligible because Ly >> r0. 

Even Eq. (A1) does not have a closed form, it converges very fast so that the error is 

negligible if a few terms (say 20) are included (in the present work, we included 100 terms). We 

also wish to point out that Fourier methods can also be used to compute the energies of dipolar 

dislocation arrays [28,29].  
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