This is the accepted manuscript made available via CHORUS. The article has been published as:

Atomistic calculations of dislocation core energy in aluminium

X. W. Zhou, R. B. Sills, D. K. Ward, and R. A. Karnesky

Phys. Rev. B 95, 054112 - Published 16 February 2017
DOI: 10.1103/PhysRevB.95.054112

Atomistic Calculations of Dislocation Core Energy in Aluminium

X. W. Zhou ${ }^{1}$, R. B. Sills ${ }^{2}$, D. K. Ward ${ }^{3}$, and R. A. Karnesky ${ }^{4}$
${ }^{1}$ Mechanics of Materials Department, Sandia National Laboratories, Livermore, California 94550, USA, Email: xzhou@sandia.gov
${ }^{2}$ Gas Transfer Systems Department, Sandia National Laboratories, Livermore, California 94550, USA
${ }^{3}$ Radiation and Nuclear Detection Materials and Analysis Department, Sandia National Laboratories, Livermore, California 94550, USA
${ }^{4}$ Hydrogen and Materials Science Department, Sandia National Laboratories, Livermore, California 94550, USA

Abstract

A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elastic energy: $E_{c}=A \cdot \sin ^{2} \beta+B \cdot \cos ^{2} \beta$, and this dependence is independent of temperature between 100 and 300 K . By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and core radius of a perfect versus an extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of dislocation-mediated plasticity.

PACS number(s): 61.72.Lk, 02.70.Ns, 61.72.Bb
Kevwords: molecular dynamics, dislocation core energy, aluminium

I. INTRODUCTION

With low hydrogen solubility and high strength-to-weight ratio, aluminium alloys are attractive for both hydrogen energy and transportation applications that require, respectively, high resistance to hydrogen embrittlement and light weight. Dislocation dynamics (DD) simulations [1] provide a tool for studying the mechanical properties of metals and alloys. One key input for DD simulations that is often overlooked is the core energy of dislocation lines, and its variation with the character angle β formed between the line and Burgers vector. The core energy contributes to the dislocation line tension, and alters the behaviour of dislocation lines as they bow out to bypass obstacles and react to form junctions. Unfortunately, dislocation cores cannot be described by linear elasticity theory, and hence their study requires a computational tool with atomistic resolution. Despite the pioneering work by Cai et al [2,3,4], much remains poorly understood concerning the nature of dislocation cores and their energies.

Dislocation core energies can be calculated using quantum mechanical or empirical atomistic simulations under either continuum [5,6,7,8], free [9], or periodic [1,2,3,4,10,11,12,13, $14,15]$ boundary conditions. Continuum boundary conditions are challenging to use when dislocation configurations are unknown a priori, such as in face-centred-cubic (fcc) metals like aluminium where perfect dislocations dissociate into partial dislocations separated by a stacking fault. Periodic boundary conditions are usually implemented using a so-called quadruple dislocation configuration [10], where positive and negative dislocations (lying in z) alternate in sign in both the x and y directions, so that a negative dislocation can recover the crystal periodicity destroyed by the preceding positive dislocation in both x and y directions. While the
quadruple configuration requires an orthorhombic computational cell to include four dislocations, it can be replicated with a non-orthorhombic cell containing only two dislocations $[10,16]$. A potential difficulty with this method is that, because positive and negative dislocations are on the same slip plane (x direction), they can glide and annihilate. This configuration cannot be used unless a barrier like the Peierls stress is sufficiently strong to pin the dislocations in place. A more general dislocation configuration that enables an offset of dislocations on different slip planes may solve this problem [2,3,4,16]. Dislocation core energies of aluminium have also been calculated using the generalized stacking fault energy obtained from density functional theory [17]. Because core relaxation is not treated directly in this model, however, it is unclear how this method compares with the direct atomistic simulation approach.

Recently, we have used molecular dynamics (MD) to calculate core energies of edge dislocations under periodic boundary conditions [18]. In our approach, we eliminate the alternation of dislocations in x , which prevents annihilation by glide. The purpose of the present paper is threefold: (a) further extend this method to mixed dislocations and generate a complete set of aluminium dislocation core energies over the full range of possible character angles; (b) establish a generic analytical equation for the dislocation core energy in aluminium; and (c) further our understanding of the physics of dislocation cores in fcc metals. For our calculations, we utilize a high-fidelity Al-Cu bond order potential (BOP) [19].

II. METHODS

The overall approach we will use for computing the core energy is similar to the other methods discussed above. Using atomistic simulations, we will compute the total energy per unit length of dislocation, Γ, of a multipolar dislocation system. This line energy can be expressed in terms of two contributions as
$\Gamma(\beta)=E_{c}(\beta)+E_{e l}(\beta)$
where E_{c} and $E_{e l}$ are, respectively, the core and elastic energies per unit length of the dislocation, and β is the character angle. Using elasticity theory, the elastic energy can be computed analytically in isotropic theory (see Appendix A) and numerically using anisotropic theory (using the MadSum code [2,20]), allowing for the core energy to be uniquely determined from MD simulations for a given character angle. We use both isotropic and anisotropic theory for these calculations. This is because most discrete dislocation dynamics codes use isotropic theory to compute dislocation interactions and the analytical expressions of isotropic theory allow us to rationalize our results.

A. Edge Dislocations $\left(\beta=90^{\circ}\right)$

The geometry of the method for edge dislocations is shown in Fig. 1. The system has dimensions of L_{x}, L_{y}, and L_{z} in the x, y, and z direction, respectively. When the system is aligned in [$1 \overline{1} 0$] x - and [111] y-directions, an edge dislocation dipole with a Burgers vector $[1 \overline{1} 0] \mathrm{a} / 2$ and a dislocation line parallel to the $[\overline{1} \overline{1} 2] z$ - direction can be created by removing a ($1 \overline{1} 0$) plane, or equivalently two ($2 \overline{2} 0$) planes, as indicated by the white line in Fig. 1. The height of the dipole, d, equals the height of the missing planes. Under periodic boundary conditions, the dislocations form an infinite array along x and y . Each dislocation has infinite length in the z direction, and the dislocation spacing in the x direction, S_{x}, equals the system dimension, L_{x}.

Fig. 1. Geometry for $\beta=90^{\circ}$ (edge) dislocation dipoles (dislocation spacing S_{x} equals system dimension L_{x}).

Using this atomistic configuration, we compute the total energy of the system with and without a dislocation dipole present using time-averaged MD simulations (discussed below).

Note that the number of atoms in the dislocation-containing system, N_{d}, may not equal the number of atoms in the dislocation-free system, N_{0}, due to the missing planes of the edge component of dislocations. Fortunately, each atom in the dislocation-free system is identical, and as a result, the energy of the dislocation-free system can be scaled by a factor N_{d} / N_{0} to match the number of atoms in the dislocation-containing system. Under this condition, the energy due to
the dipole array is the difference of the energies (after the scaling) between these two configurations. As shown in the appendix, the dipole array energy can be expressed analytically using isotropic linear elasticity theory for a chosen core radius r_{0}. As discussed in Section III.C, fitting the MD data to this analytical equation then allows us to determine the core energy [18].

B. Screw $\left(\beta=0^{\circ}\right)$ and Mixed Dislocations $\left(0^{\circ}<\beta<90^{\circ}\right)$

The method described above cannot be applied to screw and mixed dislocations because the shear deformation of the screw component destroys the crystal periodicity. As shown in Fig. 2(a), if the dipole distance is exactly half of the system dimension, i.e., $d=L_{y} / 2$, we can always create a dislocation dipole symmetrically as long as the two half regions (the dark and light regions) are displaced equally by $\pm 1 / 2 \mathbf{b}$. Note that we found this symmetrical condition necessary to ensure the correct results. By then introducing multiple dislocation dipoles, we can always satisfy periodic boundary conditions; however, the number of dipoles necessary depends on the character angle of the dislocation lines. As an example, Fig. 2(b) shows a common slip plane for $\beta=0^{\circ}$ (screw) and 60° dislocations where the dislocation line aligns with $\mathrm{z}[\overline{1} 10]$, the screw Burgers vector of $\mathbf{b}_{\mathbf{0}}=[1 \overline{1} 0] \mathrm{a} / 2$ forms a $\beta=180^{\circ}$ (or equivalently $\beta=0^{\circ}$) angle, and the $\beta=60^{\circ}$ Burgers vector of $\mathbf{b}_{\mathbf{6 0}}=[0 \overline{1} 1] \mathrm{a} / 2$ forms a $\beta=120^{\circ}$ (or equivalently, $\beta=60^{\circ}$) angle. The plane stacking in the $\mathrm{x}[11 \overline{2}]$ direction is $\mathrm{ABCDEFABCDEF} .$. It can be seen that an arbitrary C plane can recover to another C plane if it is shifted by $2 \mathbf{b}_{60}$. Hence, periodic boundary conditions can be maintained for the $\beta=60^{\circ}$ dislocation if we create four dislocation diploes in the computational cell as shown in Fig. 2(a). Likewise, an arbitrary E plane can recover to another E plane if it is shifted by $\mathbf{b}_{\mathbf{0}}$. Hence, periodic boundary conditions can be used for the screw dislocation if we create two dislocation dipoles. Similarly, the $\beta=30^{\circ}$ dislocation shown in Fig. 2(c) can also be simulated under periodic boundary conditions by creating four dislocation
dipoles per cell. Using similar arguments, the character angles $10.89^{\circ}, 19.11^{\circ}, 40.89^{\circ}, 49.11^{\circ}$, 70.89°, and 79.11° can be simulated using 28 dislocation dipoles. These observations allow our method to be extended to screw and mixed dislocations.

Fig. 2. Geometry for screw and mixed dislocations: (a) Three-dimensional configuration; (b) top-view of $\beta=0^{\circ}$ (screw) and $\beta=60^{\circ}$ (mixed) dislocation slip plane; and (c) top-view of $\beta=30^{\circ}$ dislocation slip plane.

The approach described above requires adding more dislocation to the simulation cell, causing the size of the atomistic system to increase. With this approach, all simulation cells are orthorhombic. While it is possible to reduce the number of dislocations by making the axes of the cell non-orthorhombic [1], we have opted for orthorhombic cells because there is less possibility for artifacts due to improper enforcement of periodicity and/or pressure-free boundary conditions.

C. Time-Averaged MD Simulations

We have found that while molecular statics (MS) energy calculations based on the conjugate gradient method can give low relative errors, they produce large total errors that increase as the system dimension increases [18]. This is not satisfactory for calculating dislocation energies, which are related to total energies of (dislocated and perfect) systems if the length along dislocation is fixed. Time-averaged properties of long time MD simulations, on the other hand, are found to converge satisfactorily regardless of the system dimensions [18]. This sounds surprising at a first sight but can be understood because the time averaged MD calculations not only average out the thermal noises, but also are analogous to performing ensemble averages of many MS simulations with different perturbations of initial configurations. Additionally, MS pertains only to 0 K whereas finite temperature effects are incorporated in MD. Moreover, finite temperature systems are less likely to become trapped in metastable states, making them more robust for determining the minimum energy core configuration.

The majority of our simulations are performed at 300 K while selected other temperatures are also used to explore the temperature effects. All properties presented in this paper are timeaveraged from 4 ns MD simulations using a time step of 0.004 ps . After discarding the first 0.8 ns to allow for equilibration, the system energy and dimension are averaged over all the time steps for the remaining 3.2 ns. Unless otherwise indicated, our simulations use a zero pressure NPT (constant number of atoms, pressure, and temperature) ensemble with the dimension in the dislocation line direction (z) further fixed to match the plane strain assumption used in the classical dislocation theories. We also perform simulations that allow the z dimension to change but the same results are obtained as will be shown below. MD code LAMMPS [21,22] is used for all of our simulations.

III. RESULTS AND DISCUSSION

A. Edge Dislocations $\left(\beta=90^{\circ}\right)$

Two series of simulations are performed. In the first series, the crystal contains $72(2 \overline{2} 0)$ planes in $\mathrm{x}, 174(111)$ planes in $\mathrm{y}, 30(\overline{22} 4)$ planes in z , and the dislocation dipole distance d varies from 3 to 171 (111) planes. The same series of simulations are repeated for both 300 K and 100 K temperatures. The resulting total dislocation line energies (including both the core and elastic energies) and their standard deviation are shown as a function of the dipole height in Fig. 3(a). The thin black solid line in the figure corresponds to an isotropic fit to few representative MD data (marked by the brown stars in both Fig. 3 and Fig. 4) using Eq. (A1) after selecting an appropriate core radius of $\mathrm{r}_{0}=10 \AA$. Additionally, we show the fit using anisotropic elasticity theory (with $\mathrm{C}_{11}=118.4, \mathrm{C}_{12}=62.6$, and $\mathrm{C}_{44}=33.5 \mathrm{GPa}^{*}$) as a thick orange solid line. We defer a discussion on the fitting process and the effects of the core radius until later.

It can be seen from Fig. 3(a) that the statistical errors of all of our MD data are near zero within the numerical resolution demonstrated in the figure. A related consequence of the "zero" errors is that all of our MD data falls right on top of the continuum line despite the fact that many MD data are not used in the fitting. This strongly validates our MD approach for calculating dislocation energies, which also corroborates well our derived isotropic continuum expressions for periodic dislocation arrays, Eqs. (A1) - (A5) in the Appendix. Interestingly, the isotropic curve matches the anisotropic curve perfectly, justifying the validity of the isotropic approach for aluminium analysis. One important observation from Fig. 3(a) is that the temperature does not

[^0]impact the core energy. This is because differences in entropies and thermal energies between perfect and dislocated systems are both negligible [23].
(a) Effect of dislocation dipole distance d

(b) Effect of dislocation spacing $\mathrm{S}_{\mathrm{x}}\left(=\mathrm{L}_{\mathrm{x}}\right)$

Fig. 3. Edge dislocation line energy as a function of (a) dislocation dipole distance d and (b) dislocation spacing $S_{x}\left(=L_{x}\right)$. Error bars represent the standard deviation of MD data. Note that in Fig. 3(a), the solid and dashed lines differ only by the constant core energy.

For reference, the thin black dashed line in Fig. 3(a) is the isotropic continuum result without the constant core energy. The difference between the thin dashed and solid lines, corresponding to the constant core energy, is a significant fraction of the overall line energy for the range of dipole configurations considered. Clearly the error caused by ignoring the core energy is significant, demonstrating that our approach is a sensitive method for studying dislocation energies.

Fig. 3(a) shows that the dislocation energies are symmetric with respect to dipole height d . This is because when d goes to zero, the dislocations in the dipole annihilate, leading to a small energy. When d is large (close to L_{y}), dislocations and their other dipole counterparts (periodic images) also annihilate, leading to a small energy. Capturing this phenomenon is one strong validation of our MD data.

The second series of simulations examines the dislocation energy as a function of the lateral spacing S_{x} of the dislocation dipoles. For this series, the crystal contains 174 (111) planes in $y, 30(\overline{22} 4)$ planes in z, the dislocation dipole distance d equals $87(111)$ planes, and the x dimension of the system varies from 120 to $240(2 \overline{2} 0)$ planes. The same method is used to calculate the dislocation energies. The corresponding results are shown in Fig. 3(b) as a function of dislocation lateral spacing $S_{x}\left(=L_{x}\right)$. Again, Fig. 3(b) indicates that the MD results fit the continuum model (both isotropic and anisotropic) very well.
B. Mixed $\left(0^{\circ}<\beta<90^{\circ}\right)$ and Screw $\left(\beta=0^{\circ}\right)$ Dislocations

Mixed dislocations with regular angles $\beta=60^{\circ}$ and 30° and non-regular angles $\beta=10.89^{\circ}$, $19.11^{\circ}, 40.89^{\circ}, 49.11^{\circ}, 70.89^{\circ}$, and 79.11°, as well as the screw dislocation with $\beta=0^{\circ}$, are all studied. For $\beta=60^{\circ}$, the crystal contains 174 (111) planes in the $y, 16(2 \overline{2} 0)$ planes in z, the dislocation dipole distance d equals 87 (111) planes, and the x dimension of the system varies
from 216 to $456(22 \overline{4})$ planes. For $\beta=30^{\circ}$, the crystal contains 174 (111) planes in y, $30(22 \overline{4})$ in z, d equals 87 (111) planes, and the x dimension varies from 120 to $240(\overline{2} 20)$ planes. Four dislocation dipoles are created in the computational cell as shown in Fig. 2(a), so that the lateral dislocation spacing S_{x} equals $L_{x} / 4$. The crystals used for dislocations with $\beta=10.89^{\circ}, 49.11^{\circ}$, and 70.89° contain $174(111)$ planes in $y, 54\left(\frac{9}{7} \frac{36}{7}-\frac{45}{7}\right)$ planes in $\mathrm{z}, 87(111)$ planes for the dislocation dipole height d , and various x dimensions from 1050 to $2625\left(-\frac{45}{7} \frac{30}{7} \frac{15}{7}\right)$ planes. The only difference among the $10.89^{\circ}, 49.11^{\circ}$, and 70.89° dislocations is that they have different Burger vectors $\mathbf{b}=[01 \overline{1}] \mathrm{a} / 2,[\overline{1} 01] \mathrm{a} / 2$, and $[\overline{1} 10] \mathrm{a} / 2$, respectively. For dislocations with $\beta=$ $19.11^{\circ}, 40.89^{\circ}$, and 79.11° angles, the crystals contain 174 (111) planes in $y, 45\left(\frac{45}{7}-\frac{30}{7}-\frac{15}{7}\right)$ planes in $\mathrm{z}, 87$ (111) planes for the dislocation dipole height d , and various x dimensions from 1512 to $3024\left(\frac{9}{7} \frac{36}{7}-\frac{45}{7}\right)$ planes. The Burgers vectors for the $19.11^{\circ}, 40.89^{\circ}$, and 79.11° dislocations correspond to $\mathbf{b}=[\overline{1} 10] \mathrm{a} / 2,[\overline{1} 01] \mathrm{a} / 2$, and $[01 \overline{1}] \mathrm{a} / 2$ respectively. Unlike the 60° and 30° regular angle dislocations, the non-regular angles $10.89^{\circ}, 19.11^{\circ}, 40.89^{\circ}, 49.11^{\circ}, 70.89^{\circ}$, and 79.11° require 28 dislocation dipoles to be used in the computational cell to maintain periodic boundary conditions. As a result, $\mathrm{S}_{\mathrm{x}}=\mathrm{L}_{\mathrm{x}} / 28$. Following the same method as described above, total dislocation line energies are calculated as a function of S_{x}, and the results are shown in Fig. 4(a) for the regular angles (30° or 60°), and in Fig. 4(b) for the non-regular angles. Again, the MD results are very well characterized by the continuum model.
(a) $30^{\circ}, 60^{\circ}$ dislocations

(b) $10.89^{\circ}, 19.11^{\circ}, 40.89^{\circ}, 49.11^{\circ}, 70.89^{\circ}, 79.11^{\circ}$ dislocations

(c) 0.0° (screw) dislocation

Fig. 4. Line energies as a function of dislocation spacing S_{x} for (a) 30° and 60°, (b) 10.89°, $19.11^{\circ}, 40.89^{\circ}, 49.11^{\circ}, 70.89^{\circ}$, and 79.11°, and (c) 0° dislocations. Error bars represent the standard deviation of MD data.

The $\beta=0^{\circ}$ case imposes challenges for fcc metals due to the annihilation of screw dislocations by cross-slip. As a result, the core energy of a screw dislocation in an fcc metal has never been computed atomistically to our knowledge. Through extensive iterations, we find that when the y dimension is increased above 522 (111) planes to reduce the attraction between opposite dislocations, and when the temperature is reduced below 10 K to trap dislocations in metastable locations, the combination of both conditions can prevent cross-slip. Fortunately, the use of a low temperature does not impact the results as has been shown in Fig. 3(a). Hence, we perform simulations at 10 K for the $\beta=0^{\circ}$ case using crystals that contain 522 (111) planes in y , $16(2 \overline{2} 0)$ planes in z , a dipole height d of 261 (111) planes, and various x dimensions from 108 to $228(22 \overline{4})$ planes. The results obtained for the 0° dislocations are shown in Fig. 4(c). Again, the data points fall right on top of the continuum line.

The MD simulations discussed above use a fixed z dimension assumed in the dislocation elastic theories (plane strain). We have also performed similar MD simulations where the z dimension is allowed to relax, and the results are included in Fig. 4(a). Interestingly, the flexible z condition produces exactly the same results as the fixed z condition.

C. Dislocation Core Energies

To compute the core energy using anisotropic theory, we use the cubic elastic constants given above in conjunction with the MadSum code [2,20]. In the isotropic theory, the continuum expression for the energy of periodic dislocation arrays, Eq. (A1), involves four parameters: dislocation core radius r_{0}, core energy E_{c}, and elastic constants G and v. These parameters can be obtained by fitting to the MD data. However, the magnitude of the core radius r_{0} is not unique. Conventionally, the only requirement for r_{0} is that any region outside r_{0} satisfies linear elasticity theory. Obviously, there exists a minimum value $r_{0}^{\min }$ so that any $\mathrm{r}_{0} \geq r_{0}^{\min }$ can be taken as a valid
core radius. This is because elasticity theory breaks down very near the dislocation core, causing the elastic energy to go to infinity as the core radius goes to zero. Hence, the core radius must be large enough to exclude this unphysical region. On the other hand, the core energy is really just a correction to the linear elastic theory at a given reference core radius r_{0}. As a result, any value of r_{0} (including $r_{0}=0$) can be taken as a valid core radius if the core energy is allowed to be negative. Here we define the minimum value $r_{0}^{\min }$ so that any $\mathrm{r}_{0} \geq r_{0}^{\text {min }}$ will always lead to positive core energies for all values of β. Through trial-and-error fitting, $r_{0}^{\min }$ is determined to be $2.0 \AA$ and $2.5 \AA$ for isotropic and anisotropic theory, respectively.

Unlike the curves shown in Figs. 3 and 4 that are fitted to few MD data points, we now fit all MD data to yield the most precise fit. Table I shows our fitted dislocation core energies with $\mathrm{r}_{0}=10 \AA$ obtained for different character angles, using both anisotropic and isotropic theory. Fits for different core radii all result in identical isotropic elastic constants of $G=0.1830 \mathrm{eV} / \AA^{3}(29.3$ GPa) and $v=0.3874$, very close to the values of $G=0.169 \mathrm{eV} / \AA^{3}(27 \mathrm{GPa})$ and $v=0.34$ commonly cited for aluminium $[24]^{\dagger}$, confirming the robustness of our results. Comparing the isotropic and anisotropic core energies, we find that despite the nearly isotropic behaviour of aluminium, the core energies predicted by the two theories are different. For this value of the core radius, anisotropic theory gives that the core energy varies by nearly a factor of two from β $=0^{\circ}$ to 90° while in isotropic theory the core energy is nearly independent of character angle. Note, however, different core energies do not mean that the two theories are inconsistent. In fact, the two theories yield exactly the same total dislocation energies as shown in Fig. 3. The

[^1]differences just mean that the two theories have different allocations of the total dislocation energies to the core and the elastic components.

To reiterate, our results are strongly validated from numerous aspects: 1) the convergence to a single core energy at different dislocation spacings for a given character angle and a given core radius, 2) the convergence to a single set of isotropic elastic constants for all dislocation spacings, orientations, and core radii, and 3) the strong match between MD results and both the isotropic and anisotropic continuum results.

Table I. Dislocation core energies $E_{c}^{\text {iso }}$ and $E_{c}^{\text {aniso }}(\mathrm{eV} / \AA)$) obtained from isotropic and anisotropic elasticity theories for a core radius of $\mathrm{r}_{0}=10 \AA$.

Dislocation angle β	$E_{c}^{\text {iso }}$	$E_{c}^{\text {aniso }}$
00.00°	0.295	0.170
10.89°	0.291	0.197
19.11°	0.296	0.233
30.00°	0.306	0.271
40.89°	0.298	0.254
49.11°	0.308	0.267
60.00°	0.314	0.297
70.89°	0.320	0.293
79.11°	0.316	0.294
90.00°	0.315	0.318

D. Analytical Expression of Core Energy as a Function of Angle β

Using our MD results and isotropic elasticity theory, we can derive an analytical expression for the dislocation core energy at any character angle and with any core radius. To do so, we make the following assumption: increases in the core energy as the core radius increases beyond the minimum core radius are due to elastic energy. Hence, the core energy can be written as
$E_{c}\left(r_{0}, \beta\right)=E_{c}^{r e f}(\beta)+\frac{G b^{2}}{4 \pi}\left(\cos ^{2} \beta+\frac{\sin ^{2} \beta}{1-v}\right) \ln \frac{r_{0}}{r_{0}^{r e f}}$.

The first term is the core energy at a reference core radius, $r_{0}^{\text {ref }}\left(r_{0}^{\text {ref }} \geq r_{0}^{\text {min }}\right)$, and the second term is the change in elastic energy attributed to the core upon changing the core radius from $r_{0}^{\text {ref }}$ to $\mathrm{r}_{0}\left(\mathrm{r}_{0} \geq r_{0}^{\text {min }}\right)$ [25]. Note that the same reasoning could be applied using anisotropic elasticity, however an analytical expression is not readily available. To complete this expression, we need to develop an analytical form for the core energy $E_{c}^{\text {ref }}(\beta)$ at a chosen reference core radius $r_{0}^{\text {ref }}$. In principle, $E_{c}^{\text {ref }}(\beta)$ should depend on crystal structure. For example, in body-centred-cubic materials, screw dislocations have non-planar cores whereas edge dislocations have planar cores so that these two types of dislocations could have different core energies [26]. Examining our data, however, we find that the $E_{c}^{\text {ref }}(\beta)$ can be expressed in the same form as the elastic energy [25]:
$E_{c}^{r e f}(\beta)=A \cdot \sin ^{2} \beta+B \cdot \cos ^{2} \beta$

For example, if we choose a reference radius of $r_{0}^{\text {ref }}=30 \AA$, then the parameters $\mathrm{A}=0.5294$ eV / \AA and $\mathrm{B}=0.4528 \mathrm{eV} / \AA$, which correspond respectively to the edge and screw dislocation core energies derived from MD simulations described above. In Fig. 5 we plot our core energy data for core radii of $\mathrm{r}_{0}=2,10,20,30,40$, and $50 \AA$ with curves generated using Eq. (2) and (3) at $r_{0}^{\text {ref }}=30 \AA$. The figure indicates that the core energies of aluminium very well satisfy Eqs. (2) and (3) for all character angles and core radii; this constitutes the major result of the present work. We are currently implementing this finding in dislocation dynamics simulation models.

Fig. 5. Dislocation core energies as a function of dislocation angle β at different core radii r_{0}.

E. Effects of Dislocation Core Structures

We have used elastic energy expressions for perfect dislocations to compute the core energy of a dislocation in an fec solid that has dissociated into two partial dislocations bounding a stacking fault. Furthermore, we have found that the minimum core radius for this analysis is much smaller than the separation distance between these partial dislocations (shown below). With analysis of the core structure of an isolated dislocation, we can gain further insight into the physics of extended dislocation cores.

The front-view ($x-y$) of the atomic configuration with $\beta=90^{\circ}$ (edge) dislocations is examined in Fig. 6(a). As expected, the perfect dislocation with a $\vec{b}=[1 \overline{1} 0] \mathrm{a} / 2$ Burgers vector splits into two partials with Burgers vectors of $\vec{b}_{I}=[2 \overline{1} \overline{1}] \mathrm{a} / 6$ and $\vec{b}_{I I}=[1 \overline{2} 1] \mathrm{a} / 6$. Because aluminium has a large stacking fault energy of $\eta_{\mathrm{sf}}=133 \mathrm{~mJ} / \mathrm{m}^{2}$ [19], a relatively small separation
distance of $\lambda \approx 14 \AA$ between the two partials is observed. However, this separation distance is significantly larger than the minimum core radius discovered above.
(a) 90° dislocation from MD

(b) $\mathbf{b}_{\text {I }}$ and $\mathbf{b}_{\text {II }}$ at $\lambda=0$
$\underset{\lambda=0}{\mp}$
(c) $\mathbf{b}_{\mathbf{I}}$ and $\mathbf{b}_{\text {II }}$ at $\lambda=2 \mathrm{r}_{\mathrm{pt}}^{\min }$

$$
\underset{\lambda=2 \mathrm{r}_{\mathrm{pt}}^{\mathrm{min}}}{\mathbf{T}}
$$

Fig. 6. Dissociated core configuration of a $\beta=90^{\circ}$ (edge) dislocation. (a) Front view of MD configuration; (b) schematic of the perfect dislocation; (c) schematic of the two partials separated by $r_{p t}^{\min }$, and (d) schematic of the two partials separated by λ.

To better understand how the energetics of the dissociated structure relates to our results, we compute the energy change when a perfect edge dislocation dissociates into two partials (similar to the approach used by [27]). Since we are focusing on the core structure, we only consider an isolated extended dislocation in an infinite medium (rather than periodic arrays of dislocations like we did above). The line energy of a perfect edge dislocation in isotropic elasticity can be stated as [25]

$$
\begin{equation*}
\Gamma_{p f}=E_{c, p f}\left(r_{p f}, \beta=90^{\circ}\right)+\frac{G b^{2}}{4 \pi(1-v)} \ln \frac{R}{r_{p f}} \tag{4}
\end{equation*}
$$

where the subscript $p f$ denotes a perfect dislocation, $E_{\mathcal{C}, p f}\left(r_{p f}, \beta=90^{\circ}\right)$ is the core energy
associated with the core radius $r_{p f}$, and R is the outer cut-off radius. The energy change $\Delta \Gamma$ when
the two partials move apart is the work done by the stress fields of the partials plus the energy of the stacking fault. To compute these quantities, we consider two stages of separation. First, the separation distance of the two partials increases from $\lambda=0$ to $\lambda=2 r_{p t}$ as shown in Fig. 6(c), where $r_{p t}$ is the core radius of a partial dislocation so that $2 r_{p t}$ is the overlap region of the two partial dislocation cores. During this stage of separation we lump all of the work done into a change in the core energy, leading to an energy change of [18]

$$
\begin{equation*}
\Delta \Gamma_{1}=\left(2 E_{c, p t}+2 r_{p t} \cdot \eta_{s f}\right)-E_{c, p f} \tag{5}
\end{equation*}
$$

i.e., the core energy of the perfect dislocation $E_{c, p f}$ is replaced by the core energies of two partials $2 E_{c, p t}$ plus a stacking fault energy ($\eta_{\text {sf }}$ refers to the stacking fault energy per unit of area). The work done to further separate the two partials from $\lambda=2 r_{p t}$ to $\lambda>2 r_{p t}$, as shown in Figs. 6(c) and 6(d), can be obtained from linear elasticity [18]. Adding in the energy from the stacking fault then gives an energy change of

$$
\begin{equation*}
\Delta \Gamma_{2}=\frac{G b^{2}}{8 \pi}\left(\frac{1}{3}-\frac{1}{1-v}\right) \ln \frac{\lambda}{2 r_{p t}}+\left(\lambda-2 r_{p t}\right) \cdot \eta_{s f} \tag{6}
\end{equation*}
$$

Hence, the total energy difference between the dissociated dislocation, Fig. 6(d), and the perfect dislocation, Fig. 6(b), can be expressed as

$$
\begin{equation*}
\Delta \Gamma=\Delta \Gamma_{1}+\Delta \Gamma_{2}=2 E_{c, p t}-E_{c, p f}+\frac{G b^{2}}{8 \pi}\left(\frac{1}{3}-\frac{1}{1-v}\right) \ln \frac{\lambda}{2 r_{p t}}+\lambda \cdot \eta_{s f} \tag{7}
\end{equation*}
$$

If we assume $r_{p t}=1.0 \AA, \mathrm{~b}=2.8634 \AA$, and use corresponding parameters mentioned above, the elastic and stacking fault components give $\frac{G b^{2}}{8 \pi}\left(\frac{1}{3}-\frac{1}{1-v}\right) \ln \frac{\lambda}{2 r_{p t}}+\lambda \cdot \eta_{s f}=-0.0345 \mathrm{eV} / \AA$. The negative value drives the dissociation of the perfect dislocation.

The total line energy of the extended dislocation is now $\Gamma=\Gamma_{\mathrm{pf}}+\Delta \Gamma$. Using Eqs. (4) and (7) and after some manipulation, we have that
$\Gamma=2 E_{c, p t}+\frac{G b^{2}}{8 \pi}\left[\left(\frac{1}{3}-\frac{1}{1-v}\right) \ln \frac{\lambda}{2 r_{p t}}+\frac{2}{1-v} \ln \frac{r_{p t}}{r_{p f}}\right]+\lambda \cdot \eta_{S f}+\frac{G b^{2}}{4 \pi(1-v)} \ln \frac{R}{r_{p t}}$
Only the last term contributes to the long-range elastic component of the line energy, so we recognize that the core energy we have computed and given in Table I corresponds to the remaining terms:

$$
\begin{equation*}
E_{c}=2 E_{c, p t}+\frac{G b^{2}}{8 \pi}\left[\left(\frac{1}{3}-\frac{1}{1-v}\right) \ln \frac{\lambda}{2 r_{p t}}+\frac{2}{1-v} \ln \frac{r_{p t}}{r_{p f}}\right]+\lambda \cdot \eta_{s f} \tag{9}
\end{equation*}
$$

This analysis demonstrates the connection between the line energy expression for a perfect dislocation, and the line energy expression for an extended dislocation. Note that comparing the long-range elastic interaction terms in Eqs. (4) and (8) shows that $r_{p f}$ is equivalent to $r_{p t}$, meaning that the minimum core radius we have obtained with our atomistic computations actually corresponds to the minimum core radius of the partial dislocations, rather than the overall extended dislocation. This explains why we find a minimum core radius that is much smaller than the separation distance between the partials.

IV. CONCLUSIONS

A robust MD model has been developed to calculate the core energies of mixed dislocations. This model does not require continuum boundary conditions, is applicable for the full character angle range $0^{\circ} \leq \beta \leq 90^{\circ}$, produces strongly convergent results, and is constructed from orthorhombic systems under the plane strain condition consistent with the classical dislocation theories. Based on a high-fidelity bond order potential, we have used this model to
study dislocation core energies of aluminium as a function of dislocation angle β. The following conclusions have been obtained:

1. While dislocations are dissociated, the apparent (mathematical) dislocation core radius in aluminium is as small as $r_{0}=2.0 \AA$ with isotropic elasticity theory and $2.5 \AA$ with anisotropic elasticity theory, despite the fact that the extended core has a width of greater than $14 \AA$. This is because the core radius pertains to the partial dislocations in the core;
2. Values of $r_{0}>2.0 \AA$ can also be used. A larger radius in general leads to a larger core energy. In particular, the increase in core energy always equals the elastic strain energy of the added volume due to the increase in the core radius;
3. In isotropic elasticity theory, dislocation core energy as a function of character angle satisfies an expression of the form $\mathrm{E}_{\mathrm{c}}(\beta)=\mathrm{A} \sin ^{2} \beta+\mathrm{B} \cos ^{2} \beta$, which is similar to the elastic energy.
4. Dislocation energies are independent of temperature over the temperature range considered here $(100-300 \mathrm{~K})$.

V. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US

Department of Energy's National Nuclear Security Administration under contract DE-AC0494AL85000. This work was performed under a Laboratory Directed Research and Development (LDRD) project 165724.

VI. APPENDICES

A. Dislocation Energy under Periodic Boundary Conditions

Following the previous approach for edge dislocations [18], the dislocation line energy Γ for periodic mixed dislocations with a mixed angle β can be derived as:

$$
\begin{equation*}
\Gamma=E_{c}+\frac{G b^{2}}{4 \pi(1-v)} \cos ^{2} \alpha+\sin ^{2} \beta \cdot E_{0, \text { edge }}+\cos ^{2} \beta \cdot E_{0, \text { screw }}+2 \sin ^{2} \beta \cdot \sum_{i=1}^{\infty} E_{i, \text { edge }}+2 \cos ^{2} \beta \cdot \sum_{i=1}^{\infty} E_{i, \text { screw }} \tag{A1}
\end{equation*}
$$

where

$$
\left.\left.\left.\left.\begin{array}{l}
E_{0, \text { edge }}=\frac{G b^{2}}{4 \pi(1-v)}\left\{\ln \left(\frac{d}{r_{0}}\right)+\ln \left(\frac{L_{y}-d}{L_{y}}\right)-\ln \left[G a\left(\frac{L_{y}+d}{L_{y}}\right)\right]-\ln \left[G a\left(2-\frac{d}{L_{y}}\right)\right]\right\} \\
E_{0, \text { screw }}=\frac{G b^{2}}{4 \pi}\left\{\ln \left(\frac{d}{r_{0}}\right)+\ln \left(\frac{L_{y}-d}{L_{y}}\right)-\ln \left[G a\left(\frac{L_{y}+d}{L_{y}}\right)\right] \ln \left[G a\left(2-\frac{d}{L_{y}}\right)\right]\right\}
\end{array}\right\} \begin{array}{l}
4 \pi \cdot i \cdot L_{x} \cdot \operatorname{coth}\left(\frac{\pi \cdot i \cdot L_{x}}{L_{y}}\right) \cdot \sin ^{2}\left(\frac{\pi \cdot d}{L_{y}}\right) \\
E_{i, \text { edge }}=\frac{G b^{2}}{8 \pi(1-v)}\{ \\
L_{y} \cdot \cosh \left(\frac{2 \pi \cdot i \cdot L_{x}}{L_{y}}\right)-L_{y} \cdot \cos \left(\frac{2 \pi \cdot d}{L_{y}}\right) \tag{A5}\\
\ln \left[\cos ^{2}\left(\frac{\pi \cdot d}{L_{y}}\right)+\operatorname{coth}^{2}\left(\frac{\pi \cdot i \cdot L_{x}}{L_{y}}\right) \cdot \sin ^{2}\left(\frac{\pi \cdot d}{L_{y}}\right)\right]
\end{array}\right\}\right]\right\}
$$

In Eqs. (A1) - (A5), E_{c} and r_{0} are the core energy and core radius of an isolated dislocation, Ga is an Euler gamma function, coth and cosh are hyperbolic functions, G is shear modulus, v is Poisson's ratio, b is Burgers magnitude, and α is an angle measuring the dislocation dipole direction (in particular, $\alpha=0^{\circ}$ means vertical dislocation dipole studied in the present work and $\alpha=90^{\circ}$ means horizontal dislocation dipole). Note that Eqs. (A1)-(A3) involve numerous changes compared to the previous work [18]. First, the core radius r_{0} defined here is equivalent to $2 \mathrm{r}_{0}$ defined previously [18]. Second, there is a constant $\frac{G b^{2}}{4 \pi(1-v)} \cdot \cos ^{2} \alpha$ in Eq. (A1) that is counted as elastic contribution whereas in the previous work this constant term is lumped into the core
energy. These two modifications have a zero impact on the model because they do not change the total energy of dislocations; they only change the definition of dislocation core radius and core energy. We modify these definitions so that they are consistent with Hirth and Lothe [25]. Finally, the second term in the parenthesis " $\}$ " of the right hand side of Eqs. (A2) and (A3) is now expressed as $\ln _{\left.\ln \left(\frac{L_{y}-d}{L_{y}}\right) \text { whereas it was expressed as } \ln _{\ln \left(\frac{L_{y}-d}{L_{y}-2 r_{0}}\right)}\right) \text { in the previous work [18]. The }}$ new expression is more rigorous but the effect is negligible because $L_{y} \gg r_{0}$.

Even Eq. (A1) does not have a closed form, it converges very fast so that the error is negligible if a few terms (say 20) are included (in the present work, we included 100 terms). We also wish to point out that Fourier methods can also be used to compute the energies of dipolar dislocation arrays [28,29].

References

1 V. V. Bulatov, and W. Cai, Computer Simulations of Dislocations (Oxford University Press, London, 2006).
2 W. Cai, V. V. Bulatov, J. Chang, J. Li, and S. Yip, Phil. Mag., 83, 539 (2003).
3 W. Cai, V. V. Bulatov, J. Chang, J. Li, and S. Yip, Phys. Rev. Lett., 86, 5727 (2001).
4 J. Li, C. Z. Wang, J. P. Chang, W. Cai, V. V. Bulatov, K. M. Ho, and S. Yip, Phys. Rev. B, 70, 104113 (2004).
5 M. Heggie, R. Jones, and A. Umerski, Philos. Mag. A, 63, 571 (1991).
6 R. Jones, A. Umerski, P. Sitch, M. I. Heggie, and S. Öberg, Phys. Status Solidi A, 137, 389 (1993).

7 A. S. Nandedkar, and J. Narayan, Philos. Mag. A, 61, 873 (1990).
8 U. Trinczek, and H. Teichler, Phys. Status Solidi A, 137, 577 (1993).
9 A. Aslanides, and V. Pontikis, Comp. Mater. Sci., 10, 401 (1998).
10 J. R. K. Bigger, D. A. McInnes, A. P. Sutton, M. C. Payne, I. Stich, R. D. King-Smith, D. M. Bird, and L. J. Clarke, Phys. Rev. Lett., 69, 2224 (1992).

11 S. Ismail-Beigi, and T. A. Arias, Phys. Rev. Lett., 84, 1499 (2000).
12 G. Wang, A. Strachan, T. Cagin, and W. A. Goddard III, Phys. Rev. B, 67, 140101(R) (2003).

13 J. Bennetto, R.W. Nunes, and D. Vanderbilt, Phys. Rev. Lett., 79, 245 (1997).
14 N. Lehto, and S. Öberg, Phys. Rev. Lett., 80, 5568 (1998).
15 X. Blase, K. Lin, A. Canning, S. G. Louie, and D. C. Chrzan, Phys. Rev. Lett., 84, 5780 (2000).

16 E. Clouet, L. Ventelon, and F. Willaime. Phys. Rev. Lett., 102, 055502 (2009).
17 G. Lua, N. Kioussis, V. V. Bulatov, and E. Kaxiras, Mater. Sci. Eng. A, 309-310, 142 (2001).

18 X. W. Zhou, D. K. Ward, J. A. Zimmerman, J. L. Cruz-Campa, D. Zubia, J. E. Martin, and F. van Swol, J. Mech. Phys. Sol., 91, 265 (2016).

19 X. W. Zhou, D. K. Ward, and M. E. Foster, J. Alloys Comp., 680, 752 (2016).
20 MadSum code is available at http://micro.stanford.edu/~caiwei/Forum/2004-08-08MadSum.
21 S. Plimpton, J. Comp. Phys., 117, 1 (1995).
22 LAMMPS download site: lammps.sandia.gov.
23 A. H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford University Press, London, 1953).

24 R. L. Norton, Machine Design (Pearson-Prentice Hall, Upper Saddle River, NJ, 2006).
25 J. P. Hirth, and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).
26 V. Vitek, Cryst. Latt. Def., 5, 1 (1974).
27 T. Tsuru, and D.C. Chrzan, Scientific Reports, 5, 8793 (2015).
28 T. Mura, Proc. Roy. Soc., 280, 528 (1964).
29 M. S. Daw, Comp. Mater. Sci., 38, 293 (2006).

[^0]: * These elastic constants differ slightly from the 0 K constants of the interatomic potential $\left(\mathrm{C}_{11}=114.9, \mathrm{C}_{12}=62.6\right.$, and $\mathrm{C}_{44}=31.6 \mathrm{GPa}$). We used slightly different values in order to achieve an optimal fit with the MD results which were obtained at 300 K .

[^1]: ${ }^{\dagger}$ Note that while aluminium is elastically anisotropic like most crystalline solids, it exhibits a relatively weak anisotropy ratio of $\mathrm{A}=1.2$ in both experiments [24] and our potential [19].

