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We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin
Hall states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed
as “boundary degeneracy”) does not require superconducting proximity effect and can be created by
simply applying a depletion gate to the quantum spin Hall material and using a generic spin-mixing
term (e.g., due to backscattering) to gap out the edge modes. We construct an exactly soluble
microscopic model manifesting this topological degeneracy and solve it using the recently developed
technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016)]. The corresponding string
operators spanning this degeneracy are explicitly calculated. It is argued that the proposed scheme
is experimentally reasonable.

I. INTRODUCTION

There has been significant recent interest and progress
in constructing theoretical models that exhibit exotic,
non-Abelian anyons as either intrinsic excitations or
states captured by extrinsic defects in various topolog-
ical phases1. Of particular interest here is the possibility
to create such non-Abelian anyons in otherwise Abelian
topological states. This was explicitly demonstrated in
theoretical proposals featuring fractional (Abelian) topo-
logical states proximity-coupled to superconductors and
in bilayer quantum Hall states with extrinsic twist de-
fects2–7. However, there are serious challenges in the
experimental realization of these parafermionic models
due to a number of poorly-compatible ingredients that
have to co-exist in a single system (in particular, super-
conductivity and topological order). Moreover, in most
cases, braiding properties of the non-Abelian anyons are
not sufficiently rich to host universal topological quan-
tum computation.

Recent works have shown that multiple gapped bound-
aries connected with a common topological bulk can play
the role of non-Abelian excitations as long as the bulk
supports an intrinsic Abelian topological order8–12. The
topological ground state degeneracy in these systems has
been dubbed as “boundary degeneracy”. In a recent
preprint, Barkeshli and Freedman put forward that topo-
logical order with a multiply connected gapped boundary
can manifest a richer set of topologically protected uni-
tary transformations13, raising the possibility of realizing
universal quantum computation in systems with no su-
perconducting proximity.

The simplest system that is a candidate for manifest-
ing boundary degeneracy is a fractional quantum spin
Hall (FQSH) state of filling fraction ν = 1/k with mul-
tiple holes with a boundary (which can be created us-

       

       

       

       

       
Figure 1. FQSH phase (green shading) on a multiply con-
nected 2D surface. Interface between holes (in white) man-
ifest two counter propagating edge modes corresponding to
the two spin components.

ing a depletion gate) (Fig. 1). Each hole will manifest
two counter propagating edge modes corresponding to
the two components of spin. We model these edge modes
by chiral Luttinger liquids with opposite chiralities. If
we allow direct tunneling between the two edge theories,
it would gap them out. Punching out N holes and glue-
ing the two spin component together along the edges is
equivalent to creating a fractional quantum Hall state on
a manifold of genusN−18,12,14, which is known to possess
the topological degeneracy kN−1. This proposal for cre-
ating topological degeneracy is conceptually simple and
could be experimentally implemented immediately when
a FQSH is realized. Furthermore, magnetic impurities,
which were thought as a nuisance in the current experi-
mental works on QSH effect, can be an advantage towards
gapping the edge modes of a FQSH system, which is a
necessary step in engineering our topological degeneracy.

In this work, we construct an exactly soluble micro-
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scopic model manifesting topological boundary degener-
acy. Our construction is rooted in the recently devel-
oped15 Hamiltonian formulation. The relevant topolog-
ical physics manifests in the effective Hilbert space in
the non-perturbative backscattering limit. Within this
framework, we prove the existence of a robust topological
degeneracy and derive the string operators that span this
degeneracy. Our approach in this sense differs from the
topological quantum field theory methods12 and effective
boundary action analysis8. Towards the end, we outline
possible experimental platforms to engineer and probe
topological degeneracy via multiply connected gapped
boundaries.

II. MODEL

We begin with a microscopic model for a perfectly
clean homogeneous edge of the ith hole modeled by
two chiral Luttinger liquids with opposite chiralities, one
for each spin direction. We then add non-perturbative
backscattering terms that mix the two spin components
and gap the edge modes. Finally, we connect all the edges
(holes) by a common fractionalized bulk. The formalism
we consider naturally incorporates this as a constraint on
the allowed charge at the edge. We now construct and
systematically solve a microscopic model that encapsu-
lates all these aspects.

The Hamiltonian for a perfectly clean, homogeneous
edge of the ith hole is given by

Hi
0 =

kvi
4π

∫ L/2

−L/2
[(∂xφ

i
↑(x))2 + (∂xφ

i
↓(x))2]dx, (1)

where v is the velocity of the edge modes of circumfer-
ence L. φi↑/↓ are bosonic fields satisfying canonical com-

mutation relations [φiσ(x), ∂yφ
j
σ′(y)] = δijδσσ′

2πi
kσ
δ(x−y),

where k↑ = −k↓ = k. The density of spin-up electrons at
position y at the ith hole is given by ρi↑(y) = 1

2π∂yφ
i
↑,

while the density of spin-down electron is ρi↓(y) =
1

2π∂yφ
i
↓. The total charge Qi and total spin Siz on the

edge of the ith hole are given by Qi = Qi↑ + Qi↓ and

Siz = 1
2 (Qi↑ −Qi↓) with

Qiσ =
1

2π

∫ L/2

−L/2
∂yφ

i
σdy, σ =↑, ↓ .

The spin-up and spin-down electron creation operators

at each hole take the form ψi†↑ = eikφ
i
↑ , ψi†↓ = e−ikφ

i
↓ .

Note that Hi corresponds to a collection of decoupled
edge modes, and the key information that these modes
are actually multiply-connected via a common frac-
tionalized bulk is missing. This multiple connectedness
of the holes results in two quantization conditions on
Qi↑, Q

i
↓.

              

       

       

       

Figure 2. FQSH phase (green shading) with gapped bound-
aries. Red dots denote an array of magnetic impurities that
gap edges in the limit of continuum backscattering.

Qi↑,↓ ∈ Z× 1/k and
∑N
i=1Q

i
↑,↓ ∈ Z.

Physically, these quantization conditions require that
the edge modes corresponding to holes contain frac-
tional charges in multiples of 1/k and that the net
charge on all the holes adds up to be an integer mul-
tiple of the electronic charge. For example, the edge
of an isolated single hole cannot carry any excess frac-
tional charge. A closely related fact to this quantiza-
tion is that the bosonic operators φi↑(y) and φi↓(y) are
actually compact degrees of freedom which are only de-
fined modulo 2π/k. Following Ref.15, we dynamically
impose the quantization on Qi↑, Q

i
↓. To this end, we

add Hi
lq = −U cos(2πkQi↑) − U cos(2πkQi↓) to the edge

Hamiltonian of the ith hole. We then impose the sec-
ond condition, corresponding to the global quantization
of the total charge on all holes, by adding a global term

Hgq = −U cos(2π
∑N
i Q

i
↑) − U cos(2π

∑N
i Q

i
↓). Notice

that both quantization conditions are imposed by let-
ting U → ∞. The Hilbert space corresponding to the
clean edge is spanned by the complete orthonormal ba-
sis {|qi↑, qi↓, {nip↑}, {nip↓}〉}, where the quantum numbers

qi↑, q
i
↓ correspond to the total charge associated with

the two spin species ranging over Z × 1/k (subject to∑
i q
i
↑,↓ ∈ Z), while nip↑, n

i
p↓ are the neutral phonon ex-

citations of momentum p ranging over all nonnegative
integers for each value of p = 2π/L, 4π/L, ....

The next step is to add backscattering terms that
gap the above defined boundary modes by scattering
spin-up electrons to spin-down electrons. A continuum
of backscattering terms in a fermionic representation

can be expressed as Hi
bs =

∫ L
0

U(x)
2 ψi†(x)ψi(x) + H.c..

The corresponding bosonized representation can be writ-

ten as Hi
bs =

∫ L
0
U(x) cos(k[φi↑(x) + φi↓(x)]). The to-

tal Hamiltonian for the ith hole Hi
0 + Hi

bs corresponds
to a gapped edge in the large U limit. Now we are
set to write down the full microscopic Hamiltonian cor-
responding to the N multiply connected hole bound-

aries: H = Hgq +
∑N
i=1H

i
0 + Hi

bs + Hi
lq. The Hamil-

tonian H can be mapped onto a class of exactly solu-
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ble Hamiltonians by replacing the continuum backscat-

tering term
∫ L

0
U(x) cos(k[φi↑(x) + φi↓(x)]) with an array

of M impurity scatterers U
∑M
j=1 cos(k[φi↑(xj) +φi↓(xj)])

(see Fig. 2). The continuum result is then recovered in
the thermodynamic limit of L,M → ∞ with U and
L/M fixed. Without loss of generality, we periodi-
cally arrange the backscattering terms at each hole as
x1..M = 0, .., (M − 1)s, where s is the spacing between
two impurity points. After this replacement, the Hamil-
tonian H is exactly soluble in the limit U → ∞. To
make contact with with the formalism outlined in Ref.15,
we rewrite the above model as

H = H0 − U
N(M+2)+2∑

i=1

cos(Ci). (2)

In the above notation, the first term H0 =
∑N
i H

i
0

contains the dynamics of the clean edge. The sec-
ond term contains the back scattering terms on all the
holes and their corresponding charge quantization con-
ditions. We have organized the cosine arguments in
the following way. The first NM terms consist of all
the back-scattering terms {C1..M , .., C(N−1)M+1...NM} =

{k(φ1
↑(x1..M ) + φi↓(x1..M ))...k(φN↑ (x1..M ) + φN↓ (x1..M ))}.

The quantization condition of each hole boundary is
given by {CNM+1, .., CNM+N} = {2πkQ1

↑...2πkQ
N
↑ } and

{CNM+N+1, .., CNM+2N} = {2πkQ1
↓...2πkQ

N
↓ }. Finally,

the two conditions on the total charge are given by

{CN(M+2)+1, CN(M+2)+2} = {2π∑N
i Q

i
↑, 2π

∑N
i Q

i
↓}.

III. REVIEW OF FORMALISM

In this section we review the general formalism for solv-
ing the class of Hamiltonians central to our discussion,

H = H0 − U
M∑
i=1

cos(Ci). (3)

Here we we have defined H0 as a quadratic function of
position and momentum variables {x1, p1, x2, p2, ...} and
the Ci are linear functions of these variables. We restrict
to the case where {C1, C2, ...} are linearly independent,
[Ci, Cj ] is an integer multiple of 2πi for all i, j such that
the cosine terms commute. The detailed recipe for devel-
oping a low energy theory in the large U limit is outlined
in Ref. 15. Here we provide a skeletal recap of this recipe.

In the limit U →∞, the arguments of the cosine terms
are pinned to integer multiples of 2π. The low energy
spectrum of H in this limit can be described by an ef-
fective quadratic Hamiltonian Heff acting within an ef-
fective Hilbert space Heff . The effective Hamiltonian is
given by,

Heff = H0 −
M∑

i,j=1

(M−1)ij
2

·ΠiΠj , (4)

where the operators Π1, ...,ΠM are defined by Πi =
1

2πi

∑M
j=1Mij [Cj , H0] and whereMij is a matrix defined

by M = N−1, Nij = − 1
4π2 [Ci, [Cj , H0]]. Πi operators

satisfy [Ci,Πj ] = 2πiδij by construction.
The simple physical intuition is that the low-energy

physics of H in the limit U → ∞ does not contain the
dynamics of Ci’s. Thus the term generating the dynamics
(M−1)ij

2 ΠiΠj must be removed from the effective Hamil-
tonian.

This effective Hamiltonian is defined on an effective
Hilbert space Heff, which is a subspace of the original
Hilbert space H and which consists of all states |ψ〉 sat-
isfying

cos(Ci)|ψ〉 = |ψ〉, i = 1, ...,M. (5)

We can directly find the creation and annihilation op-
erators for Heff by finding all operators a that obey
[a,Heff] = Ea. Finding creation and annihilation opera-
tors for the Heff is equivalent to solving the equation,

[a,H0] = Ea+
∑
j

λj [Cj , H0]

[a,Ci] = 0, i = 1, 2, ... (6)

where λj ’a are like Lagrange multipliers imposing the
constraint due to the large cosine terms and E is arbi-
trary scalar with E 6= 0 (E > 0 corresponds to “annihi-
lation operators” , and E < 0 corresponds to “creation
operators”. The normalized creation/annihilation oper-
ators satisfy,

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0 (7)

We now construct a complete set of quantum numbers
for labeling the eigenstates of Heff. This steps nicely
fleshes out the physical structure of the effective Hilbert
space Heff . With this motivation in mind, consider the
object Zij be the M ×M matrix defined by

Zij =
1

2πi
[Ci, Cj ] (8)

The matrix Zij is integer and skew-symmetric, but oth-
erwise arbitrary. Next, let

C ′i =

M∑
j=1

VijCj+χi (9)

for some matrix V and some vector χ. Then, [C ′i, C
′
j ] =

2πiZ ′ij where Z ′ = VZVT . The second step of the recipe
is to find a matrix V with integer entries and determinant
±1, such that Z ′ takes the simple form

Z ′ =

0I −D 0
D 0I 0
0 0 0M−2I

 , D =


d1 0 . . . 0
0 d2 . . . 0
...

...
...

...
0 0 . . . dI


(10)
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Here I is some integer with 0 ≤ I ≤M/2 and 0I denotes
an I × I matrix of zeros. In mathematical language,
V is an integer change of basis that puts Z into skew-
normal form. It is known that such a change of basis
always exists, though it is not unique. After finding an
appropriate V, the offset χ should then be chosen so that

χi = π ·
∑
j<k

VijVikZjk (mod 2π) (11)

The reason for choosing χ in this way is that it ensures
that eiC

′
i |ψ〉 = |ψ〉 for any |ψ〉 ∈ Heff, as can be easily

seen from the Campbell-Baker-Hausdorff formula.
The complete low energy spectrum of Heff can always

be written in the form

Heff =

K∑
k=1

Eka
†
kak + F

(
C ′2I+1, ..., C

′
M

)
(12)

where F is some (a priori unknown) quadratic function.
As a consequence of this construction, we note that the
following operators all commute with each other:

{eiC′1/d1 , ..., eiC′I/dI , eiC′I+1 , ..., eiC
′
2I , C ′2I+1, ..., C

′
M ,

a†1..Ka1..K} (13)

We denote the simultaneous eigenstates by

|θ1, ..., θI , ϕ1, ..., ϕI , x
′
I+1, ..., x

′
M−I , n1, ..., nK〉

or, in more abbreviated form, |θ,ϕ,x′,n〉.
By construction the |θ,ϕ,x′,n〉 states form a complete

basis for the Hilbert space H. A subset of these states
form a complete basis for the effective Hilbert space Heff.
This subset consists of all |θ,ϕ,x′,n〉 for which

1. θ = (2πα1/d1, ..., 2παI/dI) with αi = 0, 1, ..., di−1.

2. ϕ = (0, 0, ..., 0).

3. (x′I+1, ..., x
′
M−I) = (q1, ..., qM−2I) for some integers

qi.

We will denote this subset of eigenstates by {|α, q,n〉}.
Putting this together, we can see that the |α, q,n〉 are
eigenstates of Heff, with eigenvalues

E =

K∑
k=1

nkEk + F (2πq1, ..., 2πqM−2I) (14)

A key feature of Eq. 14 which is worth mentioning is
that the energy E is independent of the quantum num-
bers α1, ..., αI . Since αi ranges from 0 ≤ αi < di − 1, it
follows that every eigenvalue of Heff has a degeneracy of
(at least)

D =

I∏
i=1

di (15)

IV. FULL ENERGY SPECTRUM WITH
BOUNDARY DEGENERACY

In this section we apply the recipe outlined in the pre-
vious section to the Hamiltonian defined in Eq. (2). W
calculate the low-energy effective Hamiltonian Heff and
the low-energy Hilbert space Heff corresponding to H in
the limit U →∞. The effective Hamiltonian is given by

Heff = H0 −
N(M+2)+2∑

i,j=1

(M−1)ij
2

·ΠiΠj , (16)

where the operators Π1, ...,ΠN(M+2)+2 are defined

by Πi = 1
2πi

∑N(M+2)+2
j=1 Mij [Cj , H0] and where

Mij is a matrix defined by M = N−1, Nij =
− 1

4π2 [Ci, [Cj , H0]]. Πi operators satisfy [Ci,Πj ] = 2πiδij
by construction. This effective Hamiltonian is defined on
an effective Hilbert space Heff, which is a subspace of the
original Hilbert space H and which consists of all states
|ψ〉 satisfying cos(Ci)|ψ〉 = |ψ〉, i = 1, ..., N(M+2)+2.
We can directly find the creation and annihilation op-
erators for Heff by finding all operators a that obey
[a,Heff] = Ea. Putting this all together, we see that
the most general possible creation/annihilation operator
for Heff is given by

aipm =

√
k

4π|p|s

∫ L/2

−L/2
[(eipy∂yφ

i
↑ + e2ipxme−ipy∂yφ

i
↓).

·Θ(xm−1 < y < xm)]dy

Here the index m runs over m = 1, ...,M , i runs over the
holes i = 1, ..., N , while p takes values ±π/s,±2π/s, ....

The operators are normalized to yield [aipm, a
†
i′p′m′ ] =

δpp′δmm′δii′ for p, p′ > 0. The cosine terms imposing
quantization/compactness condition naturally forbids a
to be an explicit function of the bosonic field φ.

We now construct a complete set of commuting op-
erators for labeling the eigenstates of Heff. In order
to do this, we consider the integer and skew-symmetric
(N(M + 2) + 2) × (N(M + 2) + 2) matrix Zij defined

by Zij = 1
2πi [Ci, Cj ]. Let C ′i =

∑N(M+2)+2
j=1 VijCj + χi

for some matrix V such that [C ′i, C
′
j ] = 2πiZ ′ij , where

Z ′ = VZVT . The offset χi must be chosen to be χi =
π ·∑j<k VijVikZjk (mod 2π) such that eiC

′
i |ψ〉 = |ψ〉 is

satisfied for any |ψ〉 ∈ Heff. We then find a matrix V
with integer entries and determinant ±1, such that Z ′
takes the simple form

Z ′ =

0N −DN 0
DN 0N 0
0 0 0NM+2

 , DN =


1 0 . . . 0
0 k . . . 0
...

...
...

...
0 0 . . . k

 .

(17)
Here 0N denotes an N×N matrix of zeros. V is an integer
change of basis that puts Z into skew-normal form. In
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theC ′ basis, the diagonalized low-energy effective Hamil-
tonian Heff takes the form

Heff =

N∑
i=1

M∑
m=1

∑
p>0

vpa†ipmaipm+F (C ′2N+1, ..., C
′
N(M+2)+2),

(18)
where the sum runs over p = π/s, 2π/s, ... and where F
is some quadratic function of NM + 2 variables associ-
ated with the 0NM+2 block of the Z ′ij matrix. The exact
form of F does not play a role in the analysis to follow
and we keep it general (even though it can be computed
following Ref.15). Using the commutation algebra of the
C ′i operators, we can construct the complete set of oper-
ators that commute with each other and with Heff. The
effective Hilbert space Heff is then spanned by the unique
simultaneous eigenstates {|α, q, {nipm}〉} satisfying

eiC
′
1,N+1 |α, q, {nipm}〉 = |α, q, {nipm}〉,

eiC
′
2,..,N/k|α, q, {nipm}〉 = ei2πα2..N/k|α, q, {nipm}〉,

eiC
′
N+2,..,2N |α, q, {nipm}〉 = |α, q, {nipm}〉,

C ′2N+1...N(M+2)+2|α, q, {nipm}〉 = 2πq1..NM+2|α, q, {nipm}〉,
a†ipmaipm|α, q, {nipm}〉 = nipm|α, q, {nipm}〉. (19)

Here the label nipm runs over non-negative integers, while
α is an abbreviation for the (N−1)-component integer
vector (α2, ..., αN ) where α2..N ’s run over {0...k − 1}.
{|α, q, {npm}〉} basis states are also eigenstates of Heff

with the total energy given by

E =

N∑
i=1

M∑
m=1

∑
p>0

vpnipm + F (2πq1, ..., 2πqNM+2). (20)

There are two important features of the above spectrum.
a) E has a finite energy gap of order v/s where s =
L/M . b) The spectrum E is independent of the quantum
numbers α. In other words, every state, including the
ground state, has a degeneracy of

D = kN−1 (21)

since this is the number of different values that α ranges
over. This degeneracy agrees with the prediction made
in the introduction.

V. STRING OPERATORS

In the above analysis, we were able to identify quan-
tum numbers and the complete set of commuting oper-
ators associated with the effective Hilbert space. From
these commuting operators we can deduce the so-called
“string operators” that span the degenerate subspace.
The string operators in the primed basis are given by

{eiC′2,..,N/k, eiC′N+2,..,2N/k}. In the unprimed basis, these

              

       

       

       

       

       

       

       

       

M ! 1
N Gapped holes

N-1 genus manifold

Figure 3. FQSH phase (green shading) with gapped bound-
aries. Red dots denote an array of magnetic impurities that
gap edges in the limit of continuum backscattering (right).
N gapped boundaries multiply connected through a bulk is
equivalent to a FQH state of 1/k filling on a N − 1 genus
manifold.

operators are defined as

{ei2π(Qi↑−Q
i
↓),

j∏
r=1

ei(φ
r
↑(x)+φr↓(x))},

i = 1, .., N − 1, j = i+ 1, .., (22)

Note that the above operators are closely related to the
parafermion operators and are fixed by the non-unique
choice of V. One can obtain the matrix representa-
tion of these string operators by acting in the basis
states spanned by the degenerate ground state subspace
|α, 0, 0〉 ≡ |α〉.

e±iC
′
i/k|α〉 = e±i2παi/k|α〉

e±iC
′
i+N/k|α〉 = |α± ei−1〉, i = 2...N.

Here ei denotes the (N − 1)-component vector ei =
(0, ..., 1, ..., 0) with a “1” in the ith entry and 0 every-
where else. The addition of ei is performed modulo
k. Note that the above equations imply that the op-
erators e±iC

′
i/k act like “clock” matrices for i = 2, ..., N ,

while the operators e±iC
′
i/k act like “shift” matrices for

i = N + 2, ..., 2N ; thus these operators generate a gener-
alized Pauli algebra (a.k.a σz, σx).

VI. TOPOLOGICAL ROBUSTNESS

Having established the ground state degeneracy in the
U → ∞ case of our toy model, we proceed to describe
finite-U corrections to Heff. Notice that we only seek
finite-U corrections to the back-scattering terms that gap
the edge. In other words, consider Eq. (2) to be of the

form H = H0−U
∑NM
i=1 cos(Ci)−U ′

∑N(M+2)+2
i=NM+1 cos(Ci)

in the limit where U is finite but U ′ → ∞ (U ′ are asso-
ciated with the quantization condition). In this case,
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the finite-U corrections only generate (instanton-like)
tunneling processes of the form Ci → Ci − 2πni (for
i = 1...NM).

The thermodynamic limit we consider is where L,M →
∞ with U and L/M fixed. Notice that the bound-
ary corresponding to each hole has a finite energy gap
in this limit (of order v/s, where s = L/M). Due to
the gapped spectrum, we can employ perturbative meth-
ods to probe the degeneracy. The most general low-
energy operator generating finite-U corrections to the

ground state can be written as ei
∑NM
j=1 mjΠj · εm with

the sum running over the NM -component integer vec-
tors m = (m1, ...,mNM )15. Here, the εm are unknown

functions of {aipm, a†ipm, C ′2N+1,...N(M+2)+2} that vanish

in the limit U → ∞. The Πi operators are conjugate to
the Ci’s ([Ci,Πj ] = 2πiδij) and thereby generate tun-
neling events associated with the finite-U corrections.
Since the spectrum is gapped in the limit of interest, the
ground state degeneracy and the gap are robust against
small perturbations. The lowest-order non-vanishing ma-
trix elements splitting the degeneracy within the ground
state come from the simultaneous single-instanton tun-
neling event at all M impurity points of a given hole
(m1 = ... = mM = 1, which is an Mth-order instan-
ton process). This lowest-order splitting is suppressed

by a factor of ∼ e−const.M
√
U 15,16, which vanishes in the

thermodynamic limit of M →∞, exemplifying the topo-
logical nature of the degeneracy.

Side gate

Side gate

Back gate Back gate

zzz  

Back gate

Side gate

Side gate

Electron tunneling Quasiparticle tunneling

Figure 4. Schematic to create topological degeneracy (top
view): (Left) FQSH (green shading) with an elongated deple-
tion region (white region) controlled by a back gate. The side
gates create QPC that weakly scatters electrons across the
trench. (Right) FQSH with doped magnetic impurities that
gap the edge. Each hole is shown in white with a red shading
denoting a gapped boundary. The side gate voltage is tuned
to the strong back scattering limit or quasiparticle tunnel-
ing regime. The side gates allow exchange of quasiparticles
between the disconnected gapped boundaries.

VII. EXPERIMENTAL REALIZATION:

The proposed model for topological degeneracy can be
realized in a variety of systems where edges around punc-

tures of a conjugate pair of Abelian fraction quantum
Hall states can be gapped via backscattering. First, an
electron-hole bilayer can exhibit the desired pair of con-
jugate Abelian fractional quantum Hall states, while top
and bottom gates can be used to puncture holes, whose
edges can be coupled via electron tunneling14. Second, a
back gate in an electronic FQSH system can be used to
puncture holes, while magnetic impurities can be used to
flip the spin and thus couple the edges. In Fig 4, we out-
line a generalization of an architecture that has been used
in fractional quantum Hall experiments17. The idea is to
create a central depletion region using a back gate. The
side gates create a quantum point contact that can pinch
off the trench and create multiply connected regions in
the topological state. Notice that in the dual limit after
the pinch-off the holes exchange fractional quasiparticles
thereby changing the topological sectors controlled by the
side gate.

Third, ultracold dipoles, such as magnetic atoms18,19,
polar molecules20,21, and Rydberg atoms22,23, pinned in
optical lattices can be used to realize spin models whose
ground states correspond to bilayer fractional quantum
Hall states24. It is possible that the ground state of such
a bilayer system can be tuned to the desired conjugate
pair of Abelian fractional quantum Hall states, in which
case focused laser beams can be used to locally modify
the spin model to effectively puncture holes and couple
the resulting edges. Fourth, with the help of synthetic
gauge fields and contact interactions, two internal states
of ultracold atoms can exhibit the FQSH effect, while
focused laser beams can be used to puncture holes and
induce transitions between the two internal states, thus
coupling the edges25. Finally, photonic implementations
in radio-frequency26, microwave27, and optical28–33 do-
mains can also be envisioned.
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