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We study the electronic and magnetic structures of quasi-one-dimensional interfaces along the zigzag di-
rection in two dimensional GaN/SiC heterostructures using first-principles calculations. Four representative
heterostructures with six inequivalent interfaces are discussed in detail. Our results indicate that a bulk electric
field will develop only when both interfaces feature no gap states and the total net charge at interfaces are of
opposite sign. All the geometries studied exhibit an intriguing quasi-one-dimensional conductor character, of
which three show finite nonzero magnetic moment. Furthermore, the magnetic moment in one of the systems
can be tuned by applying an electric field along the normal direction of monolayer indicating a strong magneto
electric-coupling. Our analysis shows that the magnetization at the interfaces is closely related to the density of
states at the Fermi level due to the Stoner instability, and the ribbon-width-dependent magnetization for different
geometries implies the existence of an in-bulk electric field.

I. INTRODUCTION

Since the discovery of graphene1, two-dimensional (2D)
semiconductor materials have attracted extensive attention
due to their novel properties and potential applications in
the field of modern nanotechnology2–6. These studies show
that physics at thicknesses of atomic scale can endow the 2D
semiconductors with fascinating electrical, thermal, and me-
chanical properties that differ from those of their bulk coun-
terparts and may bring new breakthroughs in semiconductor
nanomaterials science. Among these, the III-V semiconduc-
tors, especially nitrides including hexagonal boron nitride (h-
BN), aluminum nitride (AlN), gallium nitride (GaN), etc.,
are of great interest due to their many applications in op-
toelectronics, high-temperature, and high-power devices7,8.
For group III-nitrides, GaN has been investigated intensively
both experimentally and theoretically9–11. A wide direct band
gap semiconductor (3.4 eV at room temperature), GaN is an
ideal material for the fabrication of efficient short-wavelength
(blue and ultraviolet) light-emitting diodes (LEDs) and room-
temperature laser diodes12,13.

In recent years, the synthesis of quasi one-dimensional
(1D) GaN nanostructures such as nanowires, nanotubes, and
nanospirals has been achieved. These novel systems are of
great potential for fabricating wide-spectrum LEDs and other
nanoscale devices14–16. Freeman et al.17 have predicted that
when in the form of an ultrathin film GaN and silicon carbide
(SiC) sheets transform to a 2D planar graphene-like struc-
ture. Theoretical investigations have shown that GaN and SiC
monolayer sheets can form 2D stable nanostructures.18 Re-
cently, ultrathin graphitic SiC nanoflakes with thickness down
to 0.5–1.5 nm have been fabricated by Lin19 via the method
of mechanical exfoliation in solution. In addition, Liu et al.20

have shown that planar graphene/h-BN heterostructures can
be formed by growing graphene in lithographically patterned
h-BN atomic layers. On the theoretical side, AlN(ZnO)/SiC
interfaces have been examined recently21, but only two types
of stoichiometric interfaces were considered, one that can be
characterized as AaBaAbBb (A= cation; B= anion; a refers

to type a material and b type b) and the other as AbBbAaBa.
So far, theoretical work has mainly focused on the electronic
properties of pure low-dimensional planar materials (bulk or
ribbon) such as GaN, AlN, SiC, ZnO etc.11,22–26. Based on ex-
perimental developments, because of the low lattice mismatch
(3.4%) between the SiC and GaN, and to potentially stimu-
late experimental fabrication, it merits a theoretical investiga-
tion on stability and physical properties of 2D heterogeneous
GaN/SiC sheets. We thus carried out a thorough study of in-
terfaces between the two 2D materials. Understanding the
electronic and magnetic properties of the 2D heterogeneous
structures can provide importance guidance for future nano-
electronic device designs.

In this study, we investigate six inequivalent GaN/SiC in-
terfaces in four geometries using the density-functional the-
ory (DFT) method27. We perform a systematic analysis of the
electronic and magnetic properties of each interface. We ad-
dress problems such as the physical conditions under which
an electric field can appear inside the bulk material, and dis-
cuss the underlying mechanism for induced magnetization at
the interfaces. The relationship between the existence of the
in-bulk electric field and the characteristics of the total mag-
netization evolving with the ribbon width of each material are
also examined.

The outline of this paper is as follows. The computational
methods and model are described in Section II. Section III
presents the results and a discussion, which focuses on the
stability and energetics of each geometry, the electronic and
magnetic properties of all the inequivalent interfaces. Finally,
conclusions are given in Section IV.

II. MODEL AND METHODS

Our calculations are performed based on density-functional
theory (DFT)27 with the generalized gradient corrected
Perdew-Burke-Ernzerhof (PBE)28 exchange-correlation func-
tional. Projector-augmented plane wave (PAW)29,30 poten-
tials are used to describe the ion-electron interactions, imple-
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FIG. 1. (Color online) Panels (a-d) show top views of the four possible different atomic arrangements at GaN/SiC interfaces, denoted as
geometries Geo 1–4. The red arrows indicate the interface positions. Each geometry has two GaN/SiC interfaces, labeled I to VIII. Dashed
rectangles indicate the computational supercells of the studied systems.

mented in the Vienna ab initio simulation package (vasp)31,32.
The plane-wave cutoff is 500 eV and the threshold for self-
consistency and structure relaxation are set as 10−5 eV and
0.01 eV/Å, respectively. A combination of 1 × 21 × 1 and
1× 101× 1 k-point samplings are applied for total energy and
density of states calculations, respectively.

For calculations of the response to an external electric field,
we use the effective screening medium (ESM)33,34 method as
implemented in the quantum espresso package35. To apply
the electric field in the direction perpendicular to the inter-
faces, we construct nanoribbons with structures of vacuum-
SiC/GaN/SiC-vacuum and vacuum-GaN/SiC/GaN-vacuum.
Edges of nanoribbons are terminated by hydrogen to remove
dangling bonds. The electric field across the nanoribbons is
chosen to be 0.01 V/Å.

Supercells containing two SiC/GaN interfaces along the
ribbon directions are built (the y-direction in Fig.1) and the
widths of ribbons are allowed to vary. In this paper we report
four representative geometries (denoted as Geo 1 to Geo 4;
see Fig. 1). We label the eight interfaces from I to VIII, of
which the pairs II and IV and also VI and VIII are equiva-
lent. The width of the vacuum layer has been set to be 25 Å
to prevent interactions between adjacent supercells in the z-
direction (Fig.1). The width of the supercell normal to the in-
terfaces is set to be 2m where m is the number of zigzag chains
in the ribbon, so that both the SiC and GaN nanoribbons are
of width m. Because of the intermixing at interfaces I and V,
the nominal widths for SiC and GaN in Geo 1 and Geo 3 are
respectively m + 1/2 and m − 1/2. To make these two materi-
als commensurate with each other, we compress the lattice of
GaN along the interface direction (y-direction) since this has a
lower total energy compared with that of expanding the lattice
of SiC.

III. RESULTS AND DISCUSSION

A. Stability and energetics

The dynamical stability of these heterostructures is exam-
ined by calculating phonon spectra. Phonon calculations show

FIG. 2. (Color online) The formation energy [Eq. (1)] of heterostruc-
tures of Geo 2 and Geo 4, as a function of the ribbon width m. A
spline curve is also shown as a guide to the eye.

that all the systems except for Geo 3 are dynamically stable. In
Geo 3, from an imaginary phonon mode, we expect a dimer-
ization to happen at interface V. As a result, the two C-N bonds
at interface V have very different bond lengths (1.25 Å versus
2.25 Å) in the fully relaxed structure. The optimized bond
lengths between the two nearest-neighbor atoms for all other
interfaces are listed in Table I.

The energies of these heterostructures can be measured by
using those of two-dimensional SiC and GaN materials as a

TABLE I. Interface bond lengths (between two nearest neighbors)
and bonding energies for six inequivalent interface geometries.

Interface I II (IV) III V VI (VIII) VII

Interface geometry

Bond length (Å) 1.90 1.94 1.69
1.25
2.25 1.44 2.37

Bonding energy (eV) 4.98 3.75 4.97 6.14 4.45 2.54
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FIG. 3. (Color online) The electronic structures of two-dimensional GaN/SiC heterostructures for (a) Geo 1, (b) Geo 2, (c) Geo 3, and (d)
Geo 4. The projected density of states on each atom is plotted, shifted in the x-direction by position in the heterostructure. The blue lines are
used as guides to the eye of the positions of the conduction and valence bands. The Fermi energy is indicated by the red dashed lines.

reference. We define the formation energy as

Eformation = Ehetero − nSiCESiC − nGaNEGaN (1)

where Ehetero is the total energy of the heterostructure, the total
energy of a primitive cell of GaN (SiC) is EGaN (ESiC), and the
number of Ga-N (Si-C) pairs is nGaN (nSiC). Note that using
Eq. (1) we can define the formation energy only for stoichio-
metric Geo 2 and Geo 4. The bonding energy of an interface is
defined to be the energy needed to cleave the geometry along
the interface without relaxation.

The formation energies of Geo 2 and Geo 4 as a function
of the ribbon width m are shown in Fig. 2. The Geo 4 geom-
etry has a formation energy nearly independent of m, which
indicates that both the electronic and structural reconstruc-
tions are localized at the interfaces. The Geo 2 geometry
in contrast shows an increasing formation energy as m in-
creases, due to electrons and holes accumulated at the two
interfaces (see Sec. III D). The distance between the one-
dimensional electron and hole gases increases at larger m, and
the Coulomb attraction between them results in an enhanced
formation energy. We also note that the formation energy of
Geo 4 (∼ 2.0 eV) is much higher than that of Geo 2 (0.1–
0.4 eV). This is a result of the anion-anion and cation-cation
bonding at the interfaces of Geo 4 (for Ga-Si, the calculated

bonding energy according to Table I is 2.54 eV; for C-N this
is 4.45 eV).

In this respect the interfaces in Geo 2 (Si-N: 4.97 eV and
Ga-C: 3.75 eV) are very stable. The bonding energies for the
interfaces (I, II, V, and VI) of the other two geometries (Geo 1
and Geo 3) shown in Table I range from 3.75 to 6.14 eV, com-
parable with those for the interfaces (III and IV) of Geo 2.

B. Electronic properties

The spin-resolved layer-by-layer projected density of
states (DOS) of two-dimensional GaN/SiC heterostructures is
shown in Fig. 3. The solid blue lines in Fig. 3 serve as a
guide to the eye of the positions of maxima of the conduction
and valence bands. The sawtooth shape of the blue solid lines
in Fig. 3(b) indicates the presence of electric fields with op-
posite polarity inside GaN and SiC in Geo 2. These electric
fields can be attributed to polar discontinuities, a difference
between the polarizations inside GaN and inside SiC. at the
interfaces21,36,37. In the following we first briefly review the
modern theory of polarization,38–40 which applies directly to
the case of Geo 2, and then we analyze the different behavior
in Geo 1, Geo 3, and Geo 4.
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FIG. 4. (Color online) Schematic of the primitive unit cell of SiC and
GaN. The positions of cations and anions are represented by triangles
and filled circles. Centers of Wannier functions are represented by
crosses. The Wannier anion (dashed circle) consists of one anion and
its nearest neighboring Wannier functions.

The modern theory of polarization states that the contribu-
tion of an electron to the electric polarization can be repre-
sented by a point charge −e located at the center of the cor-
responding Wannier function. These Wannier functions are
constructed from all of the occupied Bloch states. Suppose
that the unit cell of an insulator contains ions located at po-
sitions rα with charges Q̃α, (the index α labels ions); and the
Wannier functions of electrons are centered at ri (the index i
labels electrons). The polarization in a volume Ω is then

P =
1
Ω

∑
α

Q̃αrα − e
∑

i

ri

 . (2)

As examples, take the two 2D materials studied in this
work. The volume Ω in Eq. (2) becomes the area of the unit
cell; Ga and N ions have charges of Q̃ = +3e and Q̃ = +5e;
and Si and C ions have charges of Q̃ = +4e and Q̃ = +4e.
For the primitive unit cell consisting one cation (Ga or Si) and
one anion (N or C), four Wannier functions can be constructed
from the valence bands of bulk SiC and GaN; see Fig. 4. Each
Wannier function represents a point charge of −2e at its center
(the factor 2 comes from spin degeneracy). One of the Wan-
nier functions has its center located at the anion (N or C) site;
the other three are located on the three anion-cation (N-Ga, or
C-Si) bonds, but with a shorter distance to the anion.

One convenient approach is to combine one anion (filled
circles in Fig. 4) and its four nearest neighboring Wannier
functions (×’s in Fig. 4) to form a “Wannier anion” (dashed
circle in Fig. 4). The resulting charge of the Wannier an-
ion at the C site is equal to that of the bare C anion (+4e)
plus the charges of four Wannier functions (−2e × 4), or
Q = +4e − 2e × 4 = −4e, and similarly the Wannier anion
at the N site has a charge of Q = +5e − 2e × 4 = −3e, while
the charges of the cations are unchanged, Q = +3e for Ga and
Q = +4e for Si. Each Wannier anion has zero dipole moment
due to the threefold symmetry of the atomic structure. The
expression for the polarization in Eq. (2) then becomes

P =
1
S

∑
α

Qαrα, (3)

where S is the area of the 2D unit cell. The positions rα of
Wannier anions and cations are the same as those in Eq. (2).
The charges Qα for cations in Eq. (3) are the same as Q̃α in
Eq. (2), but as noted the charges Qα of Wannier anions are
different from the Q̃α of bare anions in Eq. (2),

FIG. 5. (Color online) Schematic representation of the formal po-
larization P inside bulk GaN and SiC and the formal charge σinter at
interfaces for (a) Geo 1, (b) Geo 2, (c) Geo 3, and (d) Geo 4. In-
terfaces are defined by shaded rectangles. For each geometry two
different sets of interfaces are presented. The quantities σ and P
are given in units of e/L, where L is width of the unit cell in the
y-direction and e is the electron charge.

Given the electric polarization defined in Eqs. (2) and (3),
electrostatics at the microscopic level obeys the same law
as the classical electrostatics41; the volume density of bound
charge is the divergence of the polarization, ρbound = −∇ · P,
and a polarization discontinuity corresponds to a bound inter-
face charge. For the 1D interface between 2D SiC and GaN,
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the (line) density of bound charge σbound is then equal to the
discontinuity of the component of polarization normal to the
interface direction,

σbound = ∆Px, (4)

where we take direction normal to the 1D interface as the x-
direction. Non-vanishing net charges at interfaces can then
give rise to electric fields inside SiC and GaN ribbons. Here-
after the polarization and the line density of charges are ex-
pressed in unit of e/L, where L is the width of the unit cell
along the direction parallel to the interface.

The analysis above can be applied directly to Geo 2. In
Fig. 5(b), the unit cells of SiC and GaN are denoted by
black rectangles and the interface region is highlighted by the
shadow areas. The polarizations in P and in SiC and GaN are
4/3 and 1, respectively, so the bound charges σbound at inter-
faces III and IV have a density of 1/3 and −1/3. Summation
of the charges of Wannier anions and cations inside the inter-
face regions gives rise to an interface charge density σinter. As
shown in Fig. 5(b), both of the interfaces in Geo 2 are neu-
trally charged, that is σinter = 0. The total charge density σtotal
at interfaces is

σtotal = σbound + σinter. (5)

According to Gauss’s law, there then is an electric field point-
ing from the positively charged interface III to the negatively
charged interface IV. This is in accordance with the layer-
projected electronic structure in Fig. 3(b).

At interfaces electrons are no longer tightly bound to an-
ions. The potential energy difference between interfaces III
and IV in Geo 2 resulting from the electric field between them
increases as the distance increases; beyond a critical distance,
the potential energy difference can exceed the energy band gap
of bulk SiC and GaN. As a result, a long-range charge transfer
occurs from interface IV to interface III.

We develop a simple one-dimensional model for describing
the ribbon-width dependence of the interface charge density
of Geo 2. The two interfaces IV and III are approximately
treated as one-dimensional charged wires. The electrostatic
potential generated by a one-dimensional charged wire with a
uniform line charge density σ is,

V(r) =
σ

2πε
ln

r0

r
, (6)

where r is the distance from the charged wire and r0 is an
arbitrary constant at which the potential is equal to zero,
V(r0) = 0. The dielectric constant is ε.

Suppose that the two interfaces in Geo 2, located at x = 0
and x = m (m is the width for each ribbon and is equal to the
number of zigzag chains), have charge densities of −σ and
+σ. The potential generated by these two interfaces along the
x-direction is

V(x) = −
σ

2πε

[
ln

x1

x
− ln

x2

m − x

]
. (7)

The constants x1 and x2 have no effect on the shape of V(x).
We choose x1 = x2 = m/2 and then have

V(x) =
σ

2πε
ln

x
m − x

. (8)
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FIG. 6. (Color online) (a) The potential generated by two one-
dimensional wires with charge densities +σ and −σ and width δ lo-
cated at x = 0 and x = m. The parameters are m = 20 and δ = 1.78.
(b) The charge density resulting from charge transfer between inter-
faces σelec as a function of the distance between the two interfaces.
Symbols are calculated results and the curve is fitted using Eq. (11).
The fitted value is δ = 1.78.

The potential in Eq. (8) is divergent at x = 0 and at x = m.
In order to remove the divergence, we assume that the charge
density at interfaces has a finite width δ and that the potential
is a constant within this width. (The units of δ are the same as
the ribbon width m, that is a number of zigzag chains.) The
resulting potential V(x) is

V(x) =



σ

2πε
ln

δ

m − δ
, 0 ≤ x < δ

σ

2πε
ln

x
m − x

, δ ≤ x ≤ m − δ

−
σ

2πε
ln

δ

m − δ
, m − δ < x ≤ m

(9)

The function V(x) with parameters m = 20 and δ = 1.78 is
plotted in Fig. 6(a).

The potential difference between the two interfaces is

∆V(m) =
σ

πε
ln

m − δ
δ

, (10)

which is a monotonic function of the ribbon width m. At small
m (m− δ ≈ δ) the potential difference is smaller than the band
gap of SiC and GaN, and the interface charge density remains
σtotal as shown in Fig. 5(b). Beyond a critical ribbon width
mcritical, a charge transfer occurs to compensate σtotal; other-
wise the potential difference will exceed the gap energy Eg/e
(Eg = 2.2 eV is equal to the smaller of the band gaps of SiC
and GaN). The critical width according to our data is between
m = 5 and m = 7. Above the critical width, the charge density
σ at interfaces becomes the sum of σtotal and a compensation
charge density σelec that leads to a potential difference equal
to Eg/e. After substituting ∆V = Eg/e and σ = σtotal + σelec
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in Eq. (10), we obtained σelec as a function of m,

σelec(m) = π
Egε

e
1

ln(m − δ) − ln δ
− σtotal. (11)

There are two unknown quantities, the width of interface
charge density δ and the effective dielectric constant ε. A fit to
our data, as shown in Fig. 6(b), gives ε = 2.31ε0 and δ = 1.78.
The critical width mcritical is equal to 5.8.

Next we turn to Geo 1. Adopting the same analysis as for
Geo 2, the polarization in bulk SiC and GaN, and the bound
charge and interface charge density in Geo 1 are shown in
Fig. 5(a1) and (a2) for two different choices for the bulk unit
cells and interface regions. While the bound charge and the
interface charge densities are different in Fig. 5(a1) and (a2),
the total charge density σtotal is unchanged. Both of the two
regions have negative total charge densities σtotal. Fig. 3(a)
shows that the Fermi energy approaches the top of the va-
lence band and leaves those electronic states near the inter-
faces partially occupied. The partial occupation of electronic
states near the interface regions neutralizes the negative to-
tal charge density of Geo 1, and thus eliminates the in-ribbon
electric fields.

Now we turn to Geo 3 and Geo 4. Fig. 5 indicates that Geo 3
is similar to Geo 1 in the sense that the total charges σtotal at
interfaces have the same sign, while Geo 4 and Geo 2 seem
to fall into the other category with opposite total charges at
interfaces. But, as shown by their projected density of states
in Fig. 3(c,d), neither does the Fermi energy of Geo 3 ap-
proach the valence or conduction bands, nor does Geo 4 show
any in-ribbon electric field. In fact, Geo 3 and Geo 4 are
different from Geo 1 and Geo 2 because of the presence of
gap states. The projected density of states (PDOS) of Geo 4
shows the existence of some spatially localized states at inter-
faces. These states are located inside the energy gap of one
of the materials, for instance at the interface VII the localized
states near the Fermi energy is located inside the energy gap
of SiC. These gap states only emerge at interfaces in Geo 3
and Geo 4, implying that they are coming from cation-cation
(Ga-Si) or anion-anion (C-N) bonds. Partial occupation of
these gap states compensates the total charge densities at the
interface, and hence eliminate the electric field inside SiC and
GaN ribbons.

C. Electric field response

To study the effects of in-sheet electric field in the direc-
tions perpendicular to interfaces, we perform ESM calcula-
tions on GaN/SiC/GaN and SiC/GaN/SiC nanoribbons of the
same width. We show in Fig. 7 changes in charge density ∆ρ
with and without the field . For reference, we also include
simple SiC and GaN nanoribbons. The amplitude of oscilla-
tion in ∆ρ is almost uniform across the GaN nanoribbon [the
upper panel of Fig. 7(a)], indicating that its edge states are
inert to electric fields. In contrast, the amplitude of ∆ρ for the
SiC nanoribbon [the upper panel of Fig. 7(b)] is large at the
edges but reduced significantly in the interior, implying that

FIG. 7. (Color online) Changes of charge density in (a) GaN and
GaN/SiC/GaN nanoribbons, and (b) SiC and SiC/GaN/SiC nanorib-
bons induced by an external electric field of 0.01 V/Å.

the applied electric field is strongly screened by the metal-
lic states on the zigzag edges of SiC nanoribbons. For the
GaN/SiC/GaN nanoribbons, the amplitude of ∆ρwithin SiC is
also heavily reduced with respect to that within GaN [the bot-
tom panel of Fig. 7(a)], which indicates that the electric field
inside SiC is strongly screened by the GaN/SiC interfaces.
Since the amplitude of ∆ρ inside SiC of the GaN/SiC/GaN
nanoribbon [the bottom panel of Fig. 7(a)] is comparable to
that in the SiC nanoribbon [the upper panel of Fig. 7(b)], the
GaN/SiC interfaces show a screening capability similar to that
of the zigzag edges of SiC. For the SiC/GaN/SiC nanoribbons
[the bottom panel of Fig. 7(b)] the amplitude of ∆ρ inside GaN
almost vanishes, because the electric field is doubly screened
by the zigzag edges of SiC and by the GaN/SiC interfaces.

D. Magnetic properties and magneto-electric coupling

Our spin-resolved analysis shows a spin splitting in geome-
tries Geo 1, Geo 2, and Geo 4. The presence of spin splitting

FIG. 8. (Color online) Projected density of states at each interface of
Geo 1 to Geo 4 for m = 11 for the paramagnetic state. The smearing
parameter is 0.05 eV.
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FIG. 9. (Color online) The band structure and the corresponding
PDOS of each interface in Geo 2 for m = 11 in (a) spin-unpolarized
and (b) spin-polarized states. Red and black colors in the band struc-
ture (left panel) correspond to spin-up and spin-down components,
respectively. The smearing parameter in the PDOS (right panel) is
σ = 0.05 eV.

in a similar system, AlN/SiC, was observed in Ref. 21, where
it was explained as the result of the Stoner instability42,43. The
Stoner criterion42,43 states that a spin splitting happens at high
enough DOS. To clearly observe why the spin splitting oc-
curs at certain interfaces, we perform a spin-unpolarized cal-
culation and project the DOS onto all interfaces, as shown
in Fig. 8. Peaks in the DOS correspond to band edges. (A
Gaussian smearing of 0.05 eV is used for calculating the DOS,
since interfaces, as one-dimensional systems, have a divergent
DOS at band edges.) We observe that there are band edges lo-
cated almost at the Fermi energy for interfaces I, II (IV), and
VII, leading to the spin splitting, while for the other three in-
terfaces band edges are away from the Fermi energy, thus they
are nonmagnetic.

The case of Geo 2 with width m = 11 is detailed in
Fig. 9, which shows one spin-unpolarized (III) and one spin-
polarized (IV) interface. There are two bands crossing the
Fermi energy in the spin-unpolarized state [Fig. 9(a)]. One
of the bands (denoted by III) is localized at interface III with
a relatively steep dispersion; the corresponding DOS at the
Fermi energy is very small [solid red curve in the right panel
of Fig. 9(a)]. This band has its root in the conduction band of
GaN. The other band (denoted by IV) is localized at interface
IV and is responsible for the DOS peak at the Fermi energy
(dashed blue curve), since its dispersion around the X-point is

FIG. 10. (Color online) (a) The magnetization and (b) energy differ-
ence between paramagnetic and magnetic states as a function of the
ribbon width m for geometries Geo 1, Geo 2, and Geo 4.

relatively flat. For the spin-polarized state the band localized
at interface III remains spin-degenerate. The band localized at
interface IV becomes spin-split by about 0.2 eV, and only one
spin channel crosses the Fermi energy. This explains why in-
terface IV is magnetic, and III nonmagnetic. The bands cross-
ing the Fermi level also show a metallic character, which is
verified by examining response to applied electric fields. The
same arguments apply to all other interfaces. Later, we will
discuss an important implication of the spin polarized charge
transfer.

Stoner instability that leads to spin splitting can be mea-
sured by the total energy difference ∆E between spin-
unpolarized states and polarized states. The total magneti-
zation and the values of ∆E as a function of ribbon width m
are plotted in Fig. 10. Data for Geo 3 are not shown, since
both of its interfaces are spin unpolarized. The magnetization
and ∆E of Geo 1 and Geo 4 converge rapidly as a function
of the ribbon width m, indicating that the corresponding in-
terface states are quite localized and the coupling between the
two interfaces is negligible. The magnetization of Geo 1 is
large and the spin-polarized state is quite stable. The energy
difference ∆E for Geo 4 is quite small, about 1 meV per super-
cell, which makes the spin-polarized state stable only at very
low temperature. The weak stability is related to the relatively
low DOS at interface VII; the edges of bands localized at in-
terface VII are slightly off the Fermi energy, by about 0.05 eV
(see the bottom panel of Fig. 8).

The system Geo 2 shows a more interesting behavior: both
its magnetization and ∆E exhibit a slow saturation with rib-
bon width m. In particular, when the ribbon width is small
(m . 5), no spin-polarized phase exists. This behavior is
primarily attributed to the in-bulk electric field, as discussed
in Sec. III B. The polarization discontinuity at the interfaces
gives rise to a macroscopic sawtooth-like potential, as shown
in Fig. 3(b). When the thickness is small, the valence band
maximum (VBM) at interface IV is lower in energy than the
conduction band minimum (CBM) at interface III. A small
band gap still exists and no DOS at Fermi level resulting in
a nonmagnetic state. As the thickness increases, the VBM
at interface IV eventually becomes higher in energy than the
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CBM at interface III, and a charge transfer becomes favorable
in energy. As indicated by the band structure plot in Fig. 9, the
charge transferred from interface IV is mainly from spin-down
electrons, leading to a fully spin-polarized interface. Thus the
shape of the magnetization curve of Geo 2 is also the behavior
of the amount of charge transfer between the two interfaces.
The electron transfer increases with ribbon width, but these
charges also neutralize the net charge at the interface and re-
duce the in-bulk electric field. As a result, the slope of the
magnetization (charge transfer) curve decreases with ribbon
width.
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FIG. 11. (Color online) The enhancement in the magnetization and
the reduction of the energy gap

Among all geometries and interfaces, interface IV in
Geo 2 is unique because 1) in Geo 2 there are bond charges
on the two interfaces of opposite sign, which originates an
intrinsic internal electric field, 2) although cannot completely
screen the field, this field drives charge hole separation
across the ribbons, and 3) the holes at interface IV are fully
spin-polarized. According to , the magnitude of the hole
density σcharge increases when the band gap Eg decreases.
This relation suggests the fascinating possibility for tuning
magnetic moment using electric filed. According to our
calculations, the energy gap of the GaN monolayer is reduced
when applying an electric field perpendicular to the system.
We thus further investigated the electric-field dependence
of magnetization. Our results are shown in Fig. 11 with a
ribbon width of m = 11. Under a perpendicular electric field
of 0.3 V/Å the band gap of GaN is reduced by 2%, while
the magnetization at interface IV is enhanced by the same
percentage. Our calculations revealed the magnetoelectric
coupling in this system. The electrical manipulation of
magnetization has great potential of applications in ultra-low
power consumption and nonvolatile magnetoelectric mem-
ories. The mechanism for magnetoelectric coupling in this

system is different from that of single-phase materials44,
or ferromagnetic/ferroelectric composite systems45,46; but
is similar to the SrRuO3/SrTiO3 interfaces reported in Ref. 47.

IV. CONCLUSION

In conclusion, we have performed first-principles cal-
culations on electronic structures and magnetic properties
of quasi-one-dimensional interfaces in four representative
GaN/SiC lateral heterostructures. Only one of the studied
heterostructures shows a similar in-ribbon electric field as re-
ported by Ref. 21, although at first sight all of the structures
exhibit a polarization discontinuity. Our detailed examination
establishes the conditions for the existence of an in-ribbon
electric field: the absence of gap states at interfaces and an
opposite sign charge accumulation at the two interfaces. Spin
splitting at interfaces is detected using spin-polarized calcula-
tions, and is attributed to the appearance of band edges at the
Fermi energy. Unlike in Ref. 21, where the authors reported
that both left and right interfaces of an AlN ribbon are spin-
polarized (the magnitude was not reported), our calculations
show only interface IV in Geo 2 is (hole) spin-polarized. The
ribbon-width-dependent magnetization of interfaces is closely
related to the existence of the in-ribbon electric field. Specif-
ically, the total magnetization increases gradually with ribbon
width for geometries with an in-ribbon electric field, while
for those without an interior electric field, the magnetization
quickly converges to a constant value as the ribbon width in-
creases. From our calculations, a model is suggested to re-
late the energy gap to the interface charge (Eq. 11), which
lead to the important observation of a magneto-electric effect:
When applying an external electric field perpendicular to the
monolayer, the energy gap decreases and the interface charge
increases, and ultimately the the interface magnetic moment
increases significantly. An awareness of these interface prop-
erties may be of value in future electronics and spintronics
applications.

ACKNOWLEDGMENTS

This work is supported by the US Department of Energy
(DOE), Office of Basic Energy Sciences (BES), under Con-
tract No. DE-FG02-02ER45995. G.-X.C. would like to ac-
knowledge the support from the National Science Foundation
of China (Grant No. 11304246) and the Science and Tech-
nology Foundation of Shaanxi Province, China (Grant No.
2014KJXX-70). The computation was done using the utilities
of the National Energy Research Scientific Computing Center
(NERSC).

∗ Email: cheng@qtp.ufl.edu; Tel: 352-392-6256
1 K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang,

S. Dubonos, , I. Grigorieva, and A. Firsov, science 306, 666
(2004).

2 C. Xia, Y. Peng, S. Wei, and Y. Jia, Acta Materialia 61, 7720
(2013).

3 D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang,
and C. Zhi, ACS Nano 4, 2979 (2010).



9

4 Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-
D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, et al.,
Advanced Materials 24, 2320 (2012).

5 R. Wei, J. Hu, T. Zhou, X. Zhou, J. Liu, and J. Li, Acta Materialia
66, 163 (2014).

6 P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou,
E. Golias, S. A. Giamini, C. Grazianetti, D. Chiappe, A. Molle,
M. Fanciulli, and A. Dimoulas, Applied Physics Letters 103,
251605 (2013).

7 F. Ponce and D. Bour, Nature 386, 351 (1997).
8 H. Morko, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and

M. Burns, Journal of Applied Physics 76, 1363 (1994).
9 B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and

J. S. Speck, Journal of Applied Physics 88, 1855 (2000).
10 G. Mula, C. Adelmann, S. Moehl, J. Oullier, and B. Daudin, Phys.

Rev. B 64, 195406 (2001).
11 Q. Chen, H. Hu, X. Chen, and J. Wang, Applied Physics Letters

98, 053102 (2011).
12 S. Nakamura, T. Mukai, and M. Senoh, Applied Physics Letters

64, 1687 (1994).
13 S. Nakamura, Science 281, 956 (1998).
14 T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Nature materials

6, 951 (2007).
15 J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, and

P. Yang, Nature 422, 599 (2003).
16 C. Y. Park, J. M. Lim, J. S. Yu, and Y. T. Lee, Applied Physics

Letters 96, 151909 (2010).
17 C. L. Freeman, F. Claeyssens, N. L. Allan, and J. H. Harding,

Phys. Rev. Lett. 96, 066102 (2006).
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