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Abstract

We compute the entanglement entropy of the Wilson-Fisher conformal field theory (CFT) in 2+1

dimensions with O(N) symmetry in the limit of large N for general entanglement geometries. We

show that the leading large N result can be obtained from the entanglement entropy of N Gaussian

scalar fields with their mass determined by the geometry. For a few geometries, the universal part

of the entanglement entropy of the Wilson-Fisher CFT equals that of a CFT of N massless scalar

fields. However, in most cases, these CFTs have a distinct universal entanglement entropy even at

N =∞. Notably, for a semi-infinite cylindrical region it scales as N0 in the Wilson-Fisher theory,

in stark contrast to the N -linear result of the Gaussian fixed point.
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I. INTRODUCTION

The entanglement entropy (EE) has emerged as an important tool in characterizing

strongly interacting quantum systems1–10. In the context of relativistic theories in 2 spatial

dimensions, the so-called F theorem uses the EE on a circular disk to place constraints on

allowed renormalization group flows9,11–16. For quantum systems with holographic duals,

the EE can be computed via the Ryu-Takayanagi formula2, and this is a valuable tool in

restricting possible holographic duals of strongly interacting theories17,18.

Despite its importance, the list of results for the EE of strongly interacting gapless field

theories in 2+1 dimensions is sparse. The most extensive results are for CFTs on a circular

disk geometry in the vector large-N and small-ε expansions14,15,19–23. Some results have also

been obtained8 in the infinite cylinder geometry in an expansion in ε = (3 − d), where d is

the spatial dimension, but the extrapolation of these results to d = 2 is not straightforward.

In this paper we show how the vector large N expansion can be used to obtain the EE in

essentially all entanglement geometries, generalizing results that were only available so far

in the circular disk geometry. The large N expansion was also used in Ref.8 in the infinite

cylinder geometry, but the results were limited to the universal deviation of the EE when

the CFT is tuned away from the critical point by a relevant operator. For a region with a

smooth boundary, the groundstate of a CFT has an EE S which obeys

S = C
L

δ
− γ (1)

where δ is a short-distance UV length scale, C is the area law coefficient depending on the

regulator, L is an infrared length scale associated with the entangling geometry, and γ is

the universal part of the EE we are interested in. We will compute γ for the Wilson-Fisher

CFT with O(N) symmetry on arbitrary smooth regions in the plane, and in the cylinder

and torus geometries. Our methods generalize to other geometries, and also to other CFTs

with a vector large N limit. We also obtain universal entanglement entropies associated

with geometries with sharp corners.

Our analysis relies on a general result which will be established in Section II. We consider

the large N limit of the Wilson-Fisher CFT on a general geometry using the replica method,

which requires the determination of the partition function on a space which is a n-sheeted

Riemann surface. The large N limit maps the CFT to a Gaussian field theory with a self-

consistent, spatially dependent mass8. Determining this mass for general n is a problem of
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great complexity, given the singular and non-translationally invariant n-sheeted geometry;

complete results for such a spatially dependent mass are not available. However, we shall

show that a key simplification occurs in the limit n→ 1 required for the computation of the

EE: the spatially dependent part of the mass does not influence the value of the EE. This

simplification leads to the main results of our paper. We note here that the simplification

does not extend to the Rényi entropies n 6= 1, so we shall not obtain any results for the

Rényi entropies of the Wilson-Fisher CFT in the large N limit.

Section II will compute the EE for the Wilson-Fisher CFT on arbitrary smooth regions

in an infinite plane, and for regions containing a sharp corner, in which case (1) is modified.

In both these cases, and for other entangling regions in the infinite plane, the EE is equal to

that of a CFT of N free scalar fields. Section III will consider the case of an entanglement

cut on an infinite cylinder. A non-zero limit of γ/N as N → ∞ was obtained in Ref.8 for

the free field case. We will show that a very different result applies to the Wilson-Fisher

CFT, with γ/N = O(1/N). Section IV considers the case of a torus with two cuts: here

γ/N is non-zero for both the free field and Wilson-Fisher cases, but the values are distinct

from each other.

II. MAPPING TO A GAUSSIAN THEORY

In this section we consider the EE of the critical O(N) model at large-N , and show that

it can be mapped to the EE of a Gaussian scalar field.

A. Replica method

We first recall how the EE can be computed in a quantum field theory using the replica

method introduced in Refs.1,24. The EE associated with a region A is given by

S = −Tr (ρA log ρA) (2)

where ρA is the reduced density matrix in A. A closely related measure of the entanglement

is the n-th Rényi entropy, which is defined as

Sn =
1

1− n
log TrρnA (3)
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where n > 1 is an integer. In the replica method, outlined below, the Rényi entropies are

directly computed from a path integral construction. One can then analytically continue n

to non-integer values, and obtain the EE as a limit

lim
n→1

Sn = S (4)

Equivalently, one can consider expanding log TrρnA to leading order in (n− 1), obtaining

log TrρnA = −(n− 1)S +O
(
(n− 1)2

)
(5)

Thus, the small (n− 1) behavior of TrρnA is sufficient to compute the entropy S.

The computation of TrρnA proceeds as follows. We first consider the matrix element of

the reduced density matrix between two field configurations on A, φ′A(x) and φ′′A(x). This

can be computed using the Euclidean path integral

〈φ′A(x)|ρA|φ′′A(x)〉 = Z−11

∫ φ(x∈A,tE=0+)=φ′′A(x)

φ(x∈A,tE=0−)=φ′A(x)

Dφ(x, tE)e−SE (6)

where SE is the Euclidean action of the system. We then write the trace over ρnA in terms

of these matrix elements

TrρnA =

∫
Dφ′ADφ′′A · · · Dφ

(n)
A 〈φ′A|ρA|φ′′A〉〈φ′′A|ρA|φ′′′A〉 · · · 〈φ

(n)
A |ρA|φ

′
A〉 (7)

Combining Eqns. (6) and (7), we obtain the path integral expression for TrρnA as

TrρnA =
Zn
Zn1

(8)

Here, Zn is the partition function over the n-sheeted Riemann surface obtained by performing

the integrations in Eq. (7). In particular, we consider n copies of our Euclidean field theory,

but we glue the spatial region (x ∈ A, tE = 0+) of the kth copy to the spatial region

(x ∈ A, tE = 0−) of the (k + 1)th copy, repeating until we glue the nth copy to the first

copy. This construction introduces conical singularities at the boundary of A.

B. Entanglement entropy for the O(N) model at large N

We now specialize to the critical O(N) model in (2 + 1)-dimensions. We use a non-linear

σ model formulation, writing the n-sheeted action as

Sn =

∫
d3xn Ln

Ln =
1

2
φα
(
−∂2n + iλ

)
φα −

N

2gc
iλ (9)
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where α runs from 1 to N and is summed over. Here, d3xn and ∂2n denote the integration

measure and the Laplacian on the n-sheeted Riemann surface, respectively. The field λ(x)

is a Lagrange multiplier enforcing the local constraint φ(x)2 = N/gc. In the N = ∞ limit,

the path integral is evaluated using the saddle point method:

Zn =

∫
DφDλ e−Sn

=

∫
Dλ exp

[
−N

2
Tr log

(
−∂2n + iλ

)
+

N

2gc

∫
d3x iλ

]
=⇒ logZn = −N

2
Tr log

(
−∂2n + 〈iλ〉n

)
+

N

2gc

∫
d3xn 〈iλ〉n +O(1/N) (10)

In the last equality, the saddle point configuration of the field λ is determined by solving

the gap equation

Gn(x, x; 〈iλ〉n) =
1

N
〈φ(x)2〉n =

1

gc
(11)

where Gn(x, x′) is the Green’s function on the n-sheeted surface:

(
−∂2n + 〈iλ(x)〉n

)
Gn(x, x′; 〈iλ〉n) = δ3(x− x′) (12)

and the critical coupling is determined by demanding that the gap vanishes for the infinite

volume theory on the plane:
1

gc
=

∫
d3p

(2π)3
1

p2
(13)

In the absence of the entangling cut, n = 1, we denote the saddle point value of λ as

〈iλ〉1 = m2
1 (14)

We assume that the one-sheeted geometry is translation-invariant, so m1 is independent of

position. On the infinite plane we have m1 = 0, but we will also consider geometries where

one or both dimensions are finite, in which case m1 becomes a universal function of the

geometry of the system determined by

G1(x, x;m2
1) =

1

gc
(15)

On the n-sheeted Riemann surface, 〈iλ(x)〉n is always a nontrivial function of position,

and the exact form of this function depends on the shape of the entangling surface and the

number of Riemann sheets n. The problem of determining this function can be addressed
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numerically for fixed n, but for the purposes of obtaining the EE, we only need its spatial

dependence to first-order in (n− 1). In particular, we assume that we can write

〈iλ(x)〉n ≈ m2
1 + (n− 1)f(x) (16)

for some function of space-time f(x). Then to leading order in N and (n− 1), we have

− logZn ≈
N

2
Tr log

(
−∂2n +m2

1

)
− N

2gc

∫
d3xn m

2
1

+ (n− 1)
N

2
Tr

(
f(x)

−∂21 +m2
1

)
− (n− 1)

N

2gc

∫
d3x f(x) (17)

Then using the definition of G1 and m1,

Tr

(
f(x)

−∂21 +m2
1

)
=

∫
d3x G1(x, x;m2

1)f(x) =
1

gc

∫
d3xf(x) (18)

implying that that last line of Eq. (17) vanishes, and f(x) does not contribute to the EE.

After using
∫
d3xn = n

∫
d3x, we can write

− log
Zn
Zn1

=
N

2

[
Tr log

(
−∂2n +m2

1

)
− nTr log

(
−∂21 +m2

1

) ]
(19)

This final expression is equal to the quantity − log TrρnA computed for N free scalars with

mass m1 and the action

L′n = φα
(
−∂2n +m2

1

)
φα (20)

Therefore, the EE of the critical O(N) model at order N is equal to the EE of N free scalar

fields, where the free fields have the same mass gap as the O(N) model on the physical, one-

sheeted surface. Similar results will apply to other large-N vector models. For instance, in

Appendix B we follow very similar steps to show that the EE of the fermionic Gross-Neveu

model maps to that of N free Dirac fermions. The mass of the free fermions is determined

self-consistently by the spatial geometry of the physical single-sheeted spacetime.

C. Entanglement entropy on the infinite plane

We first consider the EE when the system is on the infinite plane. In this case, m1 = 0,

and the EE associated with a region A is equal to the EE of N massless free scalars in the

same region.
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One entangling region for which there are known results is the circular disk. According

to the F-theorem9, the universal part of the EE for the disk is given by

γdisk = F ≡ − log |ZS3 | (21)

Here, ZS3 is the finite part of the Euclidean partition function on a three-sphere spacetime.

This quantity was computed in Ref.14 for massless free scalar fields and for the large-N O(N)

model, and they were found to be equal at order N in agreement with our general result

given above. Explicitly,

γdisk =
N

16

(
2 log 2− 3

ζ(3)

π2

)
(22)

where ζ(3) ≈ 1.202. Our results also apply to regions with sharp corners, in which case we

can make non-trivial checks of our general result, as we now discuss.

1. Entanglement entropy of regions with corners

When region A (embedded in the infinite plane) contains a sharp corner of opening angle

θ, the EE of a CFT (1) is modified by a subleading logarithmic correction25,26

S = C
L

δ
− a(θ) log(L/δ) + · · · (23)

where the dimensionless coefficient a(θ) ≥ 0 is universal, and encodes non-trivial information

about the quantum system. Since we work in the infinite plane, according to our analysis

above, the large-N value of a(θ) will be the same as for N free scalars, namely

aWF(θ) = N afree(θ) +O(N0) (24)

The non-trivial function afree(θ) for a single free scalar was studied numerically and analyt-

ically by a number of authors for a wide range of angles25,27–31. Interestingly, we can make

an analytical verification of the relation (24) in the nearly smooth limit, by virtue of the

following identity that holds for any CFT27,32,33

a(θ ≈ π) =
π2CT

24
(θ − π)2 +O

(
(θ − π)4

)
(25)

Here, CT is a non-negative coefficient determining the groundstate two-point function of the

stress tensor Tµν :

〈Tµν(x)Tηκ(0)〉 =
CT
x6
Iµν,ηκ(x) (26)
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where Iµν,ηκ(x) is a dimensionless tensor fixed by conformal symmetry34. Eq. (25) was

conjectured27 for general CFTs in two spatial dimensions, and subsequently proved using

non-perturbative CFT methods33. Now, CT is the same at the Wilson-Fisher and Gaussian

fixed points35 at leading order in N :

CWF
T = NC free

T +O(N0) (27)

which, when combined with Eq. (25), leads to a non-trivial confirmation of (24) in the nearly

smooth limit θ ≈ π. (We note that C free
T = 3

32π2 using conventional normalization34.)

The knowledge of CT can be used to make a statement about a(θ) away from the

nearly smooth limit because the existence of the following lower bound30: a(θ) ≥

CT
π2

3
log [1/ sin(θ/2)], which follows from the strong subadditivity of the EE, and (25). We

see that applying this bound to the large-N Wilson-Fisher fixed point is consistent with our

result (24).

III. INFINITE CYLINDER

We now compute the EE of the semi-infinite region obtained by tracing out half of an

infinite cylinder. The relevant geometry is pictured in Fig. 1. We can take the position of

the cut to be at x = 0 by translation invariance. As for the disk, we can write the EE as

S = C
L

δ
− γcyl (28)

where γcyl is the universal part. The existence of a universal γcyl in critical theories was

first established7,36,37 for the z = 2 quantum Lifshitz model using the methods of Ref.5.

In the context of CFTs, this geometry was considered in Ref.8, where the entropy γ was

computed for massless free fields and for the Wilson-Fisher fixed point in the ε = (3 − d)

expansion (where the extra dimensions introduced in the ε-expansion are made periodic with

circumference L).

We first review the calculation of the entropy for free massive fields, which will allow

us to calculate the EE for the Wilson-Fisher fixed point for large N . We allow for twisted

boundary conditions along the finite direction

φ(x, y + L) = eiϕyφ(x, y) (29)
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FIG. 1. The geometry considered in calculating the entanglement entropy on the infinite cylinder.

Here, ϕy ∈ [0, 2π). We note that unless ϕy = 0, π, the fields φ are complex. In this case, we

are considering N/2 complex fields, and the O(N) symmetry of the theory breaks down to

U(1)×SU(N/2).

This geometry allows a direct analytic computation of the n-sheeted partition function for

free fields by mapping to radial coordinates, (tE, x) = (r cos θ, r sin θ). In these coordinates,

the n-sheeted surface is fully parametrized by giving the angular coordinate a periodicity

of 2πn. In Refs.1,8, it was shown that the n-sheeted partition function for free fields can be

written in terms of the one-sheeted Green’s function:

− log
Zn
Zn1

=
N

2

[
Tr log

(
−∂2n +m2

)
− nTr log

(
−∂2n +m2

) ]
=
πN

6

(
n− 1

n

)
LG1(x, x;m2) (30)

Then using Eq. (5), the EE is given by

S =
πN

3
LG1(x, x;m2) (31)

In Appendix A, we compute the Green’s function for a massive free field on the cylinder.

Using Eq. (A5), and making the cutoff dependence explicit, we find the regularized part of

the EE to be (see also Ref.38)

γcyl =
N

12
log [2 (coshmL− cosϕy)] (32)

For m = 0, this reduces to Eq. (5.12) of Ref.8, and indeed displays a divergence for a periodic

boundary condition ϕy = 0 due to the zero mode. We note that the universal contribution

to the EE of N/2 complex free scalar fields is of order N , as one would expect from a free

field theory with N degrees of freedom.

We now turn to the Wilson-Fisher fixed point. In a finite geometry, the Wilson-Fisher

fixed point will acquire a mass gap m1 which is proportional to 1/L and depends only on
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ϕy. This is computed by solving G1(x, x;m2
1) = 1/gc, which is done in Appendix A. The

result is

m1 =
1

L
arccosh

(
1

2
+ cosϕy

)
(33)

Then from the arguments of Section II,

γcyl =
N

12
log [2 (coshm1L− cosϕy)] = 0 (34)

It happens that for the saddle point value of the mass, the universal part of the EE vanishes

for all values of the twist ϕy. The leading contribution to γcyl will be of O(N0), a drastic

reduction from Gaussian fixed point which is of order N .

This result can be seen more directly from Eq. (31). The gap equation implies that

G1(x, x;m2
1) = 1/gc, so without even solving for m1, the EE can immediately be written

S =
πN

3

L

gc
(35)

However, the critical coupling is completely non-universal and independent of L. Using a

hard UV momentum cutoff 1/δ,

1

gc
=

∫ 1/δ d3p

(2π)3
1

p2
=

1

2π2δ
(36)

and the EE is pure area law, S ∝ L/δ.

In fact, this result can be extended to other geometries. The result γcyl = 0 for the large-

N Wilson-Fisher fixed point occurred because the entropy is proportional to G1(x, x;m2).

However, the results of Refs.1,8 imply that the expression for the free-field entropy given

in Eq. (31) holds for any system where the entangling cut is perpendicular to an infinite,

translationally-invariant direction. Thus, if we consider the large-N Wilson-Fisher CFT on

any d-dimensional spatial geometry with at least one infinite dimension, the universal part

of the EE obtained by tracing out over half of that dimension is O(N0). This argument only

holds in dimensions where the Wilson-Fisher CFT exists, so for 1 < d < 3. In particular, this

result agrees with the large-N limit of the ε-expansion calculation in Ref.8, which considered

the Wilson-Fisher CFT on the (3− ε)-dimensional spatial region R× T2−ε, where Td is the

d-dimensional torus. This constitutes a non-trivial consistency check on both calculations.

Finally, we note that similar results apply to other large N models. As shown in Appendix

B, the EE for the Gross-Neveu CFT maps to that of N free Dirac fermions, where the
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Lx
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a) b)

LA

FIG. 2. a) Two dimensional (flat) torus. b) Its representation in the plane. We analyze the

entanglement entropy of region A.

mass of the fermions is determined by the spatial geometry of the one-sheeted spacetime,

Tr GF
1 (x, x;m1) = m1/g

2
c . Here, the critical coupling 1/g2c is again a non-universal quantity

which cannot depend on the spatial geometry of the system, and is proportional to the UV

cutoff. Then using the results of Ref.1, it can be shown that S ∝ GF
1 for free fermions on

the spatial geometries discussed in the previous paragraph, and therefore γ = O(N0) for the

large-N Gross-Neveu CFT on the infinite cylinder.

IV. TORUS

We study the EE of the large-N fixed point on a spatial torus, as shown in Fig. 2. For a

CFT, we expect the following form for S39,40

S = C
2Ly
δ
− γtor(u; τ) (37)

where we have defined the ratio

u = LA/Lx (38)

and τ is the modular parameter, τ = iLx/Ly, for the rectangular torus we work with. γtor

is a universal term that we shall study at the large-N Wilson-Fisher fixed point.

As discussed in Section II B, the EE at leading order in N is given by that of N/2 free

complex scalars with a mass m1 determined by the geometry. m1 is thus the self-consistent

mass on the torus for a single copy of the theory, which was recently computed at large

N in Ref.41. It obeys the scaling relation m1Ly = g(τ), where τ is the aspect ratio of the

torus, and g is a non-trivial dimensionless function given in Appendix C. m1 depends on

both twists along the x- and y-cycles of the torus, ϕx, ϕy. Since γfreetor for a massive free boson
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is not known, we will numerically study the (u, τ)-dependence of γWF
tor by working on the

lattice.

However, before doing so, we describe two limits in which we can make statements about

γtor. First, we consider the so-called thin torus limit for which Ly → 0, while LA, Lx remain

finite, i.e. τ → i∞ and u is fixed. For generic boundary conditions, we have that the torus

EE approaches twice the semi-infinite cylinder value39,40 discussed above, γtor → 2γcyl. This

holds in the absence of zero modes, which is the generic case. Our result Eq. (34) implies

that γtor = O(N0) in that limit. However, this cannot hold at all values of τ . Indeed, for

any fixed τ let us consider the “thin slice” limit LA → 0. There, γtor reduces to the universal

contribution of a thin strip of width LA in the infinite plane39,40, γtor = κLy/LA, where the

universal constant κ ≥ 0 can be computed in the infinite plane. κ is thus independent of

the boundary conditions along x, y. Applying our mapping to free fields, this means that at

leading order in N

κWF = Nκfree (39)

where κfree ' 0.0397 for a free scalar25. By continuity, we thus expect that for general u and

τ , γWF
tor will scale linearly with N in the large-N limit. We now verify this statement via a

direct calculation.

A. Lattice numerics

The lattice Hamiltonian for a free boson of mass m1 can be taken to be

H =
1

2

∑
ky

Lx−1∑
i=0

(
|πky(i)|2 + |φky(i+ 1)− φky(i)|2 + ω2

ky |φky(i)|2
)

(40)

ω2
ky = 4 sin2(ky/2) +m2

1 (41)

where the theory is defined on a square lattice with unit spacing, πky(i) is the operator

canonically conjugate to φky(i), and |A|2 = A†A. The index i runs over the Lx lattice

sites in the x-direction. Crystal momentum along the y-direction remains a good quantum

number in the presence of the entanglement cut, and is quantized as follows

ky =
2πny
Ly

+
ϕy
Ly

, (42)
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where the integer ny runs from 0 to Ly − 1, and ϕy is the twist along the y-direction.

We note that the Hamiltonian (40) corresponds to Ly decoupled 1d massive boson chains:

H =
∑

ky
H1d(ky), each with an effective mass ωky . This means that the EE is the sum

over the corresponding 1d EEs: S =
∑

ky
S1d(ky). For each 1d chain, the EE for the

interval of length LA ≤ Lx is obtained from the correlation functions Xij = 〈φ†(i)φ(j)〉 and

Pij = 〈π†(i)π(j)〉, where we have suppressed the ky label. The prescription for the EE is

then25

S1d =
∑
`

[
(ν` + 1

2
) log(ν` + 1

2
)− (ν` − 1

2
) log(ν` − 1

2
)
]

(43)

where ν` are eigenvalues of the matrix
√
XAPA, with the A meaning that Xij and Pij are

restricted to region A. This method was previously used to study the EE of free fields on

the torus38–40,42.

To obtain the universal part of the entropy we first need to numerically determine the

area law coefficient C (37), which we find is C ' 0.07745. We can then isolate the universal

part, γtor, by subtracting the area law contribution. The result for a square torus, i.e. τ = i,

is shown in Fig. 3, where we compare the Wilson-Fisher fixed point with the Gaussian fixed

point. Only 0 < u < 1/2 is shown because the other half is redundant by virtue of the

identity γtor(1 − u) = γtor(u), true for pure states. We set ϕx = 0 and ϕy = π (since fully

periodic boundary conditions yield a divergent γGauss
tor ), which leads to a purely imaginary

mass m1Ly ' i 1.77078 for the Wilson-Fisher theory, while m1 is naturally zero at the

Gaussian fixed point. The imaginary mass does not cause a problem since k2y + m2
1 > 0 in

the presence of the twist, (42). From Fig. 3, we see that γWF
tor scales linearly with N as was

anticipated above. However, contrary to the case of the infinite plane, the EE of the Wilson-

Fisher fixed point is reduced compared to the Gaussian fixed point, γWF
tor (u) < γGauss

tor (u) for

all values of u. The difference between the EE of the two theories decreases in the thin

slice limit u → 0, where we have the divergence γtor = κ/u, with the same constant κ

for both theories, Eq. (39). This constant has been calculated in a different context25,

κ = Nκfree = N 0.0397, and fits our data very well. Another consistency check is that

γtor(u) should be convex decreasing40 for 0 < u < 1/2, which is indeed the case in Fig. 3.
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FIG. 3. The universal EE γtor of a cylindrical region, LA × L, cut out of a square torus, L × L.

The red dots correspond to the interacting fixed point of the O(N) model at large N , while the

blue squares to the Gaussian fixed point (N free relativistic scalars). We have normalized γtor by

N . The data points were obtained numerically on a square lattice of linear size L = 152. The line

shows the expected divergence in the small u limit, the same for both theories.

V. CONCLUSIONS

The large N limit of the Wilson-Fisher theory yields the simplest tractable strongly-

interacting CFT in 2+1 dimensions. In this paper, we have succeeded in computing the

entanglement entropy of this theory using a method which can be applied to essentially any

entanglement geometry. In particular, for any region in the infinite plane, the EE of the

large-N Wilson-Fisher fixed point is the same as that of N free massless bosons. In contrast,

when space is compactified into a cylinder or a torus, the results will differ in general as we

have illustrated using cylindrical entangling regions. Our results naturally extend to other

large-N vector theories, like the fermionic Gross-Neveu CFT (Appendix B).

In the case of the EE of the semi-infinite cylinder, γcyl, Ref.8 has compared its value at

the UV Gaussian fixed point and the IR Wilson-Fisher one using the ε expansion. For these

two specific fixed points, it was found that |γUV
cyl | > |γIRcyl|, suggestive of the potential of γcyl

to “count” degrees of freedom. Our results at large N , however, show that the opposite
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can occur for certain RG flows. Namely, |γUV
cyl | < |γIRcyl| is possible. Indeed, let us consider

the flow from the Wilson-Fisher critical point to the stable fixed point describing the phase

where the O(N) symmetry is spontaneously broken43. In the UV, we see that γWF
cyl ∼ N0

does not grow with N , while at the IR fixed point γbrokencyl ∼ N due to the (N −1) Goldstone

bosons44. This holds for generic boundary conditions ϕy 6= 0.

It is also of interest to obtain the Rényi entropies of such an interacting CFT, notably

for comparison with large-scale quantum Monte Carlo simulations which can usually only

yield the second Rényi entropy45,46. Unfortunately, this is a much more challenging problem,

because the full x-dependence of the saddle-point 〈iλ(x)〉n in (12) is needed on a n-sheeted

Riemann surface. Numerical analysis will surely be required, supplemented by analytic re-

sults in the limit of large and small x.

Note: While finishing this work, we became aware of a related forthcoming paper47 that

studies the area law term in a large-N supersymmetric version of the O(N) model.
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Appendix A: Green’s function and large N mass gap on the cylinder

In Section III, we used the Green’s function for a massive scalar on the infinite cylinder.

This is given by

G1(x, x;m2) =
1

L

∑
ky

∫
d2p

(2π)2
1

p2 + k2y +m2
(A1)

where we allow a twist in the finite direction

ky =
2πny + ϕy

L
, ny ∈ Z (A2)

We evaluate this expression using Zeta function regularization. We first introduce an extra

parameter ν, and consider the expression

G1(x, x;m2) =
1

L

∑
ky

∫
d2p

(2π)2
1(

p2 + k2y +m2
)ν (A3)

This expression is convergent for ν > 3/2. We evaluate this expression where it is convergent,

and then analytically continue it to ν → 1. After evaluating the integrals, we obtain

G1(x, x;m2) =
1

8π2L (ν − 1)

∑
ky

1(
k2y +m2

)ν−1 (A4)

The remaining sum needs to be evaluated as a function of ν, which requires the use of gen-

eralized Zeta functions. General formulae for sums of this type can be found in Reference48,

and after evaluating this sum and taking ν → 1, we find

G1(x, x;m2) = − 1

4πL
log [2 (coshmL− cosϕy)] (A5)

We note that the original integral, Eq. (A1), has a linear UV divergence which has been set

to zero by our cutoff method. In other regularization methods, one generically expects an

extra term proportional to the UV cutoff, G1(x, x;m2) ∝ 1/δ, which contributes to the area

law in Eq. (31).

We also find the mass gap for the Wilson-Fisher fixed point at large-N . The gap equation

is

G1(x, x;m2
1) =

1

gc
(A6)

However, in Zeta regularization we have

1

gc
=

∫
d3p

(2π)2
1

p2
= 0 (A7)
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Then using Eq. (A5), we find the energy gap on the cylinder

m1 =
1

L
arccosh

(
1

2
+ cosϕy

)
(A8)

as quoted in the main text.

Appendix B: Entanglement entropy of the Gross-Neveu model at large N

We discuss the Gross-Neveu model49 in the large N limit. The calculation of the entan-

glement entropy is very similar to the critical O(N) model, and we find a mapping to the

free fermion entanglement analogous to the mapping derived in Section II.

The critical model is defined by the Euclidean Lagrangian

Ln = −ψ̄α
(
/∂n + σ

)
ψα +

N

2g2c
σ2 (B1)

where the repeated index α is summed over, running from 1 to N . Here, σ(x) is a Hubbard-

Stratonovich field used to decouple the quartic interaction term (ψ̄αψα)2. We now follow

the steps in Eq. (10) to obtain the partition function using the saddle point method.

logZn = N Tr log
(
/∂n + 〈σ〉n

)
− N

2g2c

∫
d3xn 〈σ〉2n +O(1/N) (B2)

The saddle point configuration of σ is determined by the Gross-Neveu gap equation

Tr GF
n (x, x; 〈σ〉n) =

〈σ〉n
g2c(

/∂n + 〈σ(x)〉n
)
GF
n (x, x′; 〈σ〉n) =δ3(x− x′) (B3)

Here, the trace is over spinor indices and we have left the identity matrix in spinor space

implicit. The critical coupling is

1

g2c
= (Tr I)

∫
d3p

(2π)3
1

p2
(B4)

Following our procedure for the O(N) model, we write the saddle point configuration as

〈σ(x)〉n ≈ m1 + (n− 1) f(x) (B5)

to leading order in (n − 1), for an unknown function f(x). Then by a similar reasoning to

the calculations in Section II, we find

− log
Zn
Zn1

= −N
[
Tr log

(
/∂n +m1

)
− nTr log

(
/∂1 +m1

) ]
(B6)
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This is the n-sheeted partition function for N free Dirac fermions with mass m1, where

m1 is the mass gap of the Gross-Neveu model on the one-sheeted physical spacetime,

TrGF
1 (x, x;m1) = m1/g

2
c .

Just as for the O(N) Wilson-Fisher fixed point, we can verify our result for the special case

where region A is a disk embedded in the infinite plane. The disk’s universal entanglement

entropy in the Gross-Neveu CFT was found to be that of N free massless Dirac fermions14,

γdisk = Nγfreedisk +O(N0). This is exactly our result since m1 = 0 for this geometry.

Appendix C: Mass gap on the torus

In Section IV, we used the self-consistent mass of the large-N Wilson-Fisher fixed point

on the torus. This mass takes the form

Lym1 = g(τ) (C1)

where g(τ) is a universal function of them modular parameter of the torus, τ , and the twists

ϕx and ϕy. The calculation of m1 was done in Ref.41. Here, we outline the results needed

for the current work. Unlike Ref.41, we specialize to the rectangular torus, τ = iLx/Ly.

The Green’s function on the torus is

G1(x, x;m2
1) =

1

LxLy

∑
kxky

∫
dω

2π

1

ω2 + k2x + k2y +m2
1

=
1

2LxLy

∑
kxky

1(
k2x + k2y +m2

1

)1/2 (C2)

where

kx =
2πnx + ϕx

Lx

ky =
2πny + ϕy

Ly
(C3)

for integers nx and ny. As in Appendix A, we evaluate G1 using Zeta regularization; the

technical details of this calculation can be found in Ref.41. In this regularization, the gap

equation is

G1(x, x;m2
1) = 0 (C4)
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After regularizing, we can write the Green’s function as

4πLyG1(x, x;m2
1) =

∫ ∞
1

dλ λ1/2 exp

(
− λ

4π

(
L2
ym

2
1 + ϕ2

x + ϕ2
y

))
θ3

(
iϕxλ

2π
; iλ

)
θ3

(
iϕy|τ |2λ

2π
; iλ|τ |2

)
+

1

|τ |

∫ ∞
1

dλ λ−1/2 exp

(
−
L2
ym

2
1

4πλ

)[
θ3

(
ϕx
2π

; iλ

)
θ3

(
ϕy
2π

;
iλ

|τ |2

)
− 1

]
− 2

|τ |
(C5)

where we use the Jacobi Theta function

θ3(z; τ) =
∞∑

n=−∞

exp
(
iπτn2 + 2πizn

)
(C6)

For given values of τ , ϕx, and ϕy, we compute the value of Lym1 by numerically inverting

the gap equation G1(x, x;m2
1) = 0 using the Eq. (C5).
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