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Hao Shi and Shiwei Zhang
Department of Physics, The College of William and Mary, Williamsburg, Virginia 23187

We describe the computational ingredients for an approach to treat interacting fermion systems
in the presence of pairing fields, based on path-integrals in the space of Hartree-Fock-Bogoliubov
(HFB) wave functions. The path-integrals can be evaluated by Monte Carlo, via random walks of
HFB wave functions whose orbitals evolve stochastically. The approach combines the advantage of
HFB theory in paired fermion systems and many-body quantum Monte Carlo (QMC) techniques.
The properties of HFB states, written in the form of either product states or Thouless states, are
discussed. The states preserve forms when propagated by generalized one-body operators. They
can be stabilized for numerical iteration. Overlaps and one-body Green’s functions between two
such states can be computed. A constrained-path or phaseless approximation can be applied to
the random walks of the HFB states if a sign problem or phase problem is present. The method is
illustrated with an exact numerical projection in the Kitaev model, and in the Hubbard model with
attractive interaction under an external pairing field.

I. INTRODUCTION

For many-fermion systems with paring, the Hartree-
Fock-Bogoliubov (HFB) approach1 has been a key theo-
retical and computational tool. The approach has seen
successful applications in the study of ground and certain
excited states in nuclear systems, as well as in condensed
matter physics and quantum chemistry. The method
captures pairing and deformation correlations, and often
provides a good symmetry-breaking picture for weakly
interacting systems. Symmetry can also be restored by
projection2,3 on a HFB vacuum, which further improves
the quality of the approximation.

For strongly interacting many-body systems, the HFB
approach is not as effective, because of its underlying
mean-field approximation. There have been attempts
to incorporate many-particle effects4,5. However a cor-
related HFB approach is still lacking which is size-
consistent and scales in low polynomial computational
cost with system size.

Quantum Monte Carlo (QMC) methods, which in gen-
eral are scalable with system size, are among the most
powerful numerical approaches for interacting many-
fermion systems. They have been applied in a variety of
systems, including in systems where pairing is important.
In such cases, HFB or related forms have been adopted
as trial wave functions, for example, in diffusion Monte
Carlo (DMC)6,7 and auxiliary-field QMC (AFQMC)8 cal-
culations. The HFB is used to provide a better approxi-
mate trial wave function with which to guide the random
walks by importance sampling, and to constrain the ran-
dom walks if a sign problem is present. The random
walks in these calculations do not sample HFB states,
however; instead they take place in more “conventional”
basis space, namely fermion position space in DMC or
Slater determinant space in AFQMC.

The motivation for this paper is to formulate an ap-
proach which combines HFB with stochastic sampling.
From the standpoint of HFB theory, such an approach
would provide a way to incorporate effects beyond mean-

field, by expressing the many-body solution as a linear
combination of HFB states. From the standpoint of
QMC, such an approach would allow the random walks
to take place in the manifold of HFB states, which may
provide a more compact representation of the interacting
many-body wave function, especially in strongly paired
fermion systems. To conduct the sampling in a space
that represents the many-body wave function or parti-
tion function more compactly generally improves Monte
Carlo efficiency (i.e., reduces statistical fluctuation for
fixed computational cost). Moreover it may reduce the
severity of the fermion sign/phase problem.

A further reason for developing such an approach is
that present QMC methods generally are not set up for
many-body Hamiltonians which contain explicit pairing
fields. Such Hamiltonians can arise in models for study-
ing superconductors. They can also arise from standard
electronic Hamiltonians when a symmetry-breaking pair-
ing field is applied to detect superconducting correla-
tions. Alternatively, if a pairing form of the Hubbard-
Stratonovich (HS) transformation is applied to a stan-
dard two-body interaction, a bilinear Hamiltonian or
action with pairing field will appear. Moreover, when
an electronic Hamiltonian is treated by an embedding
framework9, the system is mapped into an impurity
whose effective Hamiltonian is coupled to a bath and can
break U(1) symmetry. The impurity solver in that case
would need to handle pairing fields.

In this paper we describe a QMC method for han-
dling many-fermion Hamiltonians without U(1) symme-
try. The method evaluates the path integral in auxiliary-
field space to produce a ground-state wave function (or
finite-temperature partition function) by sampling HFB
states. It is a generalization of the AFQMC method from
the space of Slater determinants (Hartree-Fock states) to
that of HFB states. Below we formulate the QMC ap-
proach in this framework, and then outline all the ingre-
dients for implementing a computational algorithm. We
illustrate the method with two examples. The first is a
solution of the Kitaev model by imaginary-time projec-
tion. This is a non-interacting problem whose ground
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state is available exactly, and serves as an excellent toy
problem for illustrating the key elements of the method.
The second example is the attractive Hubbard model.
We study the pairing order in this model by applying an
explicit pairing field that breaks particle number symme-
try.
The remainder of this paper is organized as follows. In

Sec. II we summarize the QMC formalism by highlight-
ing all the ingredients necessary for an efficient sampling
of the HFB space. In Sec. III we give a brief introduction
of the standard HFB approach to facilitate the ensuing
discussion. In Sec. IV we present our method. The ran-
dom walkers can take either of two forms of HFB state,
a product state or a so-called Thouless state, and they
are discussed separately. Then in Sec. V we present our
illustrative results on the Kitaev model and on the at-
tractive Hubbard model. Finally in Sec. VI we conclude
with a brief discussion and summary.

II. QMC FORMALISM

In this section we briefly outline the key steps in the
ground-state AFQMC method, to facilitate the discus-
sion of propagating an HFB wave function. We will use
the open-ended branching random walk approach10; how-
ever, the alternative of Metropolis sampling of a fixed
(imaginary-)length path integral11 shares the same al-
gorithmic ingredients in the context of formulating an
approach with HFB wave functions. Additional details
of the AFQMC methods can be found in Refs.10,11.
Imaginary-time projection is a common way to solve

the ground state of many-body problems. The ground
state wave function |Ψ0〉 of Hamiltonian Ĥ is projected
out by

|Ψ0〉 ∝ lim
τ→∞

exp(−τĤ)|ψT 〉 , (1)

where the initial state |ΨT 〉, which we will take to be the
same as the trial wave function, is not orthogonal with
|Ψ0〉. The long imaginary time τ is divided into smaller
steps (each referred as a time slice): τ = L∆τ , and

exp(−τĤ) =

L∏

l=1

exp(−∆τĤ) . (2)

By using the Trotter-Suzuki breakup and Hubbard-
Stratonovich (HS) transformation, the projection oper-
ator can be expressed in an integral form

exp(−∆τĤ)
.
=

∫
p(x) exp[Ô(x)]dx , (3)

where the auxiliary-field x is a vector whose dimension-
ality is typically proportional to the size of the basis N ,
p(x) is a probability density function, and Ô(x) is a one-

body operator containing terms of order ∆τ and
√
∆τ .

The residual Trotter errors in Eq. (3) are higher order

in ∆τ , which are removed in practice by choosing suffi-
ciently small time-steps and extrapolation with separate
calculations using different values of ∆τ . There are dif-
ferent HS fields which couple with spin, charge, or pairing
operators. These fields lead to different forms of Ô(x),
which can be Hartree, Hartree-Fock, or pairing form. The
form of the HS affects the efficiency of the QMC algo-
rithm, as well as the systematic accuracy if a constraint
is applied to control the sign or phase problem12,13. We
will not be concerned with the details here as they have
minimal effect on the formalism below.
Formally the many-body ground state wave function

can be expressed as a high-dimensional integral:

|Ψ0〉 ∝
∫

· · ·
∫ L∏

l=1

dxlp(xl) |ψXXX〉 , (4)

where l denotes a time slice as in Eq. (2), and

|ψXXX〉 =
L∏

l=1

exp[Ô(xl)]|ψT 〉 . (5)

The shorthand XXX denotes the collection of the HS fields
along the imaginary-time path, {x1, x2, . . . , xL}. It can
be sampled by QMC, either via branching random walks
or the Metropolis algorithm, to give, formally:

|Ψ0〉 ∝
∑

XXX

WXXX |ψXXX〉, (6)

where WXXX is a Monte Carlo weight for XXX (which can
depend on the importance sampling transformation10).
The above assumes that

exp[Ô(x)]|ψ〉 → |ψ′〉 , (7)

i.e. the action by the propagator of Eq. (3) on a state
leads to a new state of the same form. If |ψ〉 is a Slater
determinant, a coordinate space state, or a matrix prod-
uct state14, then |ψ′〉 has the same respective form. For
example, in AFQMC the states are single Slater determi-
nants and exp[Ô(x)] is a one-body propagator, while in
DMC the states are a collection of particle positions and
the propagator is a translation operator. Below we will
assume that |ψT 〉 is an HFB wave function (or a linear
combination of HFB states), and show that we can gen-
eralize Eq. (7) to HFB states and turn the propagation
into a random walk in HFB space.
With Eq. (6) we can make measurements of the ground

state energy by:

E0 =

∑
XXX

WXXX〈ψT |Ĥ |ψXXX〉
∑
XXX

WXXX〈ψT |ψXXX〉 . (8)

Other observables (that do not commute with the Hamil-
tonian) and correlation functions can be measured by
back-propagation15,16. In the Metropolis approach where
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the entire path is kept, measurement can be carried out
in the middle portion of the path. (This may lead to an
infinite variance problem which can be controlled17.)
We can list all the key ingredients needed in the QMC

algorithm:

1. The random walker |ψ〉, when propagated by the

operator exp(Ô) in Eq. (3), evolves into another
state, |ψ′〉, of the same form, as in Eq. (7).

2. The overlap of two “walker” wave functions, 〈ψ′|ψ〉,
needs to be calculated (in low polynomial complex-
ity).

3. The Green’s function given by a quadratic operator
Ĉ needs to be computed, 〈ψ′|Ĉ|ψ〉/〈ψ′|ψ〉, again
with low polynomial complexity. In addition, cor-
relation functions (quartic operators) need to be
computed from these (as in Wick’s theorem with
Slater determinants).

4. The walker wave function need to be stable (or
stabilized) numerically during long imaginary-time
propagation.

With these ingredients, force bias can be computed10,18

to allow importance sampling to achieve better effi-
ciency. Symmetry properties can be imposed19–21. A
constrained-path12 or phaseless13 approximation can be
introduced to control the sign problem. A full AFQMC-
like computation can then be carried out, following either
the Metropolis path-integral procedure (including force
bias), or with open-ended random walks and a constraint
if there is a sign or phase problem.

III. HFB BASICS

Let us first define a set of N single particle creation
operators, c† =

(
c†1 c†2 . . . c†N

)
, and annihilation oper-

ators, c =
(
c1 c2 . . . cN

)
, which satisfy fermion com-

mutation relations. Quasi-particle bases β† and β, with
the same form as c† and c, can be set through a unitary
Bogoliubov transformation,

(
β† β

)
=

(
c† c

)(U V∗

V U∗

)
, (9)

Here U and V are N × N matrices. For example, N =
2Nbasis for spin-1/2 fermions in a basis of size Nbasis.
The vacuum of quasi particles is an HFB wave func-

tion. It can be written in the form of a product state, with
annihilation operators β applied to the true vacuum,

|ψp〉 =
N∏

i

βi|0〉 , (10)

where the quasi-particle operator βi is the (N + i)-th
element of the vector on the left-hand side in Eq. (9). In

the case of a fully paired state when U is invertible, an
HFB state can alternatively be expressed in the form of
a Thouless state:

|ψt〉 = exp(
1

2
c†Z(c†)T )|0〉 , (11)

where Z = (VU−1)∗, and the superscript “T ” indicates
“transpose”.
When both exist, the two forms are connected by a

simple relation |ψp〉 = pf(U†V∗)|ψt〉, where ‘pf’ denotes
Pfaffian (see below). In Sec. IV we discuss the QMC
formalisms based on each of these two forms as random
walkers.

IV. METHOD

In this section, we show how the four ingredients for
a QMC simulation listed in Sec. II can be realized with
HFB states. We first discuss product states in Sec. IVA,
which are formally a more direct generalization of Slater
determinants in AFQMC. This is followed in the next
section by the details for Thouless states. When U is
invertible, Thouless states are faster than product states,
since they have smaller matrix size and an automatic
stabilization procedure, as illustrated in Sec. IVB. Some
mathematical details are left to the Appendix, in order
to not impede the flow of the discussion.
We write, without loss of generality, the one-body op-

erator

Ô =

N∑

ij

tijc
†
i cj +

N∑

i>j

∆ijcicj +

N∑

i>j

∆̃ijc
†
i c

†
j, (12)

which does not have to be Hermitian as it results after
HS transformation of the interacting Hamiltonian, with

∆T = −∆ and ∆̃T = −∆̃.

A. Product state

Overlap: In a QMC simulation, we need to calculate
the overlap of two HFB wave functions. With importance
sampling, typically only the ratio of overlaps are needed,
for example, 〈ψT | exp(Ô)|ψp〉/〈ψT |ψp〉, where |ψT 〉 is the
trial wave function. Onishi’s Theorem provides a simple
way to calculate

〈ψp|ψ′
p〉2 = det(U′†U + V′†V) det(V′†V) , (13)

where U and V are the components of the unitary trans-
formation matrix of |ψp〉 as defined earlier, and U′ and
V′ are those for |ψ′

p〉. This formula can be used to eval-
uate the normalization of a product state, for example.
However, Eq. (13) neglects the sign in the overlap. The
sign/phase of the overlap is important (at least the rela-
tive sign/phase in the ratio above) in order to impose the
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constraint to control the sign or phase problem10. Rob-
ledo worked out the following form22 which regains the
sign of the overlap:

〈ψp|ψ′
p〉 = (−1)N(N−1)/2pf

(
VTU VTV′∗

−V′†V U′†V′∗

)
, (14)

where the Pfaffian can be computed (see, e.g., library
by Bertsch23). Note that, when U = 0, Eq. (14) will
reduce to the formula of Slater determinants, det(V′†V),
as expected.
Green’s Function: Physical properties are measured

through Green’s functions in AFQMC. Similar general-
ization can be made from Slater determinants to HFB
product states. Let us set Q = (U′†U + V′†V)T . The
three types of Green’s functions are then given by

ρij =
〈ψp|c†i cj |ψ′

p〉
〈ψp|ψ′

p〉
= (V′∗Q−1VT )ji ,

κij =
〈ψp|cicj |ψ′

p〉
〈ψp|ψ′

p〉
= (V′∗Q−1UT )ji ,

κij =
〈ψp|c†i c

†
j |ψ′

p〉
〈ψp|ψ′

p〉
= −(U′∗Q−1VT )ij . (15)

Note that, when U = U′ = 0, the first line reduces to the
Slater determinant result, while the last two lines vanish,
as expected.
A generalized Wick’s theorem24,25 holds, which allows

expectation values of two-body operators and correlation
functions to be calculated. For example,

〈ψp|c†i c
†
jckcl|ψ′

p〉
〈ψp|ψ′

p〉
= ρilρjk − ρikρjl + κijκkl. (16)

Propagation: We need to apply the exponential of a
general one-body operator Ô to a product HFB wave-
function. It can be shown (see Appendix A) that exp(Ô)
can be “exchanged” with a quasi-particle operator βi in
the following manner

exp(Ô)βi = β′
i exp(Ô), (17)

i.e., by modifying βi to a new form β′
i defined with the

matrix multiplication

β′ =
(
c† c

)
exp

(
t ∆̃
∆ −tT

)(
V∗

U∗

)
. (18)

Successive applications of the above yields

exp(Ô)
∏

i

βi|0〉 =
∏

i

β′
i exp(Ô)|0〉 . (19)

As shown in Eq. (A11) in the Appendix, exp(Ô)|0〉 on
the right-hand side in Eq. (19) can be written as

exp(Ô)|0〉 ∝ exp[
1

2
c†Z0(c

†)T ]|0〉, (20)

which gives quasiparticle states that are either paired or
empty. So the right-hand side of Eq. (19) is the vacuum
of the new quasi-particle operator β′

i, which is equivalent
to

∏
i β

′
i|0〉 up to a constant factor:

exp(Ô)
∏

i

βi|0〉 = α
∏

i

β′
i|0〉 . (21)

The normalization α can be determined by

α =
〈φ| exp(Ô)

∏
i βi|0〉

〈φ|∏i β
′
i|0〉

, (22)

where |φ〉 can be any state. For example, the calculation
is straightforward when |φ〉 is chosen to be the true vac-

uum or an eigenstate of Ô (see Appendix A for details).
Note that α is always 1 if there is no pairing operator,
since exp(Ô)|0〉 = |0〉. This covers the case of the prop-
agation of Slater determinants in standard AFQMC. It
also includes, for example, the situation where a pairing
trial wave function is used but to a Hamiltonian with no
pairing field and a HS transformation that does not in-
volve pairing decompositions. If pairing is between two
spin components, we can choose the vacuum to be the
true vacuum of one spin component, and “fully occu-
pied” for the other spin component, which will reduce α
to 1.
Stabilization: A unitary Bogoliubov transformation

imposes fermion commutation relations to the quasi-
particle operators, which ensures that the product form
of the HFB wave function is well-defined. There are two
stabilization conditions

U†U + V†V = 1 (23)

and

UTV + VTU = 0. (24)

During the iterative propagation, the transformation ma-
trices U and V are updated following Eq. (18):

(
V′∗

U′∗

)
= exp

(
t ∆̃
∆ −tT

)(
V∗

U∗

)
. (25)

It is easy to show that, if Ô is Hermition, and U and V

satisfy the second condition above, Eq. (24), then the new
matrices U′ and V′ will follow the same condition. How-
ever, these conditions can be violated if Ô has a general
form, or simply because of numerical instabilities caused
by finite precision. This can be restored by forcing skew-
symmetry to

B ≡ U′TV′ , (26)

after which we modify U′T if V′ is invertible, or vice versa.
The first condition is similar to the situation with

Slater determinants in AFQMC. Single particle states
created by the quasi-particle operators must remain or-
thonormal to each other. The propagation can vio-
late this condition and cause numerical instability. This
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can be stabilized by, for example, the modified Gram-
Schmidt (modGS) procedure,

(
V′∗

U′∗

)
=

(
Ṽ′∗

Ũ′∗

)
R , (27)

where R is an upper triangular matrix, and det(R) repre-
sents the overall normalization/weight of the HFB wave
function which usually needs to be stored. Similar to the
modGS stabilization in AFQMC, the off-diagonal part
of R represents nonorthogonality in the original quasi-
particle basis, which does not affect the HFB wave func-
tion, and can thus be discarded.
It is worth noting that we should always force skew-

symmetry of B before applying the modGS process. This
is because changes in B will affect orthonormality, while
the modGS will not change the skew-symmetry of B:

B̃ = Ũ′T Ṽ′ = R†−1(U′TV′)R∗−1 , (28)

i.e., B̃ has the same skew symmetry as B.

B. Thouless state

When a fully paired state is involved which allows the
use of a Thouless form, similar formulas can be written
down.
Overlap: The overlap of two Thouless states is22

〈ψt|ψ′
t〉 = (−1)N(N+1)/2pf

(
Z′ −1

1 −Z∗

)
. (29)

Green’s Function: With the same definition as in
Sec. IVA, the Green’s functions should be the same in
the Thouless form as in product state form. They can be
written more compactly for Thouless states:

(
κ ρ

−ρT κ

)
=

(
0 1

−1 0

)
−
(

Z′ −1

1 −Z∗

)−1

. (30)

The above can be shown using coherent states. The in-
gredients are similar to those used in the evaluation of
overlaps in Ref.22.
Propagation: Let us denote the matrix representation

of exp(Ô) by

exp(O) =

(
K M

L N

)
. (31)

The application of exp(Ô) on the Thouless state |ψt〉
gives

exp(Ô)|ψt〉 ∝ exp(Ô′)|0〉 , (32)

after the one-body operator Ô is combined with the pair-
ing operator from |ψt〉 (see Appendix A). The corre-

sponding matrix representation of the new operator Ô′

is given by

exp(O′) =

(
K KZ + M

L LZ + N

)
. (33)

Using the expansion in Eq. (A11), we have

exp(Ô′)|0〉 ∝ exp(
1

2
c†Z′c†)|0〉 , (34)

with

Z′ = (KZ + M)(LZ + N)−1 . (35)

The new Thouless wave function after propagation is

|ψ′
t〉 ≡ exp(Ô)|ψt〉 = α exp(

1

2
c†Z′c†)|0〉 . (36)

The weight/normalization of the new state can be deter-
mined by

α =
〈φ| exp(Ô)|ψt〉

〈φ|ψ′
t〉

, (37)

where we can choose, for example, |φ〉 = |0〉, and use

Eq. (A11) to expand exp(Ô) before calculating the over-
lap (see Appendix A).
Stabilization: As we stabilize the product state in

Eq. (27), we have

Z = (VU−1)∗ = (ṼŨ−1)∗, (38)

so that the matrix R cancels when the matrix Z is formed,
and the Thouless state is unchanged. This suggests that
Thouless state is more stable during the propagation.
Numerical instability can contaminate the HFB wave
function. Skew symmetry of Z should be enforced to
help maintain stability. When the Thouless state is ill-
defined, e.g. det(U) = 0, imposing skew-symmetry will
not remove the instability. In such cases, a product state
should be used instead.

V. ILLUSTRATIVE RESULTS

A. Kitaev model

We first demonstrate the propagation of HFB wave
functions using the Kitaev model, which describes a spin-
less p-wave superconductor. The Hamiltonian is

Ĥ = −µ
L1∑

i=1

ni −
L1−1∑

i=1

(tc†i ci+1 +∆cici+1 + h.c.) , (39)

where h.c. denotes Hermitian conjugate, µ is chemical

potential, ni = c†ici is the number operator, and L1 is
the number of sites in the one-dimensional lattice (open
boundary condition). This model can be solved exactly,
since there is no two-body interaction. The ground-state
solution has a Majorana energy mode at the boundary26.
Solving this model by imaginary-time projection is the

same as treating one (mean-field) path in the path in-
tegral of a many-body Hamiltonian whose HS transfor-
mation leads to a one-body Hamiltonian of the form in
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Eq. (39). It involves all the key elements in generalizing
an AFQMC calculation from Slater determinant to HFB
states. The only difference with a real QMC calculation
is that there is no auxiliary-field to be sampled (or put
another way, each field can take on a fixed value). The
result will therefore be deterministic, with no statistical
fluctuation. As discussed in Sec. II,

|ψ(τ)〉 = exp(−τĤ)|ψT 〉 (40)

gives the ground state wave function when τ is sufficiently
large. The ground state energy can be calculated by the
mixed estimator

EM (τ) =
〈ψT |Ĥ|ψ(τ)〉
〈ψT |ψ(τ)〉

, (41)

which involves calculating Green’s functions. It can also
be calculated by the so-called growth estimator

EG(τ) = − ln[
〈ψT | exp(−∆τĤ)|ψ(τ)〉

〈ψT |ψ(τ)〉
]

/
∆τ, (42)

which is usually less costly computationally, since it only
involves calculating overlaps. Observables can be com-
puted as full expectation of |ψ(τ)〉

〈Ô〉τ =
〈ψ(τ)|Ô|ψ(τ)〉
〈ψ(τ)|ψ(τ)〉 . (43)
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FIG. 1: (Color online) Energy versus imaginary time during
projection in the Kitaev model. The lattice size L1 is 100,
and model parameters are t = 1.0, ∆ = 2.0, and µ = −3.2.
A time step ∆τ = 0.01 was used. Results from propagating
product states are numerically the same as those from propa-
gating Thouless states. The mixed estimator and the growth
estimator are consistent with each other, and converge to the
exact answer for sufficiently large τ . The inset shows results
for τ from 2 to 10, with log-scale of the energy.

As shown in Fig. 1, the computed energies from prod-
uct state and Thouless state are numerically equivalent,

and both converge to the exact ground-state result at
large τ . (We use a subscript “p” or “t” to indicate re-
sults from projection of product state or Thouless state,
respectively. For example, EM

p (τ) means the mixed es-
timator by propagating in the product state form, while
EG

t (τ) means growth estimator by propagating the Thou-
less state form.) In these tests, we chose a random wave
function as the initial and trial wave function |ψT 〉, which
was first set in the product form, and then mapped to the
Thouless form. The growth estimator has a small devia-
tion with the mixed estimator at small imaginary times,
which results from the Trotter error from the nonzero
time step size ∆τ . The deviation vanishes at large τ
when |ψ(τ)〉 becomes the exact ground state. In Fig. 2,
we show the computed pairing order at different imag-
inary times. The initial value at τ = 0.0 is from the
random initial wave function. The result is seen to con-
verge to the exact result at the large τ limit.
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FIG. 2: (Color online) Pairing order 〈c†rc
†
r+1〉 vs. lattice posi-

tion r in the Kitaev model computed from |ψ(τ )〉 at different
projection-times τ , with the same parameters in Fig. 1. The
order parameter converges to the exact solution at the large
imaginary time limit. For clarity, data in the middle of the
lattice are shown at every third value of r for τ = 10.

B. Hubbard model

We next show the propagation of HFB wave func-
tions in an interacting many-fermion system, the two-
dimensional Hubbard model,

ĤHub = −t
∑

〈i,j〉σ

c†iσcjσ +U
∑

i

ni↑ni↓ − µ
∑

i

(ni↑ +ni↓) .

(44)
We will consider periodic lattices with L1 × L2 sites in
the supercell [i.e., N = 2(L1 × L2) in the notation of



7

TABLE I: Kinetic, interaction, and total energies from QMC
and ED. Three QMC calculations from the middle of the
plateaus in Fig. 3 are shown, with µ = −0.65, −0.55,
and −0.45 respectively, which are compared with ED re-
sults for fixed particle numbers. The QMC total energy is
〈ĤHub +µ(M↑ +M↓)〉. QMC statistical error bars are on the
last digit and shown in parentheses.

(M↑,M↓)
K V E

ED QMC ED QMC ED QMC
(1, 1) -2.995 -2.997(3) -10.42 -10.43(2) -13.41 -13.42(2)
(2, 2) -5.318 -5.320(3) -21.30 -21.33(2) -26.62 -26.65(2)
(3, 3) -7.162 -7.167(4) -32.46 -32.42(3) -39.62 -39.59(3)

Eq. (12)]. In Eq. (44) the sites are labeled by i and j,

c†iσ and ciσ are creation and annihilation operators of an
electron of spin σ (=↑ or ↓) on the i-th lattice site, t is
the nearest-neighbor hopping energy, U is the interaction
strength, and µ is the chemical potential. We will useMσ

to denote the number of particles with spin σ.
In the attractive Hubbard model (U < 0), s-wave elec-

tron pairing is present. Our initial state will take a
Bardeen-Cooper-Schrieffer (BCS) wave function, which
is a special case of the HFB form. This wave function is
then propagated in the AFQMC framework10, and our
trial wave function |ψT 〉 is also of the BCS form. In con-
trast to Slater determinant initial wave functions (such as
Hartree-Fock), the number of particles is not conserved
in the BCS wave function. The chemical potential needs
to be tuned to reach the targeted number of particles. In
Fig. 3, we illustrate the convergence of the QMC propaga-
tions of the BCS wave function, and how the expectation
value of the particle number varies as the chemical poten-
tial is varied. (Our calculations are in the Sz = 0 sector,
withM↑ =M↓.) QMC energies are consistent with exact
diagonalization (ED) results, as shown in Table I.
The computational cost of the present method scales

similarly to Slater determinant random walkers. How-
ever, it has a larger prefactor. More specifically, in the
current example the computational cost of our method
scales as N3, while the Slater determinant counterpart
scales as N2(M↑ +M↓). For example, M↑ = 2 in Table I
costs 58 seconds with 48 Xeon E5620 cores. To reach the
same accuracy, only 17 seconds is needed for the conven-
tional Slater determinant method.
We also compute the pairing correlation function18

Pcorr(i) = 〈c†0↑c
†
0↓ci↓ci↑〉 . (45)

This requires the full estimator which is implemented
by back-propagation in the branching randowm walk ap-
proach or by direct measurement at the middle portions
of the path in the path integral formula. Here we used
the latter17,18. QMC pairing correlation functions are
benchmarked against ED results in Fig. 4 for different
numbers of particles.
The new method affords an advantage in the study of

electron pairing correlations, since it allows one to di-
rectly treat a Hamiltonian which contains a pairing field.

−0.70 −0.65 −0.60 −0.55 −0.50 −0.45 −0.40
µ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
↑

FIG. 3: (Color online) QMC calculations by projecting BCS
random walkers. Average particle number (for ↑-electrons)
is shown versus chemical potential. The lattice size is 4 × 4,
and model parameters are t = 1.0, U = −12.0. A imaginary-
time step of ∆τ = 0.01 was chosen, with projection time
β = 64t. Our BCS initial wave function has 〈M↑〉 = 2.0. The
algorithm converges to different densities as µ is varied and
gives accurate results. The plateaus indicate integer particle
numbers.

In standard QMC calculations of the Hubbard model
(either attractive as in the present case, or repulsive in
which the d-wave pairing correlation is especially of in-
terest), the Hamiltonian does not break particle number
symmetry, which makes it difficult to directly measure

a pairing order parameter, 〈c†↑c
†
↓〉. Typically one instead

measures the pairing correlation function in Eq. (45).
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QMC µ = −0.65

QMC µ = −0.55

QMC µ = −0.45

FIG. 4: (Color online) Pairing correlation functions computed
from QMC and ED. The chemical potential is tuned in QMC
to match particle numbers in the ED calculations. Same run
parameters are used as in Fig. 3 and Table I. QMC statistical
error bars are smaller than symbol size.

If the order parameter is small, Pcorr(i) will be much
smaller since it is related to the square of the order pa-
rameter at large separation i. This makes the task of de-
tecting order especially challenging. An alternative way
to calculate order parameters is to apply a small pinning
field in the Hamiltonian, and detect the order induced by
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the pinning field27,28. For pairing we could now apply

Ĥ ′ = ĤHub +
∑

i

hi
2
(c†i↑c

†
i↓ + ci↓ci↑) , (46)

where the pairing fields hi will be non-zero only in a small
local region (two neighboring sites in the present case).
Using the technique described in this paper, we can solve
the above Hamiltonian for the Hubbard model with a
pairing pinning field. Note that, in this special case, the
formalism can be reduced to Slater determinants since
the pairing field is between spin up and spin down. This
was done for up to 16×16 lattices to obtain the 1s paring
order parameter. As illustrated in Fig. 3, the use of a
pinning field provides a way to measure pairing order
with excellent accuracy. (A more detailed study with
finite-size scaling will be required to determine the precise
value in the thermodynamic limit.)

0 2 4 6 8 10 12

r
0.15

0.20

0.25

0.30

0.35

0.40

〈C
† r
↑
C

† r
↓
〉

8× 8

16× 16

FIG. 5: (Color online) Pairing order versus distance. The
lattice sizes are 8×8 and 16×16, with total number of particles
tuned to 10 and 40, respectively. The model parameters are
t = 1.0 and U = −8.0. We choose a time step ∆τ = 0.01,
and projection time β = 64. Pinning field is put on two
neighboring sites (0,0) and (1,0), with hi = 1.

VI. DISCUSSION AND SUMMARY

For clarity, we have separated the two forms of HFB
states, the product state and the Thouless state, in the
discussion of the technical ingredients. The former is
more general, while the latter is restricted to fully paired
states but gives more compact representations. Of course
they can be mixed and used together as needed, both in
theory and in numerical implementation. A limitation is
that we have not implemented or discussed the case of
unpaired fermions, or when the product in Eq. (10) is
restricted to a subset of the N quasi-particle operators.
We will leave this to a future study.
In Appendix B, we discuss the special example of prop-

agating singlet-pairing BCS wave functions, and write

out explicit formulas for the “mixed” overlap and Green’s
functions between a BCS wave function and a Slater de-
terminant. This particular case is useful in the study
of Fermi gases, for example, where a charge form of the
HS decomposition can be used to decouple the attractive
short-range interaction but a BCS trial wave function
greatly improves the efficiency8. In this form, the energy
can be computed straightforwardly with the mixed esti-
mate, but observables require propagating the BCS trial
wave function, and keeping it numerically stable.

We have presented the method and formalism in this
paper so that they are invariant to whether the Metropo-
lis or the branching random walk method of sampling is
used, or whether a sign problem is present or not. The
two examples studied in Sec. V are sign-problem-free.
When there is a sign or phase problem, it is straightfor-
ward to apply a constraint to control it approximately.
The constraint is imposed in the branching random walk
framework of AFQMC, requiring the calculation of the
overlap with |ψT 〉, and the force bias which is given by the
mixed Green’s functions. Both of these ingredients have
been discussed and can be applied straightforwardly.

In summary, we have presented the computational in-
gredients to carry out many-body calculations in inter-
acting fermion systems in the presence of pairing fields.
All aspects required to set up a full QMC calculations in
such systems are described. Components of the formal-
ism presented may also be useful in other theoretical and
computational contexts and can be adopted. We illus-
trated the method in two situations where propagating
a BCS or HFB wave function becomes advantageous or
even necessary, namely in model Hamiltonians without
U(1) symmetry, or with standard electronic Hamiltoni-
ans when a pairing field term is added to induce super-
conducting correlations. Related situations include the
study of Majorana fermions, or in embedding calcula-
tions of standard electronic systems where an impurity
is coupled to a bath described by a mean-field solution
that may have electron pairing present.

After we have completed a draft of the present work,
we became aware of Ref.29 which discusses a related ap-
proach.
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Appendix A: Additional notations and formulas

We first define a matrix representation which will be
used throughout the text. Consider a general bilinear
operator,

Ô =
N∑

ij

tijc
†
i cj +

N∑

i>j

∆ijcicj +
N∑

i>j

∆̃ijc
†
ic

†
j + η, (A1)

where t, ∆, and ∆̃ are corresponding N × N matrices,
and η is a constant. Note that Ô can be non-Hermition.
The matrix representation of exp(Ô) is

exp(O) = exp

(
t ∆̃
∆ −tT

)
, (A2)

which does not depend on η, and we denote its explicit
form as

exp(O) =

(
K M

K N

)
. (A3)
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Linear Transformation of Quas-particle Opera-

tors. An arbitrary quas-particle operator γ has the form

γ =
(
c† c

)(v
u

)
, (A4)

with v =
(
v1 v2 . . . vN

)T
and u =

(
u1 u2 . . . uN

)T
.

It can be proven that

exp(Ô)γ exp(−Ô) = γ′, (A5)

where γ′ is built from v′ and u′ with

(
v′

u′

)
= exp(O)

(
v
u

)
. (A6)

To prove the above, we use the expansion

exp(Ô)γ exp(−Ô) = γ+[Ô, γ]+
1

2!
[Ô, [Ô, γ]]+· · · . (A7)

With commutation relations [Ô, c†j ] = (c†t)j + (c∆)j and

[Ô, cj ] = (c†∆̃)j + (c(−tT ))j , we obtain

[Ô, γ] =
(
c† c

)( t ∆̃
∆ −tT

)(
v
u

)
, (A8)

and

[Ô, [Ô, γ]] =
(
c† c

)( t ∆̃
∆ −tT

)2 (
v
u

)
. (A9)

The right hand side of Eq. (A7) thus gives

γ′ =
(
c† c

)
exp

(
t ∆̃
∆ −tT

)(
v
u

)
. (A10)

Expansion of Exponential Operators. Following
Hara and Iwasaki30, we can expand exp(Ô) to three one-
body operators,

exp(Ô) = exp(
1

2
c†Zc†T ) exp(c†XcT ) exp(

1

2
cYcT )×

〈0| exp(Ô)|0〉. (A11)

With the help of matrix representation in Eq. (A3), we
have

Z = MN−1,X = ln(K),Y = N−1L. (A12)

We can also prove

〈0| exp(Ô)|0〉 =
√
det(N) exp[

1

2
Tr(t) + η]. (A13)

Compression of Exponential Operators. When we
have an operator created by multiplying exponentials of
one-body operators

Ô3 = log[exp(Ô1) exp(Ô2)], (A14)

Ô3 is still a general one-body operator according to
Baker-Campbell-Hausdorff formula. Its matrix represen-
tation is

exp(O3) = exp(O1) exp(O2), (A15)

which can be proven by linear transformation relation in
Eq. (A5),

γ′′ = exp(Ô3)γ exp(−Ô3)

= exp(Ô1)[exp(Ô2)γ exp(−Ô2)] exp(−Ô1),(A16)

where γ′′ is built from v′′, u′′ by

(
v′′

u′′

)
= exp(O1) exp(O2)

(
v
u

)

= exp(O3)

(
v
u

)
. (A17)

The matrix relations above define everything up to a pro-
portionality constant. The constant prefactor can be de-
termined from

〈0| exp(Ô3)|0〉 = 〈0| exp(Ô1) exp(Ô2)|0〉. (A18)

The right-hand side can be calculated by expanding
exp(Ô1) and exp(Ô2) as in Eq. (A11), which leads to
overlap of two Thouless state wave functions.
Phase of the HFB State After Propagation. The
phase factor of the product state after propagation is
determined by Eq. (22). If we have |φ〉, the eigenstate of

Ô:

Ô|φ〉 = Ō|φ〉, (A19)

it is easy to calculate α,

α = exp(Ō)
〈φ|

∏
i βi|0〉

〈φ|∏i β
′
i|0〉

, (A20)

which only involves two overlaps of HFB wave functions.
Alternatively, if we choose |φ〉 to be the true vacuum, we

can apply Eq. (A11) to expand exp(Ô):

α = 〈0| exp(Ô)|0〉 〈0| exp(
1
2cYc

T )
∏

i βi|0〉
〈0|∏i β

′
i|0〉

. (A21)

Exchanging the exponential operator to the right, we ob-
tain

exp(
1

2
cYcT )

∏

i

βi|0〉 =
∏

i

β′′
i exp(

1

2
cYcT )|0〉(A22)

=
∏

i

β′′
i |0〉, (A23)

so that α can be determined by the overlaps between the
true vacumm and HFB states,

α = 〈0| exp(Ô)|0〉 〈0|
∏

i β
′′
i |0〉

〈0|∏i β
′
i|0〉

. (A24)
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The phase in Thouless state is determined by Eq. (37).
When |φ〉 is chosen to be the true vacuum, we can expand

exp(Ô) as in Eq. (A7),

α = 〈0| exp(Ô)|0〉〈0| exp(1
2
cYcT )|ψt〉 , (A25)

which is given by the verlap of two Thouless state wave
functions.

Appendix B: The special case of an HFB wave

function and a Slater determinant

A special case of our discussions is an HFB wave func-
tion with a Slater determinant (SD). Here the HFB wave
function is

|ψ〉 = exp(
1

2
c†Z(c†)T )|0〉, (B1)

and the SD wave function is

|φ〉 =
M∏

i

φ†i |0〉, (B2)

with φ†i = c†φi, and M being the number of fermions.
The overlap between the HFB and SD wave functions

is determined by

〈ψ|φ〉 = pf(φTZ∗φ). (B3)

Setting Q = φTZ†φ, we have the Green’s functions,

ρij =
〈ψ|c†i cj |φ〉
〈ψ|φ〉 = (Z†φQ−1φT )ji,

κij =
〈ψ|cicj |φ〉
〈ψ|φ〉 = (−φQ−1φT )ij ,

κij =
〈ψ|c†i c

†
j |φ〉

〈ψ|φ〉 = (−Z† + Z†φQ−1φTZ†)ij . (B4)

Projected HFB wave function. In situations where
it is desirable to preserve U(1) symmetry projected HFB
(PHFB) wave function becomes useful. For a fixed num-
ber of particles M , the PHFB wave function is

|ψPHFB〉 =
1

2M/2(M/2)!
(c†Zc†)M/2|0〉. (B5)

The overlap between a PHFB and an SD is the same
as Eq. (B3) and the Green’s functions are the same as
Eq. (B4).
The propagator for PHFB should not break U(1) sym-

metry. Let us set ∆ and ∆̃ to zero in Eq. (A1). The new
PHFB wave function after propagation is

|ψ′
PHFB〉 = exp(Ô)|ψPHFB〉, (B6)

and Z ′ in |ψ′
PHFB〉 is

Z ′ = exp(t)Z exp(tT ). (B7)
Spin-1/2 model with singlet pairing. Let us consider
spin-1/2 fermions in a basis of size Nbasis. If pairing is
only between opposite spins, Z is specialized to

Z =

(
0 Z0

−ZT
0 0

)
, (B8)

where Z0 is an Nbasis×Nbasis matrix. If SU(2) symmetry
is present, Z0 is Hermition. The SD wave function is in
block diagonal form

φ =

(
φ↑ 0
0 φ↓

)
, (B9)

where φ↑ and φ↓ are Nbasis ×M/2 matrices.
The overlap between the HFB and SD is reduced to a

determinant

〈ψ|φ〉 = (−1)M/2 (M/2−1)/2 det(φT↓ Z
†
0φ↑), (B10)

which can be calculated efficiently. Note that we can
ignore the overall sign here if the number of particles is

fixed in the calculation. If we set Q0 = φT↓ Z
†
0φ↑, the

nonzero Green’s functions are

〈ψ|c†i↑cj↑|φ〉
〈ψ|φ〉 = (Z∗

0φ↓(Q
T
0 )

−1φT↑ )ij ,

〈ψ|c†i↓cj↓|φ〉
〈ψ|φ〉 = (Z†

0φ↑Q
−1
0 φT↓ )ij ,

〈ψ|ci↑cj↓|φ〉
〈ψ|φ〉 = (−φ↑Q−1

0 φT↓ )ij ,

〈ψ|c†i↑c
†
j↓|φ〉

〈ψ|φ〉 = (Z∗
0 − Z∗

0φ↓(Q
T
0 )

−1φT↑ Z∗
0)ij .(B11)

The corresponding projected HFB wave function is
similar to Eq. (B5),

|ψPHFB〉 =
1

(M/2)!
(c†↑Z0c

†
↓)

M/2|0〉, (B12)

where c†↑ and c†↓ are the same as c† except for the spin

index. The general operator in Eq. (A1) has the form

t =

(
t↑ 0
0 t↓

)
, (B13)

with ∆ and ∆̃ equal to zero again. After propagation,
the new Z ′

0 is given by

Z ′
0 = exp(t↑)Z0 exp(t

T
↓ ). (B14)

For a system with SU(2) symmetry, we have t↑ = t∗↓ and

Z0 = U0D0U
†
0 , where U0 is a unitary matrix and D0 is a

diagonal matrix. The propagation is

Z ′
0 = (exp(t↑)U0)D0(exp(t↑)U0)

†, (B15)

and Z ′
0 will remain Hermition. The propagation can be

thought of as U ′
0 = exp(t↑)U0, which is similar to prop-

agating an SD wave function. Note that maintaining
numerical stability in the propagation will likely require
additional investigation in these situations.


