
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Single-electron gap in the spectrum of twisted bilayer
graphene

A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and Franco Nori
Phys. Rev. B 95, 045119 — Published 13 January 2017

DOI: 10.1103/PhysRevB.95.045119

http://dx.doi.org/10.1103/PhysRevB.95.045119


Single-electron gap in the spectrum of twisted bilayer graphene

A.V. Rozhkov,1, 2, 3 A.O. Sboychakov,1,2 A.L. Rakhmanov,1,2, 3, 4 and Franco Nori1, 5

1CEMS, RIKEN, Wako-shi, Saitama, 351-0198, Japan
2Institute for Theoretical and Applied Electrodynamics,

Russian Academy of Sciences, 125412 Moscow, Russia
3Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 Russia

4All-Russia Research Institute of Automatics, Moscow, 127055 Russia
5Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA

We investigate the gap in the single-electron spectrum of twisted bilayer graphene. In a perfect infinite
lattice of a twisted bilayer, the gap varies exponentially in response to weak changes of the twist angle. Such
a large sensitivity makes theoretical predictions of the gap nearly impossible, since experimentally the twist
angle is always known with finite accuracy. To address this issue, we numerically study finite clusters of twisted
bilayer graphene. For finite systems, changing the twist angle causes a gradual crossover between gapless and
gapped regimes. The crossover occurs when the finite-size quantization energy becomes comparable to the
matrix elements responsible for the generation of the gap. We further argue that disorder scattering can induce
similar crossover, in which the mean-free path plays the same role as the system size for the finite clusters. It is
demonstrated that, to observe the gap experimentally, it is necessary to have a sample of suitable purity, and to
possess the ability to tune the twist angle accurately.

PACS numbers: 73.22.Pr, 73.21.Ac

I. INTRODUCTION

Recent experimental studies (scanning tunneling mi-
croscopy, STM1–4, Raman spectroscopy5,6, angular resolved
photoemission spectroscopy7,8) revealed that, in many cases,
the structure of bilayer graphene samples is far from the ideal
AB stacking. Instead, it is characterized by a non-zero twist
angle θ between graphene layers. The electronic structure of
twisted bilayer graphene (tBLG) is very rich, demonstrating
a Dirac spectrum with a θ-dependent Fermi velocity1,5, low-
energy van Hove singularities3,4, complex Fermi surface9,10,
and other peculiar features12,13. An important characteristic of
its electronic structure is the single-electron gap. For twisted
bilayer samples, the existence of the gap was demonstrated in
several experiments8,14. This paper theoretically studies the
gap (previous efforts on this issue are discussed in the recent
review paper in Ref. 15).

If one is interested in the theoretical description of the
tBLG, a useful starting point is to consider ‘commensurate’
values of θ for which the tBLG lattice forms commensurate
superstructures. When the size of the supercell is not too large,
the electronic properties can be studied numerically9–11,17–25.
Besides computational approaches, several semi-analytic the-
ories for low-energy electrons were developed26–32. Studying
the commensurate angles, it is possible to calculate, for exam-
ple, the dependence on θ of the Fermi velocity27–29 vF and the
density of states9. Unfortunately, these approaches cannot be
directly applied for the calculation of the gap. It was demon-
strated in Ref. 9 that the gap ∆ evaluated at the commensurate
angles is not a smooth function of θ. Instead, it varies expo-
nentially even for small changes of the twist angle. Clearly,
such a large sensitivity implies that considering the commen-
surate angles is not sufficient for a consistent theory of how
the gap is generated.

A possible way to remedy this situation was proposed in
Ref. 9. It was pointed out that the sharp jumps of ∆ were as-

sociated with the fact that the size of the supercell may change
drastically for very small variations of θ. Therefore, the ex-
treme sensitivity of ∆ to the twist angle is possible only in a
perfect infinite lattice of tBLG, where a superstructure with
arbitrary large supercell can exist. Of course, any real sam-
ple has a finite linear size L. Furthermore, a realistic electron
propagation is characterized by a finite mean free path lm due
to electron scattering on defects, such as impurities, “wrin-
kles” (as an example, below we will evaluate lm for a partic-
ular case of a disordered ensemble of one-dimensional “wrin-
kles”), etc. The smallest among the length scales L and lm
would introduce a “cutoff”, which disallows the superstruc-
tures with large supercells, and makes the jumps of ∆ impos-
sible9.

The latter reasoning motivates us to investigate the forma-
tion of the gap in a tBLG sample of finite size. For tBLG clus-
ters of various twist angles and linear sizes, we numerically
determine the matrix elements, which couple different Dirac
cones. By construction, the calculated matrix elements are
smooth functions of θ. Since these matrix elements are small
in comparison to the graphene band-width, many publications
often dismiss them. Yet, they are important at low energies,
causing qualitative changes to the electron spectrum: in the
ideal infinite tBLG lattice they either open the gap, or induce a
so-called “band splitting”. In a finite-size sample, or in a sam-
ple with finite quasiparticle scattering, these cone-coupling
matrix elements require a subtler interpretation: a gap cannot
be observed, unless the corresponding matrix element exceeds
both the dimensional quantization gap, and quasiparticle scat-
tering frequency. We will demonstrate that this condition is
satisfied only when θ is close to a commensurate angle with
small supercell size. As the detuning from the “good” angle
increases, the gap-generating matrix elements quickly (expo-
nentially) decay, and the gap is washed away by the external
scattering.

The paper is organized as follows. Section II summarizes
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the geometry of the tBLG lattice. In Sec. III we discuss the
general theoretical background of the problem considered.
The scattering on the linear defects (“wrinkles”), which is a
very effective mechanism limiting the coherent propagation of
the electrons in graphene, is studied in Sec. IV. The numerical
results for the finite-size samples are presented in Sec. V. The
discussion and conclusions are given in Sec. VI. Additional
details of the calculation of the matrix elements are presented
in the Appendix.

II. GEOMETRY OF TWISTED BILAYER LATTICE

In this section, for reader’s convenience, we provide basic
information about the geometry of the twisted bilayer lattice.
This will allow to introduce equations and notation which will
be used later throughout this paper. The presentation here fol-
lows Refs. 9,15. A more general and comprehensive consider-
ation of the slightly mismatched overlayers is done in Ref. 16.

A bilayer consists of two layers, one lying over the other.
We will assume that the layers are perfectly flat, and separated
by the distance d = 3.35Å from each other. In a real tBLG
sample the layers are not purely two-dimensional. The inter-
layer distance varies3 depending on the local arrangement of
the atoms. However, the interlayer corrugation is quite small
(∼ 0.1Å), and our approximation is well-justified.

Each graphene layer consists of two sublattices,A1 andB1
in the layer 1 (bottom layer, see Fig. 1a), and A2, B2 in the
layer 2 (top layer). In the layer 1 the positions of the carbon
atoms are given by the equations

r
1A
n ≡ rn = na1 +ma2 , r

1B
n = rn + δ1 , (1)

δ1 =
1

3
(a1 + a2) = a(1/

√
3, 0) , (2)

where n = (n,m) is a vector with integer-valued components
n andm, the vector δ1 points to a nearest-neighbor site on the
honeycomb lattice, and a1,2 are primitive vectors of the lattice

a1 =
a

2
(
√
3, −1), a2 =

a

2
(
√
3, 1), (3)

with the lattice parameter a = 2.46Å. We will also use the
length of the in-plane carbon-carbon bond a0 = a/

√
3 =

1.42Å.
When θ = 0, the system is a perfect AB bilayer. Let us

consider the situation when the layer 2 is rotated with respect
to layer 1 by the angle θ around the axis connecting the atoms
A1 and B2 with n = 0 (see Fig. 1). The atoms of the rotated
layer, thus, have the positions

r
2B
n

≡ r
′
n
= na′1 +ma

′
2 , r

2A
n

= r
′
n
− δ

′
1 , (4)

where

a
′
1,2 = a1,2

(

cos θ ∓ sin θ√
3

)

± a2,1
2 sin θ√

3
, (5)

δ
′
1 =

a√
3
(cos θ, sin θ) . (6)
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FIG. 1: (a) Starting from a perfect AB-bilayer graphene, a twisted
graphene bilayer is obtained by rotating the top layer by the angle
θ (shown by the blue rotating arrow). The rotation is performed
around the axis connecting sites A1 and B2; the quantity t is the
in-plane nearest-neighbor hopping, and γ1,3,4, are out-of-plane hop-
ping amplitudes of the AB-stacked bilayer. These γs are used to fix
the fitting parameters of the function t⊥(r; r

′) (see the text). In this
paper we use γ1 = 0.4 eV, γ3 = 0.254 eV, and γ4 = 0.051 eV,
which are all substantially smaller than the in-plane hopping ampli-
tude t = 2.8 eV. (b) Reciprocal space structure for θ = 21.787◦

(m0 = 1, r = 1). The large hexagons show the Brillouin zones
of individual layers: the red dashed (the blue dot-dashed) hexagon
corresponds to the bottom (top) layer. The green thick solid hexagon
represents the first Brillouin zone of the bilayer. The next several
Brillouin zones of the tBLG are shown by black thin solid hexagons.
The Dirac point K′ (K′

θ) is equivalent to the point Kθ (K) if r 6= 3n.
When r = 3n, Kθ ∼ K and K

′

θ ∼ K
′ (see the text). The tBLG

Dirac points K1,2 are doubly degenerate: each of them is equiv-
alent to one of two Dirac points of each graphene layer. For the
particular case of the (1, 1) superstructure, K1 ∼ K ∼ K

′

θ , and
K2 ∼ K

′ ∼ Kθ .

The structure of the tBLG is commensurate if19,26–28

cos θ =
3m2

0 + 3m0r + r2/2

3m2
0 + 3m0r + r2

, (7)

where m0 and r are coprime positive integers. For these an-
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gles the superlattice vectors R1,2 are:
{

R1 = m0a1 + (m0 + r)a2
R2 = −(m0 + r)a1 + (2m0 + r)a2

(r 6= 3n, n ∈ N),

(8)
or

{

R1 = (m0 + n)a1 + na2
R2 = −na1 + (m0 + 2n)a2

(r = 3n, n ∈ N). (9)

An important property of the superlattice is the number of
sites in a supercell. It equals to

N(m0, r) =

{

4(3m2
0 + 3m0r + r2), if r 6= 3n ,

4(m2
0 +m0r + r2/3), if r = 3n .

(10)

The linear size of the superlattice cell is Lsc ≡ |R1,2| =

a
√
N/2.

The primitive vectors of the reciprocal superlattice can be
written as

G1 =
(2m0 + r)b1 + (m0 + r)b2

3m2
0 + 3m0r + r2

,

G2 =
−(m0 + r)b1 +m0b2

3m2
0 + 3m0r + r2

, if r 6= 3n, (11)

or

G1 =
(m0 + 2n)b1 + nb2

m2
0 +m0r + r2/3

,

G2 =
−nb1 + (m0 + n)b2

m2
0 +m0r + r2/3

, if r = 3n, (12)

where b1,2 are the reciprocal lattice vectors of the single layer
graphene

b1 =
2π√
3a

(1, −
√
3) , b2 =

2π√
3a

(1,
√
3) . (13)

The first Brillouin zone of the superlattice has the shape of a
hexagon with side |G2 −G1|/3. In the particular case r = 1,
this side is equal to ∆K = |Kθ −K|, where

K =
4π

3a
(0, 1) and Kθ =

4π

3a
(− sin θ, cos θ) (14)

are the Dirac points of the bottom and top layers, respectively.
The electron states near the points K and Kθ have identi-
cal chiralities. The points of opposite chirality are located at
K

′ = −K and K
′
θ = −Kθ. In the Brillouin zone of the

superstructure, the Dirac points coordinates are given by the
following expressions

K = −K
′ = m0G2 +

r

3
(G1 + 2G2) ,

Kθ = −K
′
θ = m0G2 +

r

3
(G2 −G1) , (15)

if r 6= 3n, or

K = −K
′ =

r

3
G2 +

m0

3
(G2 −G1) ,

Kθ = −K
′
θ = − r

3
G1 +

m0

3
(G2 −G1) , (16)

if r = 3n.
One can check that, if r 6= 3n, point K′ is equivalent to

Kθ, and K is equivalent to K
′
θ:

K
′ ∼ Kθ and K ∼ K

′
θ for r 6= 3n. (17)

Indeed, for such a value of r, the difference K
′ − Kθ is a

reciprocal vector of the superlattice. When r = 3n, the equiv-
alency relations are different:

K ∼ Kθ and K
′ ∼ K

′
θ for r = 3n. (18)

Thus, for any commensurate angle we have two doubly-
degenerate non-equivalent Dirac points of the tBLG. It fol-
lows from Eqs. (15) and (16) that inside the reciprocal cell of
the superlattice, the two non-equivalent tBLG Dirac points are
located at

K1 =
G1 + 2G2

3
, K2 =

2G1 +G2

3
. (19)

Double degeneracy of these Dirac cones affects the electronic
structure of the tBLG leading to the band splitting and band
gap formation.

Besides Lsc, the tBLG has another characteristic length
scale. The rotation of one graphene layer with respect to an-
other leads to the appearance of Moiré patterns, manifesting
in STM experiments1–4 as alternating bright and dark regions.
The Moiré period LM is defined as the distance between the
centers of two neighboring bright (or dark) regions. It is re-
lated to the twist angle as

LM =
a

2 sin(θ/2)
. (20)

It is possible to establish that the superstructure coincides with
the Moiré pattern when r = 1. For other superstructures, Lsc

is greater than LM. The supercells of these structures con-
tain r2 (if r 6= 3n) or r2/3 (if r = 3n) Moiré cells, and the
arrangements of atoms inside these Moiré cells are slightly
different from each other. This means, in particular, that the
structures with r > 1 can be considered as almost periodic
repetitions28 of structures with r = 1. The Moiré pattern and
the superstructure are two complementary concepts used to
describe the tBLG.

The Moiré pattern depends smoothly on the twist angle, as
demonstrated by Eq. (20), and can be easily detected experi-
mentally. However, working with the Moiré theoretically may
be challenging since the Moiré structure is strictly periodic for
a very limited discrete set of angles. For a generic value of θ,
different Moiré cells in the pattern may look alike, but they
are not exactly identical.

The superstructure, which is a periodic lattice of supercells,
does not suffer from this shortcoming. Unfortunately, it has
its own deficiencies. Namely, the superstructure is defined for
commensurate angles θ only. The period Lsc is not a smooth
function of θ: two commensurate angles, θ and θ′, θ ≈ θ′,
may correspond to two very dissimilar Lsc. The existence of
two length scales, LM and Lsc, in tBLG affects its electronic
properties19. While some physical quantities (for example,
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renormalized Fermi velocity) are insensitive to sharp varia-
tions of Lsc versus θ, others (for example, the gap) are not9.
Consequently, Fermi velocity calculations at commensurate
angles are sufficient for adequate theoretical description; yet,
the situation with the gap is more delicate, as we will show
below.

III. LOW-ENERGY EFFECTIVE MODEL

The opening of the gap can be heuristically deduced from
the discussion of Sec. II. Indeed, the low-energy dispersion
of the tBLG is characterized by four Dirac points, two from
each layer. At commensurate angles the four points can be
grouped into two equivalence classes, see Eq. (17) and (18).
In other words, while in the original reciprocal space of two
sheets of the single-layer graphene all four Dirac points have
different coordinates, after folding to the first Brillouin zone
of the superlattice the equivalent Dirac points end up in iden-
tical locations. The electron states near equivalent points may
be connected by non-zero matrix elements of the interlayer
tunneling operator t⊥: in the presence of the superlattice such
matrix elements are consistent with the quasimomentum con-
servation law. Although the absolute values of these matrix
elements are small, the kinetic energy of electrons near the
Dirac points is small as well. As a result, the interlayer tun-
neling qualitatively affects the low-energy spectrum.

To formalize this reasoning, a low-energy effective model
is very useful. In the case of commensurate structures, we
can write the low-energy Hamiltonian in a given corner of the
Brillouin zone in the form

HtBLG
k =

(

HD
γk(0) M

M † HD
γ′k

(θ)

)

. (21)

In this expression the (quasi)momentum k is measured from
the superlattice Brillouin zone corner, while the single-layer
Dirac Hamiltonian HD

γk(θ) for the rotation angle θ and cone
chirality index γ = K,K′ equals

HD
γk(θ) = vF (kxσ

θ
y ∓ kyσ

θ
x) . (22)

Here vF is the Fermi velocity and σθ
x,y = e

iθ

2
σzσx,ye

− iθ

2
σz are

the “rotated” Pauli matrices, and the sign in Eq. (22) depends
on the chirality index γ. For structures r 6= 3n, the chirality
indices in the Hamiltonian (21) are unequal γ 6= γ′. Other-
wise, γ = γ′. The matrix elements Mαβ of the 2 × 2 matrix
M are given by the equation

Mαβ =
∑

nm

(ψ1α
γ (r1α

n
))∗ ψ2β

γ′ (r
2β
m
) t⊥(r

1α
n
, r2β

m
) . (23)

In this expression, the interlayer tunneling amplitude
t⊥(r

1α
n , r2βm ) depends on the location r

1α
n of an atom in

layer 1, sublatticeα, and the location r2β
m

of an atom in layer 2,
sublattice β, see Eqs. (1) and (4). The symbol ψiα

γ denotes a
spinor component of the wave function in layer i = 1, 2, on
the sublattice α = A,B with chirality γ. The wave function
corresponds to the Dirac point: ψ1α

γ (r1β
n
) vanishes, if α 6= β,

ε

k

2∆s∆

(a)

ε

k

2∆s

(b)

FIG. 2: Schematic structure of the low-energy dispersion of twisted
bilayer graphene for r 6= 3n [panel (a)] and r = 3n structures
[panel (b)]. Dotted lines represent two degenerate Dirac cones.
When the matrix M is non-zero, this degeneracy is lifted. The re-
sultant dispersion is shown by solid [green (a) and red (b)] lines.
Vertical dashed lines mark the energy scales ∆ and ∆s. The r = 3n
structures have no gap, however, their density of states decreases be-
low ∆s. For r 6= 3n structures, the spectral gap ∆ and the scale
2∆s are not identical. However, numerical evidence9 suggests that
the latter scales are of the same order.

and ψ1α
γ (r) ∝ exp(±iKr), where the sign depends on γ. For

layer 2 the wave function is derived fromψ1α
γ (r1βn ) by suitable

rotation of the atoms positions.
Strictly speaking, the effective Hamiltonian (21) is appli-

cable only for large twist angles, 15◦ . θ . 45◦. For
smaller angles (or for θ & 45◦), the interlayer matrix ele-
ments connecting the electron states with the same chirality γ
but different momenta (constrained, of course, by the super-
lattice quasimomentum conservation law) become of impor-
tance27,28. Such coupling terms result in the downward renor-
malization of the Fermi velocity. We can take this renormal-
ization into account by replacing vF in Eq. (22) by the angle-
dependent function v∗F (θ).

We calculate the matrix elements of M numerically, both
for infinite and finite samples, with different values of θ. For
the latter case, the twist angle can be arbitrary, not necessarily
commensurate. Calculating M we used the parametrization
for the hopping amplitudes t⊥(r1αn , r2βm ) proposed in Ref. 33.
The same parametrization was used in our previous work
Ref. 9. Details of the computational procedure are presented
in Appendix A. Our numerical analysis, as well as arguments
of Ref. 30, reveals that the matrix M is sensitive to whether
the parameter r is a multiple of 3, or not. More precisely, the
structure of the matrix M is the following:

M =

(

0 meiα

meiβ 0

)

, when r 6= 3n , (24)

or

M =

(

0 0
meiβ 0

)

, when r = 3n , (25)

where m, α, and β are real numbers.
The general structure of the Hamiltonian (21) coincides to

that proposed in Ref. 30. The main difference lies in the
parametrization of the interlayer hopping amplitudes used to
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FIG. 3: Band splitting ∆s for ideal superlattices with supercell sizes
N < 2000. Circles (green) connected by the dashed (blue) line
present the results of calculations using Eq. (23), while solid (red)
line corresponds to the tight-binding calculations of Ref. 9. The data
are shown for r 6= 3n structures only. The sharp exponential jumps
of ∆s, which we observe in this figure, can exist only in the idealized
infinite tBLG lattice.

calculateM . Our parametrization is able to correctly describe
the limiting case of the AB bilayer (θ = 0), as it is explained
in Ref. 9.

The low-energy spectrum is found by diagonalizing the 4×
4 matrix Eq. (21). It consists of four bands with dispersions
E

(s)
k

(s = 1, 2, 3, 4) given by

E
(1,2,3,4)
k

= ±
√

∆2 + v2F(|k| ∓ k0)2 , if r 6= 3n, (26)

or, for r = 3n,

E
(1,4)
k

= ∓
√

∆2
s + v2Fk

2, (27)

E
(2,3)
k

= ±
(

√

∆2
s + v2Fk

2 −∆s

)

, (28)

where

∆s = |m|, ∆ = |m cos[(α− β)/2]|, (29)

k0 = m sin[(α− β)/2]. (30)

The spectra (26) and (27) are schematically shown in Fig. 2.
For structures with r 6= 3n [see Fig. 2(a)], the tBLG is an
insulator with a well-defined gap ∆. If r = 3n, the density of
states ρ(ε) is finite even at ε = 0. However, ρ(ε) experiences
a depression when |ε| < ∆s = |m|, see Fig. 2(b).

The energy scale ∆s will be referred to as the band splitting.
We measure here the value of ∆s in units of the graphene’s
nearest-neighbor hopping amplitude t, which is related to the
Fermi velocity as15,34 vF = 3ta0/2. Thus, according to the

low-energy model (21), the band splitting ∆s is simply a ma-
trix element, whose calculation does not require diagonaliza-
tion of any matrix. To check the validity of the model (21) it-
self we compare∆s with the results of the tight-binding calcu-
lations of the same quantity, performed in Ref. 9. The curves
presented in Fig. 2 show a very good correlation between re-
sults given by two theoretical approaches even for small twist
angles where the effective model (21) is not formally applica-
ble. For structures with r 6= 3n, the value of 2∆s is larger than
the band gap by a factor of order unity9. Thus, the band split-
ting given by the modulus of the non-zero matrix elements in
M is a computationally efficient quantity, which can be used
to estimate the possible size of the single-electron gap. In this
paper we will consider the band splitting as a measure of the
low-energy spectrum rearrangement, induced by the interlayer
tunneling.

Working with ∆s instead of ∆ reduces the computational
complexity. However, the main issue remains: the elements
in the matrix M , when calculated for an infinite superlattice,
are not smooth functions of θ, as shown in Fig. 3. This prob-
lem disappears for finite tBLG samples: by construction [see
Eq. (23)], the matrix elements become analytical functions of
the twist angle. Physically, the finite linear size of the tBLG
cluster may indeed correspond to finite dimensions of a meso-
scopic system, or it may mimic a finite mean free path of an
electron due to scattering by disorder, such as wrinkles and
impurities.

Yet, we must remember that a non-zero m in a finite-
size system does not immediately imply the existence of a
non-zero gap. The gap could be observed experimentally
only when m exceeds the dimensional quantization energy
δε = vF/L, or the disorder scattering rate Γ ∼ vF/lm in a
sample with disorder. The requirement

∆s(θ) > max(δε,Γ) (31)

places significant restrictions on the values of θ, for which the
spectrum is gapped. As this condition is violated, the gap is
washed away by external scattering by disorder or edges. This
will be discussed in Section V.

IV. SCATTERING BY LINEAR DEFECTS

We argued in the previous section that disorder can de-
stroy the spectral gap. In a tBLG there are several possible
sources of electron scattering (electron-electron interaction,
point-like neutral and charged impurities, “wrinkles”, and oth-
ers). Studying all of them is beyond the scope of this paper.
In this section, we show that the (inherent for graphene sys-
tems) linear defects (“wrinkles”) are very effective scatterers
in the tBLG, giving rise to a finite mean-free-path lm when
ε→ 0. Our calculations are quite simple, but they allow us to
demonstrate the emergence of the finite energy-independent
mean free path in a disordered system of Dirac electrons.

Let us now consider “a wrinkle”, a one-dimensional defect
stretching along the y-axis. We model this defect by a poten-
tial V (x, y) = vFV̄ δ(x), where the dimensionless parameter
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FIG. 4: Self-energy diagrams for scattering on a single defect. The
defect is represented by a black circle, dashed lines labeled by V̄
correspond to the defect potential. Solid lines with arrows are the
electron propagator. Panel (a) shows the lowest-order contribution
to the self-energy. It equals to V̄ σ̂0 = O(V̄ 2) and corresponds to
the Born approximation. The higher-order corrections are shown in
panels (b) and (c).

V̄ characterizes “the strength” of the defect. Neglecting inter-
layer hopping, the propagation of the low-energy electron in
the graphene layer is described by the Hamiltonian Eq. (22).
Within the Born approximation, the self-energy correction due
to the wrinkle equals to vFV̄ σ̂0/Lx, where Lx is the linear di-
mension of the sample in the x direction. The quantity σ̂0
is proportional to the usual second-order impurity-scattering
loop diagram [see panel (a) of Fig. 4]

σ̂0 =
vFV̄

2π

∫

dkx G0(ε,k) , (32)

where the bare Green’s function G0 for the Hamiltonian
Eq. (22) is equal to

G0 =
1

(ε+ i0)2 − v2F|k|2
(

ε vF(kx − iky)
vF(kx + iky) ε

)

.

The integral in Eq. (32) is easy to calculate

σ̂0 = − iV̄

2
√

ε2 − v2Fk
2
y

(

ε −ivFky
ivFky ε

)

sgn ε . (33)

To obtain the full self-energy it is necessary to sum the self-
energy diagrams to all orders of V̄ . The three lowest-order
terms of this series are shown in Fig. 4. Since the n-th order
diagram is proportional to σ̂n

0 , the summation is performed
trivially, and one derives

Σ̂0 =
vF
Lx

V̄ σ̂0
1− σ̂0

. (34)

This self-energy conserves the energy ε and momentum ky .
As for kx, it is not conserved: upon scattering off the wrinkle,
the momentum projection kx can change arbitrarily with finite
probability. For an ensemble of wrinkles we must average
over the location of the wrinkle. This procedure restores the
conservation of kx, and the resultant self-energy becomes

Σ̂ = nw
vFV̄ σ̂0
1− σ̂0

, (35)

where nw is the concentration of the “wrinkles” (it has a di-
mension of the inverse length). The self-energy Σ̂ is diagonal
both in ε and in k.

The averaging over the location of the wrinkle, which we
performed to derive Eq. (35), must be supplemented by the
averaging over the orientations of the wrinkles. After all, in a
generic situation, an ensemble of wrinkles is likely to be fairly
isotropic. To perform this averaging it is useful to notice that
the matrix σ̂0 has two eigenvalues

σ± = − iV̄

2
√

ε2 − v2Fk
2
y

(ε± vFky) sgn ε , (36)

which correspond to the eigenvectors (1,±i)/
√
2. The matrix

Σ̂ will have the same eigenvectors. The eigenvalues of Σ̂ can
be found using Eqs. (35) and (36).

Since the eigenvectors of Σ̂ are independent of both ε and
ky , we need to average the eigenvalues only. Further simplifi-
cation can be obtained if we work on the mass surface. There
one can write vFky = ε sinφ, where φ denotes the angle of
incidence of the electron on the wrinkle. The eigenvalues of
Σ̂ on the mass surface are

Σ±
m.s. = −nw

iV̄ 2(1± sinφ)

2| cosφ|+ iV̄ (1± sinφ)
. (37)

The required integration over φ is well-defined for any non-
zero V̄ . It is clear that after such an integration both eigenval-
ues become identical, and the averaged self-energy is propor-
tional to the scalar matrix. In the limit of small V̄ we obtain

Σm.s. = −iV̄ 2nw

π/2
∫

−π/2

dφ

2π

cosφ

cos2 φ+ V̄ 2
, (38)

which implies that the scattering rate is

Γ ∝ nwV̄
2 ln V̄ . (39)

This relation for the scattering rate was derived under the
assumption that the multiple-wrinkle scattering effects may
be neglected. Thus, the localization cannot be described in
the framework of the above procedure. The expression for Γ
is energy-independent, and is valid at low energies. Unlike
point-like impurities, whose scattering in graphene becomes
weaker (for weak impurity potentials) as the quasiparticle en-
ergy lowers35, the linear defects scatter well even at the Dirac
point. Consequently, the electrons acquire a finite mean free
path lm ∼ vF/Γ < ∞. This limits the coherent propagation
of the electron wave packet, and destroys weak interference
effects due to superstructures with large supercell sizes.

V. GAP AND BAND SPLITTING FOR FINITE SAMPLES

Thus, the coherent propagation of an electron in a tBLG
sample is always limited to some finite length scale. In the
present study, to mimic this length we modeled a tBLG as a
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FIG. 5: Cluster of tBLG. Radius R = 15a0 = 5
√
3a, with a rotation

angle θ = 16.7◦. The bottom layer is shown by open (red) circles,
while the top (rotated) layer by filled (green) circles.

cluster of finite size, see Fig. 5. The cluster has circular shape,
it consists of the sites of the tBLG lattice whose distance from
the origin is less than the cluster radius R. For example, the
cluster in Fig. 5 has R = 15a0 = 5

√
3a.

As shown in Section III in the framework of the low-energy
model (21), the band splitting ∆s is equal to the modulus of
the non-zero matrix element(s) of the matrix M , see Eq. (29).
Likewise, the band gap ∆ is proportional to |m|. We cal-
culate these matrix elements numerically as prescribed by
Eqs. (23), (24), and (25), for a range ofR’s and θ’s (additional
technical details can be found in the Appendix). The typical
behavior of |m| is shown in Fig. 6, where numerical data, in
the window 14◦ < θ < 46◦, is plotted for a cluster of radius
R/a0 = 60. Both r 6= 3n and r = 3n data are presented.
The pronounced peaks in Fig. 6 occur at “good” angles cor-
responding to the superlattices with small supercells. Smaller
peaks may be associated with some finite-size effects: these
peaks sharply weaken when R is increased.

It is known15 that for a r 6= 3n structure, characterized
by the twist angle θ, one can construct a conjugate r = 3n
structure with the angle

θ′ = 60◦ − θ , (40)

such that both structures have the same supercell size. The
data in Fig. 6 illustrates this relation: two strongest peaks are
located at angles 21.7◦ and 38.2◦, whose sum equals to 60◦.
The same is true for the pair of the second-strongest peaks at
27.8◦ and 32.2◦.

The matrix element |m|, responsible for the band gap in

the spectrum of r 6= 3n superstructures, is plotted for clus-
ters of different sizes in Fig. 7. We see that for a generic
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FIG. 6: The matrix element |m| as a function of the twist angle θ.
The radius of the cluster is R = 60a0. The (green) solid curve
shows the value of |m| which is responsible for the opening of the
band gap ∆ in the structures with r 6= 3n, Figure 2(a). The (blue)
dashed curve shows the matrix element inducing the band splitting in
structures with r = 3n, Figure 2(b). The maxima of both curves are
located at the angles θ(m0,r) corresponding to the superstructures
with small r and m0. For example, the strongest maxima of the
(green) solid curve are at θ(1,1) ≈ 21.8◦ and θ(1,2) = 32.2◦. For
the (blue) dashed curve these are at θ(2,3) = 27.8◦ and θ(1,3) =
38.2◦. Note that θ(1,1) + θ(1,3) = 60◦ and θ(1,2) + θ(2,3) = 60◦, in
agreement with Eq. (40).

value of the twist angle, the quantity |m| quickly decreases
with increasing R. At the same time, when θ corresponds
to commensurate superlattices with small supercell size, |m|
remains constant (θ ≈ 16.7◦, 21.8◦). For somewhat larger
supercell sizes (θ = 25.0◦, 26.0◦, 29.4◦) the band splitting
initially decreases, only to saturate at larger radii. The stabi-
lization occurs whenR sufficiently exceeds the supercell size.
As an example, consider the θ = 26.0◦ and θ = 29.4◦ twist
angles. In both cases, the matrix element stops changing when
R ≥ 60a0. To weaken the edge effects for a finite cluster, our
numerical procedure (see Appendix for details) confines the
electron wave function within the effective radius Reff < R,
defined as

Reff ≈ R/2.2. (41)

A physical cluster radius of 60a0 corresponds to the effective
radius Reff ≈ 27a0. The latter number is comparable to the
supercell size of 15a0 and 16a0 for such values of θ. If θ =
25.0◦, the growth of |m| is stabilized at R = 90a0, or Reff =
41a0. This is of the order of Lsc = 20a0 for the θ = 25.0◦

superstructure. We see that for these three angles the matrix
element saturates when Reff & 2Lsc.
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FIG. 7: The matrix element |m| as a function of the twist angle for clusters of different radii. Four curves in this figure correspond to the
following values of the effective cluster radius (for details, see Appendix): R = 40a0 is shown by the solid (yellow) curve on top, R = 60a0

by the dashed (blue) curve, R = 90a0 by the dotted (red) curve, and R = 130a0 is shown by the dash-dotted (green) curve at the bottom. The
triangles at the top edge of the figure mark the commensurate angles with relatively small supercell linear size (Lsc ≤ 20a0). The numbers
above these triangles show the number of graphene’s unit cells inside the supercell (N/4). One can notice that, at sufficiently large values of
R, a peak forms at every marked angle.

The curves shown in Fig. 7 demonstrate that for finite clus-
ters the matrix elements responsible for the gap are smooth
functions of θ, unlike the data for infinite systems shown in
Fig. 3. However, the results presented in Fig. 7 should not be
interpreted as the dependence of the band gap versus the twist
angle. As condition (31) implies, to decide if the tBLG spec-
trum has a gap (more precisely, pseudogap), it is necessary to
compare |m| against the dimensional quantization energy

δε ∼ vF
R
. (42)

Equivalently, the scale vF/|m| should be smaller than R.
To describe the crossover between gapless and gapped

regimes, let us analyze Fig. 8, where we replotted the data
presented in Fig. 7 in a new manner: for a given curve, the
angle θ is fixed, while the cluster size varies. The range of the
twist angles in Fig. 8 is restricted to the vicinity of θ0 ≈ 21.8◦.
We consider here only the angles θ < θ0, since for θ > θ0 the
results are almost symmetric. The angle θ0 corresponds to the
smallest supercell possible for a tBLG. At θ = θ0, the value
of |m| is the largest, see Fig. 6.

Panel (a) of Fig. 8 shows |m(R)| as an implicit function
of the dimensional quantization energy δε(R). In panel (b)
the length scale vF/|m| is plotted as a function of R. In both
panels of Fig. 8 the dash-dotted straight lines are set by the
equation |m| = δε. These lines mark the crossover from the
gapless (|m| < δε) to the gapped (|m| > δε) regimes.

The crossover can occur when the size of the cluster be-
comes sufficiently large. For example, if the twist angle is
exactly commensurate (solid green curves on both panels),
the increase of R, and concomitant decrease of δε, pushes the

sample from a gapless state to a state with single-electron gap.
The data presented suggest that the crossover occurs when
R ≈ 50a0, or, equivalently,Reff ≈ 23a0.

If deviations from the commensurate angle is small (θ ≈
22.0◦, dashed blue curve) the situation remains qualitatively
the same: the gapless regime at small R is replaced by a
gapped regime at larger R. For stronger deviations (e.g.,
θ ≈ 22.4◦, dash-dotted orange curve) the system never leaves
the gapless regime for any R. When θ = θ∗ ≈ 22.2◦, the
corresponding curve touches the crossover line. The angle θ∗

separates two types of behavior. If θ > θ∗, the system is gap-
less even when the cluster is large. When θ0 < θ < θ∗, the
crossover to the gapped regime can occur with increasing R.
This analysis demonstrates that, to observe the single-electron
gap caused by the interlayer tunneling near the commensurate
angle 21.8◦, the twist must be controlled with an accuracy
δθ ≈ |θ∗ − θ0| ≈ 0.4◦.

The same procedure can be performed near another “good”
angle θ ≈ 32.2◦, corresponding to r = 2 and m0 = 1, see
Fig. 6. The matrix element for this superstructure is roughly
two times smaller than that for the structure with r = m0 = 1
(θ ≈ 21.8◦). Consequently, the radius of the clusters must
be doubled to have a chance to be in the gapped regime. The
increase in R translates into a more stringent requirement on
the fine-tuning of θ: to observe the gap, the deviation from the
commensurate angle must satisfy δθ ∼ 0.1◦. Such a decrease
in the allowed deviation of δθ can be understood as follows.
A smaller |m| implies that a largerR is necessary to enter the
gapped regime. However, for larger clusters the maxima in
Fig. 7 become sharper; consequently, the matrix element be-
comes very sensitive to the value of the twist angle. Therefore,
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FIG. 8: Crossover between the gapless and gapped regimes. Panel (a)
shows the parametric plots of the matrix element |m(R)| versus the
dimensional quantization energy δε(R) for several values of θ. The
twist angle θ is constrained to the vicinity of the “good" commensu-
rate angle θ0 ≈ 21.8◦ . The thin dash-dotted (red) straight line is de-
termined by the equation |m| = δε, marking the crossover between
gapless (|m| < δε) and gapped (|m| > δε) spectra. Exactly at the
commensurate angle [solid (yellow) curve] the system is gapless at
larger δε (smaller R). It enters into a gapped regime for larger cluster
size (smaller δε). The [dashed (blue)] curve for 22.0◦ demonstrates
similar behavior. When deviation from the “good” angle is higher
[e.g., θ ≈ 22.4◦, dash-dotted (green) curve] the system never enters
into the gapped regime. The angle θ∗ ≈ 22.2◦ separates two types of
behavior [and the corresponding dotted (red) curve touches the line
|m| = δε when δε ≈ 0.015t]. In panel (b) the same data are plotted
in a different manner: instead of comparing the dimensional quan-
tization energy and |m|, panel (b) allows us to compare the cluster
radius R and the length scale vF/|m|. The results for θ < 21.8◦ are
almost symmetric.

even a weak deviation from the “good” angle may push |m|
below δε.

Investigations of superstructures with larger supercells
place heavy requirements on computational resources. In-
deed, large supercells correspond to exponentially small ma-
trix elements, which means that exponentially large cluster

sizes must be studied to enter the regime δε > |m|. Such
studies are computationally impractical. Thus, we must rely
on the information collected above to draw conclusions.

VI. DISCUSSION AND CONCLUSIONS

The single-electron gap in the tBLG spectrum is a particu-
larly challenging and interesting property. This gap demon-
strates “fractal” oscillations when changing the twist angle
(shown in Fig. 6), unlike, for example, the Fermi velocity,
which varies smoothly. These oscillations are an artifact of
the assumption that an electron propagates inside a perfect in-
finite tBLG lattice. In a realistic situation, the coherent prop-
agation of a wave packet through the lattice is limited by the
finiteness of the sample size L, and/or disorder scattering.

A particular example of disorder, one-dimensional wrin-
kles, was considered in Sec. IV. Defects of this kind are of
interest due to two main reasons. First, it is an inherent type
of disorder in graphene systems. Second, a linear defect is an
effective source of scattering for low-energy Dirac quasiparti-
cles, which is of importance for tBLG, with its flat bands and
low-energy Van Hove singularity. Let us also comment that,
since one-dimensional defects are very effective in destroying
coherence, the fragile phenomenology of the marginal Fermi
liquid, predicted for undoped graphene36–38, may not survive
in a sample with a sufficient concentration of wrinkles.

When the coherent propagation length lcoh = min{lm, L}
is finite, the diffraction effects associated with the super-
structures with large supercells are destroyed. As a result,
small gaps corresponding to such superlattices disappear. The
stronger gaps can become observable, provided that (a) the
length lcoh is sufficiently large, and (b) the deviation of the
twist angle from a “good” value is sufficiently small.

The condition (a) is very general. It is necessary to remem-
ber that the band splitting ∆s and, consequently, the gap is
washed away by the disorder, or masked by finite size quanti-
zation, if ∆s < vF/lcoh. This implies that the gap, or pseudo-
gap, may be observed only when lcoh ≫ vF/∆s.

Regarding condition (b), we have seen that the matrix ele-
ment responsible for the opening of the gap is very sensitive to
the shift δθ of the twist angle away from the “good” value. If
θ coincides with a “good” angle (δθ = 0), the matrix element
becomes independent of lcoh for sufficiently large lcoh. Thus,
exactly at a “good” angle the pseudogap or gap can be mea-
sured in a large sample of high purity. For small deviations
from such an angle, the value of ∆s decreases somewhat as
lcoh grows, but the same qualitative picture endures.

However, as δθ departs from zero, the stabilization of the
gap and the band splitting ∆s at larger lcoh does not occur,
see Fig. 8. Instead, the matrix element quickly collapses with
increasing lcoh. As a result, for large deviations of θ from the
“good” angle, the gapped regime never occurs.

Our analysis demonstrates that the experimental observa-
tion of the single-electron gap caused by the superlattice scat-
tering is extremely unlikely, unless a very precise tuning of
the twist angle to the “good” values is achieved. Such control
may be enforced externally39. Alternatively, one can specu-
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FIG. 9: Effect of the exponential decay of the wave function. The
band splitting calculated for different values of ζ, see Eq. (A2). The
ζ = 2.2 data (dotted red curve) shows a smoother behavior than the
ζ = 1.1 data (solid green curve). The radius of the cluster is 90a0

for both curves.

late that commensurate angles correspond to local minima of
the interlayer interaction potential. Consequently, the bilayer
might spontaneously lock the twist angle to these angle val-
ues. However, such a possibility is, at this point, nothing but
a hypothesis, and further research is required to support or re-
fute it.

To conclude, we studied the dependence of the single-
electron gap in finite clusters of tBLG. We demonstrated that
the variation of the twist angle causes a crossover between
gapless and gapped regimes, provided that the coherent prop-
agation of an electron is limited by some finite length scale.
Either the finiteness of the sample or the mean free path due
to the disorder scattering may generate the latter length scale.
To observe the gap experimentally it is necessary to have a
sample of sufficient purity, and possess the ability to tune the
twist angle accurately.

Appendix A: Details of numerical procedure

Here we briefly outline additional details of our numerical
procedure which were too specialized to be included in the
main text.

To calculate the matrix elements in Eq. (23) we use the fol-
lowing expression for the inter-layer hopping amplitude

t⊥(r; r
′) = cos2α Vσ(r; r

′) + sin2α Vπ(r; r
′) ,

cosα =
d

√

d2 + (r− r′)2
, (A1)

where d = 3.32Å is the interlayer distance, r and r
′ are 2D

coordinates of the carbon atoms in the bottom and top layers,
respectively, and Vσ and Vπ are the ‘Slater-Koster’ functions,

which we choose in the form of Eq. (1) of Ref. 33. In that
paper the tunneling amplitude of an electron from one atom to
another depends not only on the relative positions these two
atoms, but also on the positions of other atoms in the crystal
via the screening function S. The latter one has several fitting
parameters, which we choose such that the function t⊥(r; r′)
would correctly describe the first several interlayer hopping
amplitudes of the AB bilayer (θ = 0) graphene. More details
can be found in Ref. 9.

It is known40–43 that various types of localized states exist at
the edges of graphene and graphene-based systems. Since we
are interested in the bulk behavior, the influence of such states
is to be reduced as much as possible. To decrease the effects
of edge phenomena we introduced an exponential decay of
the wave function from the cluster center toward the edges.
Specifically, the matrix element Eq. (23) is calculated using
the wave function for the layer 1

ψ1α
γ (r1β

n
) = N exp(−iKγr

1α
n

− ζ|r1α
n
|/R)δαβ , (A2)

where Kγ is the Dirac point corresponding to the chirality
γ, δαβ is the Kronecker symbol, and ζ = 2.2 is a numerical
coefficient. In layer 2 the wave function is constructed in a
similar manner. A wave function in layer 2 matches a wave
function in layer 1 after an appropriate rotation. For finite
samples, the wave functions are normalized to unity, with N
being the normalization constant. It is worth noting that for
infinite samples a different normalization condition should be
used:

∑

n
|ψiα

γ (riα
n
)|2 = 1, where the sum is taken over sites

inside one supercell.
The magnitude of the wave function decreases away from

the cluster center. The value of the numerical factor ζ = 2.2
was chosen empirically. If ζ is too large, the effective size of
the cluster

Reff ∼ R/ζ (A3)

shrinks significantly below its nominal radius R; thus, we are
forced to study computationally expensive cases of large R.
If ζ is too small, the edge effects make the data very “noisy”,
see Fig. 9.

Interpreting our numerical data one must keep in mind that
for finite R and arbitrary θ the absolute values of the non-zero
elements of the matrix M , Eq. (24), may be slightly different
from each other. However, we checked numerically that this
disparity is not significant, at least for commensurate struc-
tures and larger clusters.

The data presented were collected for clusters in which the
rotation axis passes through the geometrical center of the clus-
ter. One can shift the rotation axis off the cluster center by the
vector T = na1 +ma2, where n,m are integers. As long as
|T| ≪ R, it is expected that the matrix M is independent of
T. We verified that this is indeed the case.
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