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We introduce an effective theory with manifest particle-vortex symmetry for disor-

dered thin films undergoing a magnetic field-tuned superconductor-insulator transi-

tion. The theory may enable one to access both the critical properties of the strong-

disorder limit, which has recently been confirmed by Breznay et al. [PNAS 113,

280 (2016)] to exhibit particle-vortex symmetric electrical response, and the nearby

metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82,

5341 (1999)] in less disordered samples. Within the effective theory, the Cooper-pair

and field-induced vortex degrees of freedom are simultaneously incorporated into an

electrically-neutral Dirac fermion minimally coupled to an (emergent) Chern-Simons

gauge field. A derivation of the theory follows upon mapping the superconductor-

insulator transition to the integer quantum Hall plateau transition and the subse-

quent use of Son’s particle-hole symmetric composite Fermi liquid. Remarkably,

particle-vortex symmetric response does not require the introduction of disorder;

rather, it results when the Dirac fermions exhibit vanishing Hall effect. The the-

ory predicts approximately equal (diagonal) thermopower and Nernst signal with a

deviation parameterized by the measured electrical Hall response at the symmetric

point.
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I. INTRODUCTION

A. Background

The magnetic field-tuned superconductor-insulator transition (SIT) in two-dimensional

disordered films is a fascinating example of a quantum phase transition [1–3]. Early ideas

[4,5] based on scaling near the putative critical point provided a framework for its under-

standing in terms of “dirty” (Cooper-pair or field-induced vortex) bosons which undergo

a continuous order-disorder transition. In addition, the possibility that the critical point

might exhibit particle-vortex symmetric or “self-dual” dc electrical response,

ρ2
xx + ρ2

xy =
( h

4e2

)2

, (I.1)

as the temperature T → 0 was suggested [4,5].6 If realized, Eq. (I.1) is a profound relation

between the dissipative response and the measured Hall effect.

The pioneering experiment [7] reported a critical (longitudinal) resistance slightly lower

than the quantum of Cooper-pair resistance RQ = h/4e2 ' 6.45kΩ/�. Subsequent mea-

surements [8–13] have charted a phase diagram in which the most disordered samples (as

quantified by the zero field “normal state” resistance) have a critical resistance equal to RQ

with vanishingly small Hall effect, thereby indicating the possible experimental realization

of a self-dual transition, i.e., a disordered critical point at which the Cooper-pair and vortex

dynamics are the same.14

B. The challenge

Despite the many successes of prior work [4, 5, 15–24], an explicit theoretical description

of a particle-vortex symmetric SIT is lacking. A natural starting point – one that we use

in Sec. III A – is the Landau-Ginzburg theory for Cooper-pairs in which superconductivity

is destroyed by the applied magnetic field [4]. If the transition is to be self-dual, particle-

vortex symmetry requires that the field-induced vortices have the same description. While

a duality transformation [25], in principle, allows us to check whether or not this is the case,

it is a challenge to provide an explicit description of the actual critical point.

One reason is that particle-vortex symmetric response Eq. (I.1) sets an upper bound on

the longitudinal conductivity at the transition: σxx ≤ 4e2

h
. Therefore, a natural description
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of a self-dual transition would appear to necessitate an exact description of a disordered

critical point.

A second difficulty stems from the differing ways in which Cooper pairs and vortices

interact. Cooper pairs minimally couple to the 3+1-dimensional electromagnetic field, while

the vortices instead directly couple to a 2+1-dimensional emergent U(1) gauge field. How

can a self-dual limit arise from theories in which the effective degrees of freedom have such

fundamentally different couplings and interactions?

C. The proposal and its application

The purpose of this paper is to introduce an effective theory – the particle-vortex sym-

metric liquid – that overcomes these challenges. Instead of working directly with the Cooper

pairs or vortices, we instead make use of an alternative description in terms of electromag-

netically neutral “composite particles” with fermionic statistics. These composite particles

may each be viewed as a bound state of a Cooper pair and field-induced vortex which in-

teract via an emergent Chern-Simons gauge field. In a sense, particle-vortex symmetry is

achieved from the simultaneous incorporation of both degrees of freedom in the effective

theory.

Our proposal most directly derives from two recent works [26,27]. The experimental

observations of self-dual electrical transport [8, 9, 11–13] and simple estimates [28] of the

effective Cooper-pair density in the pertinent materials imply that the Cooper pairs (and

field-induced vortices) are at unit filling fraction ν = 1 in the neighborhood of the SIT [26].

Consequently, a dual description in which the critical bosons in non-zero field are traded for

“composite particles” in vanishing effective flux becomes natural and the one that we adopt.

These composite Cooper pairs or composite vortices are fermions and enjoy a Fermi liquid-like

mean-field description [26, 29–31]. They are close cousins of the composite fermions [32–

36] that have enabled a successful understanding of many aspects of the two-dimensional

electron gas (2DEG) in the quantum Hall regime (see Refs. [37–39] for excellent reviews).

The precise theoretical incarnation (given in Sec. II) that the composite bosons/vortices

take follows immediately upon combining the recent advance by Son [27] (and related works

[40–48]) of a composite fermion theory with manifest particle-hole symmetry for the half-

filled Landau level and the seminal observation in [16] that particle-vortex symmetry in the
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context of the SIT is mapped to particle-hole symmetry at the integer quantum Hall plateau

transition (IQHT).

Bose
insulator

electron insulatorsuperconductor

�

B

metallic phase

FIG. 1. Schematic T = 0 phase diagram in the vicinity of the SIT as a function of external magnetic

field B and disorder strength δ. Solid lines denote phase transitions, while the dashed line signifies

the boundary (either transition or crossover) between a Bose insulator and an electron insulator.

In Fig. 1, we draw a schematic zero-temperature phase diagram that captures the quali-

tative, experimentally-inferred behavior of the disordered films of interest.49 We anticipate

the regime of validity of the particle-vortex symmetric liquid to lie near the intersection of

the superconducting, (Bose) insulating [4, 8, 50], and metallic phases and hope it will help

illuminate the physics underlying the nearby insulating phase [51, 52, 13].

In the limit of strong disorder, we suggest that the particle-vortex symmetric liquid

flows to a strong-disorder critical point exhibiting self-dual response. As the disorder po-

tential is weakened, the Fermi surface of the excitations of the particle-vortex symmetric

liquid becomes better defined and the metallic phase emerges. Perhaps surprisingly, the

particle-vortex symmetric liquid does not require the explicit introduction of a mechanism

of composite boson/vortex current relaxation: particle-vortex symmetric electrical response

results when the composite bosons/vortices of the theory exhibit vanishing Hall effect.

The phenomenological utility of our and Son’s proposals is to not only provide a novel
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starting point from which to explain the character of the observed field-tuned SIT and

IQHT [1], but also the putative metallic phase that emerges in less disordered samples in

the two systems [9, 37, 53–57]. The observations of metallic phases arising in the vicinity of

disordered critical points with an emergent particle-vortex or particle-hole symmetry provide

both fascinating and powerful guidance on any putative description of these systems. We

note that in contrast to the metal found in the two-dimensional electron gas which shows

particle-hole symmetric response at half-filling, self-duality has not yet been observed in the

metal [53].

The remainder of the paper is organized as follows. In Sec. II, we introduce the particle-

vortex symmetric liquid and summarize a few of its properties, including its expected dc

electrical and thermoelectric response. In Sec. III, we provide two arguments to derive

the effective theory. We conclude in Sec. IV and outline possible topics for future study.

Appendix A contains the derivation of an equation used in the main text; Appendix B

sketches the non-relativistic limit of the mass-deformed particle-vortex symmetric liquid;

Appendix C discusses the Wiedemann-Franz relation.

II. PARTICLE-VORTEX SYMMETRIC LIQUID

We begin with the presentation of the particle-vortex symmetric liquid and then describe

a few of its expected properties. Two arguments that motivate the effective theory are given

later in Sec. III.

A. The effective lagrangian

The particle-vortex symmetric liquid is described by the lagrangian,

Lpv = ψ̄iγµDµψ +
e2
∗

4π
εµνρ

(1

2
αµ∂ναρ − 2Aµ∂ναρ + Aµ∂νAρ

)
. (II.1)

In Eq. (II.1), ψ is an electrically-neutral 2-component Dirac fermion that represents the

gapless Cooper-pair boson/vortex excitations in the neighborhood of the SIT; αµ with µ =

t, x, y is an emergent gauge field; Aµ is the external electromagnetic field with background

value 〈∂xAy − ∂yAx〉 ≡ B > 0 (its third Az component is ignored in our treatment here).

For convenience, we set ~ = 1, but retain the charge e∗ ≡ 2e. The covariant derivative
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Dµ ≡ ∂µ − ie∗αµ, ψ̄ ≡ ψ†γt, and we take εtxy = 1. The γ-matrices satisfy the algebra

{γµ, γν} = 2ηµν with η = diag(1,−1,−1). We refer to ψ as the self-dual dyon (or sometimes

dyon for short).

It is to be understood that dyon self-interactions and couplings to any background poten-

tials may supplement Lpv; they remain unspecified in our treatment here. The former can

arise by including the fluctuations of the electromagnetic field where the range of the inter-

action is dictated by the form of the photon propagator. Since the electromagnetic field only

couples directly to the emergent gauge field, the leading effects on the self-dual dyons come

from corrections to the αµ propagator and the interaction it mediates. Quenced chemical

potential disorder is incorporated via a background At component of the electromagnetic

field; it sources vector potential αi fluctuations of the emergent gauge field.

The electronic charge density and current can be read from Eq. (II.1):

Jµ =
e2
∗

2π
εµνρ∂ν(Aρ − αρ). (II.2)

When the electromagnetic field is taken to be non-dynamical, fluctuations in the electronic

density and current are realized as fluctuations of the emergent gauge field, reminiscent of

conventional particle-vortex duality.

The αt equation of motion imposes the constraint:

e∗ψ
†ψ +

e2
∗

4π
εtij∂iαj =

e2
∗

2π
εtij∂iAj. (II.3)

In the next subsection, we observe that particle-vortex symmetry enforces the solution:

〈ψ†ψ〉 =
e2
∗

2π
〈εtij∂iAj〉,

〈εtij∂iαj〉 = 0. (II.4)

Thus, unbroken particle-vortex symmetry dictates that the self-dual dyons are placed at a

finite density that is fixed by the external magnetic field. Moving away from unit (bosonic)

filling fraction ν = 1, the self-dual dyons experience non-zero effective flux as particle-vortex

symmetry is explicitly broken.

In general, the emergent gauge field αµ mediates a relevant (in the renormalization group

sense) interaction between the self-dual dyons. While not the focus of this paper, a controlled

perturbative study of the clean limit can be set up by introducing a flavor symmetry ψ → ψk

with k = 1, . . . , Nf [58] and [59] either incorporating the effects of a long-ranged Coulomb
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interaction to soften the αµ propagator [60–63] or analytically continuing the theory to 3− ε

dimensions [64–66]. Within a controlled perturbative treatment, the relevant interaction

is expected to modify the single-particle self-energy of the self-dual dyons and result in a

singular correction to the heat capacity proportional to T log(T ). These singular corrections

supplement the rather dramatic linear in temperature contribution which is expected to

result from the existence of the self-dual dyon Fermi sea!

B. Particle-vortex symmetry

The particle-vortex symmetric liquid is invariant under the combination of the anti-

unitary transformation (i 7→ −i)67,

ψ 7→ γyψ,

(αt, αx, αy) 7→ (αt,−αx,−αy),

(At, Ax, Ay) 7→ (−At, Ax, Ay) + (αt,−αx,−αy),

(t, x, y) 7→ (−t, x, y), (II.5)

and subsequent shift of the lagrangian,

Lpv 7→ Lpv +
e2
∗

2π
εµνρ(Aµ − αµ)∂νAρ. (II.6)

In terms of the conventionally-defined discrete charge-conjugation C and time-reversal T

symmetries, α 7→ T (α) and A 7→ CT (A− α). In Sec. III B 3, we derive the transformation

defined in (II.5) and (II.6) and show how it can be understood as the combination of a discrete

spacetime transformation and modular transformation [68]. We identify the combined action

in Eqs. (II.5) and (II.6) as the realization of the particle-vortex transformation in the

effective theory.

The stability of the particle-vortex symmetric liquid is predicated upon the preservation

of the the transformation in Eqs. (II.5) and (II.6). For instance, a non-zero Dirac mass ψ̄ψ

violates the symmetry. Likewise, unbroken particle-vortex symmetry precludes ψ from real-

izing a topologically trivial insulator, e.g., via (topologically trivial) Anderson localization,

as such a phase is not consistent with the “parity anomaly” constraint [69–71]. Interestingly,

a topologically ordered gapped state analogous to that discovered in Refs. [72–76] is allowed

by symmetry.
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C. Electrical response

One of the most important consequences following from the form of Lpv comes from the

study of its expected dc electrical transport properties by which we can relate electrical

response to the self-dual dyon conductivity. Particle-vortex symmetric electrical response

is defined by Eq. (I.1). This condition involves both the dissipative and non-dissipative

components of the electrical resistivity tensor. In this section, we show that Eq. (I.1) follows

immediately from Lpv under the natural assumption that the self-dual dyon experiences zero

field on average in the neighborhood of the SIT and, therefore, exhibits vanishing Hall effect.

Importantly, no constraint is imposed on the dissipative response of the dyons!

To see this, it is convenient to work in the gauge αt = At = 0. Upon integrating out the

self-dual dyons (and terminating the expansion at quadratic order), we obtain

Lpv =
iω

2

e2
∗

2π

(
αjσ

ψ
jkαj + εjk(

1

2
αjαk − 2Ajαk + AjAk)

)
, (II.7)

where εjk ≡ εtjk. The response of the dyons is captured by the dimensionless conductivity

tensor,

σψjk =

 σψxx σψxy

−σψxy σψxx

 . (II.8)

The frequency and temperature dependence of the conductivity is left implicit. Strictly

speaking, in order for our intermediate expressions to be well defined, it is necessary to

assume an infinitesimal non-zero temperature T → 0 and a mechanism of self-dual dyon

current relaxation so that σψxx is finite77; we shall work under the assumption of finite σψxx.

Integrating out the emergent gauge field αµ, we find the response lagrangian,

Lpv =
iω

2

e2
∗

2π
Aj

(
εjk + (σψ +

1

2
ε)−1
jk

)
Ak, (II.9)

from which we may read off the electrical conductivity.

Using Eq. (II.9), we can calculate the determinant of the electrical resistivity:

ρ2
xx + ρ2

xy =
(2π

e2
∗

)2 (σψxx)
2 + (1

2
+ σψxy)

2

(σψxx)2 + (1
2
− σψxy)2

. (II.10)

The resistivity has unit determinant (in units of 2π
e2∗
≡ h

4e2
) when the self-dual dyons satisfy

the single constraint, σψxy = 0, independent of the value of σψxx. Thus, particle-vortex sym-

metric response is a consequence of vanishing dyon Hall conductivity in the neighborhood

where the average magnetic field felt by the dyons is zero.
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Although we do not determine the dissipative part σψxx of the self-dual dyon conductivity

here,78 we observe that a (dimensionless) dyon conductivity (σψxx, σ
ψ
xy) = (1

2
, 0) implies the

electrical conductivity (σxx, σxy) = ( e
2
∗

2π
, 0). The latter is the value of the critical conduc-

tivity that has recently been observed at the self-dual SIT [11, 13]. In general, however,

the particle-vortex symmetric liquid allows for a continuous family of self-dual electrical

conductivities determined by the value of σψxx (at vanishing σψxy).

Within this analysis, the nearby superconducting and insulating phases are easily

achieved. The superconductor occurs when the self-dual (Dirac) dyons exhibit the “in-

teger” Hall effect with σψxy = −1/2, while the insulator is represented by the Hall effect at

σψxy = +1/2 with vanishing longitudinal conductivity σψxx in both phases.

D. Thermoelectric response

We now examine the thermoelectric response of the particle-vortex symmetric liquid

following the discussion in [79]. The thermopower and Nernst signal can be extracted from

the linear response equation:

Ji = σijE
j − αij∂jT. (II.11)

In Eq. (II.11), Ji is the electrical current, σij is the electrical conductivity, Ej is the applied

electric field, αij is the thermoelectric coefficient, and ∂jT denotes a temperature gradient

along the j-direction. Using Eq. (II.11), the (diagonal) thermopower Sxx and Nernst signal

Sxy:

Sxx = σ−1
xj αjx,

Sxy = σ−1
xj αjy, (II.12)

under the assumption of vanishing electric current (open circuit boundary conditions).

In order to determine Sxx and Sxy, we need to relate σij and αij to quantities in the

particle-vortex symmetric liquid. From Sec. II A, we have the relations,

jψi =
e2
∗

4π
εij

(
2Ej − ej

)
, (II.13)

Ji =
e2
∗

2π
εij

(
Ej − ej

)
, (II.14)
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obtained from the field equation for the emergent vector potential and the defining relation of

the electrical current. In Eqs. (II.13) and (II.14), jψi ≡ e∗ψ̄γiψ is the self-dual dyon current

and ej = ∂jαt − ∂tαj is the emergent electric field. Within the particle-vortex symmetric

description, a non-zero emergent electric field and temperature gradient result in a linear

response relation analogous to Eq. (II.11):

jψi =
e2
∗

2π
σψije

j − αψij∂jT. (II.15)

(The factor of e2
∗/2π results from the use of a dimensionless σψij.) Eq. (II.15) defines the

quantities σψij and αψij. Equating the expressions for jψ in Eqs. (II.13) and (II.15), we

solve for the emergent electric field ej and substitute into the expression Eq. (II.14) for the

electrical current to find:

Ji =
e2
∗

2π

(
εij + (σψ +

1

2
ε)−1
ij

)
Ej − e2

∗
2π
εij(σ

ψ +
1

2
ε)−1
jk α

ψ
kl∂

lT. (II.16)

Comparing Eqs. (II.11) and (II.16), we can read off Sxx and Sxy from the definition in Eq.

(II.12).

We observed in Sec. II C that particle-vortex symmetry obtains when σψxy = 0. We

anticipate that symmetry likewise fixes αψij = αψδij.

It is interesting to express Sxx and Sxy in terms of the electrical resistivity and αψ:

Sxx = ρxxα
ψ

Sxy =
(2π

e2
∗

+ ρxy

)
αψ. (II.17)

In the vicinity of the experimentally-realized field-tuned SIT [7–9, 11–13], ρxx ≈ 2π/e2
∗ and

ρxy ≈ 0, and so we expect Sxx ≈ Sxy. This relation can be intuitively understood to reflect

the equal contributions from the Cooper-pair and vortex degrees of freedom at a self-dual

SIT.

III. ARGUMENTS FOR THE PROPOSAL

We now provide two complementary arguments that motivate the particle-vortex sym-

metric theory. The first begins within the ordered superconducting phase and uses duality

to derive the effective theory. The second enlists two different mean-field descriptions of the

gapless region near the SIT and uses symmetry to argue for Lpv. The agreement between

these two approaches gives us confidence in the general proposal.

11



A. Flux attachment and duality

The superconducting problem can be described by the effective Landau-Ginzburg la-

grangian,

LSC = Φ†
(
i∂t + e∗At +

1

2mΦ

(∂j − ie∗Aj)2
)

Φ. (III.1)

Φ represents the destruction operator of a Cooper pair of effective mass mΦ carrying elec-

tromagnetic charge e∗ with respect to the electromagnetism Aµ. Both here and below, it is

understood that additional interactions, consistent with symmetry, are present in the effec-

tive lagrangian. Flux attachment [33, 34] posits that the superconducting problem admits

a complementary description in terms of a fermion f with lagrangian,

Lf = f †
(
i∂t + e∗(ãt + At) +

1

2mf

(∂j − ie∗(ãj + Aj)
2
)
f − e2

∗
4π
εµνρãµ∂ν ãρ. (III.2)

The emergent gauge field ãµ statistically transmutes the bosons Φ into fermions f under

the assumption of a classical saddle-point at which the fermions are at unit filling fraction

〈f †f〉 = e∗
2π
〈∂xãy− ∂yãx〉 > 0 with respect to ãµ and exhibit the integer quantum Hall effect.

A sufficiently strong external magnetic field B = 〈∂xAy − ∂yAx〉 > 0 eventually destroys

superconductivity. Within the fermionic description, the external magnetic field lowers the

effective filling fraction and leads to the destruction of the integer quantum Hall effect. At the

point where the Landau level of the fermions is half full, an additional duality transformation

enables a description in terms of the particle-hole symmetric composite fermion liquid of Son

[27]:

Lpv = ψ̄iγµDµψ −
e2
∗

4π
εµνρ

(
(ãµ + Aµ)∂ναρ −

1

2
(ãµ + Aµ)∂ν(ãρ + Aρ) + ãµ∂ν ãρ

)
, (III.3)

where the 2-component Dirac fermion ψ is minimally coupled to the emergent gauge field αµ

through the covariant derivative Dµ ≡ ∂µ − ie∗αµ. We have implemented the particle-hole

symmetric formulation of the composite Fermi liquid in the fermion sector and assumed

the statistically-transmuting gauge field ãµ to remain unaffected. To simplify the above la-

grangian, we integrate out ãµ and obtain the particle-vortex symmetric liquid in Eq. (II.1).80

It is interesting to note that the f fermions exhibit the dimensionless conductivity

(σfxx, σ
f
xy) = (1

2
, 1

2
) (the universal value found at IQHTs [81, 1]) when the self-dual dyon

conductivity studied in Sec. II C takes the value (σψxx, σ
ψ
xy) = (1

2
, 0). This is consistent with
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the observation in [16, 20] that particle-vortex symmetric response at a SIT is mapped to

particle-hole symmetric response at the IQHT. The above derivation and the lagrangian in

Eq. (II.1) give an explicit realization of this relation.

B. Emergent symmetry restoration

Under the assumption that the effective filling fraction of the Cooper pairs (or vortices)

ν ∼ 1 in the neighborhood of the field-tuned SIT, it is natural to enlist a mean-field descrip-

tion in terms of “composite particles” that experience zero flux on average [26]. However,

within perturbation theory, there appears to be two distinct choices: a Fermi liquid-like

state of composite Cooper pairs or one of composite vortices. We will first describe these

two effective theories in some detail in order to define a map – the particle-vortex trans-

formation – that exchanges them. We will then argue that these two choices motivate the

particle-vortex symmetric liquid as the effective description that obtains in the limit when

particle-vortex symmetry is restored.

1. Composite Cooper-pair and composite vortex bulk lagrangians

Flux attachment says that Cooper-pair bosons at unit filling fraction can equivalently be

described by the lagrangian:

LCBL = ψ†Φ

(
i∂t + e∗at +

1

2mΦ

(∂j − ie∗aj)2
)
ψΦ +

e2
∗

4π
εµνρ(aµ − Aµ)∂ν(aρ − Aµ). (III.4)

In this composite (Cooper-pair) boson liquid (CBL), ψΦ is the destruction operator of a

composite Cooper pair of effective mass mΦ, aµ is an emergent gauge field, and Aµ again

represents electromagnetism with non-zero average magnetic field B > 0. Although closely

related, the lagrangians in Eqs. (III.4) and (III.2) contain Chern-Simons terms for the

emergent gauge fields of opposite level.82

Particle-vortex duality [25] allows the field-tuned SIT to alternatively be studied using

the induced vortex degrees of freedom. To use this duality, we implicitly assume that the

proximate insulator is a Bose insulator [4], i.e., an insulator of localized Cooper pairs – a

possibility that appears to be realized in a variety of materials [8, 50]. Vortices at unit filling
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fraction motivate a description in terms of the lagrangian:

LCVL = ψ†v

(
i∂t + e∗bt +

1

2mv

(∂j − ie∗bj)2
)
ψv −

e2
∗

4π
εµνρ

(
bµ∂νbρ − 2Ãµ∂ν(Aρ − bρ) + Ãµ∂νÃρ

)
.

(III.5)

In the composite vortex liquid (CVL), ψv is the destruction operator of a composite vortex of

effective mass mv, bµ is responsible for the statistical transmutation of the bosonic vortices

into fermionic composite vortices, while Ãµ represents the fluctuations of the Cooper pairs

of average effective density ns ≡ 〈∂xÃy − ∂yÃx〉/Φ0, where Φ0 ≡ hc/e∗ = 2π/e∗ is the

magnetic flux quantum. The average density of composite vortices is fixed by the external

field, nv ≡ 〈ψ†vψv〉 = B/Φ0. It is convenient to simplify LCVL by integrating out Ãµ to find

LCVL = ψ†v

(
i∂t + e∗bt +

1

2mv

(∂j − ie∗bj)2
)
ψv −

e2
∗

4π
εµνρ

(
bµ∂νbρ − (bµ − Aµ)∂ν(bρ − Aρ)

)
.

(III.6)

2. Composite Cooper-pair and composite vortex boundary lagrangians

If the CBL is placed in the lower half-plane (y < 0) with topologically trivial vacuum in

the upper half-plane (y > 0), gauge invariance requires the presence of the boundary degree

of freedom φΦ living at y = 0 with lagrangian:

L∂CBL =
e2
∗

4π

[
(∂tφΦ + at − At)(∂xφΦ + ax − Ax)− vΦ(∂xφΦ + ax − Ax)2 + εµνy(aµ − Aµ)∂νφΦ

]
.

(III.7)

Together, the composite boson bulk and boundary theories are invariant under the gauge

transformations:

aµ 7→ aµ + ∂µΛa,

Aµ 7→ Aµ + ∂µΛA,

ψΦ 7→ eie∗ΛaψΦ,

φΦ 7→ φΦ − (Λa − ΛA). (III.8)

The last term in Eq. (III.7) cancels the (anomalous) gauge variation of the bulk Chern-

Simons term in Eq. (III.4).

The operator ΨB ≡ eie∗φΦψΦ is neutral with respect to the emergent gauge symmetry and

carries electromagnetic charge e∗ (it destroys a left-moving φΦ mode and composite Cooper
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pair). We therefore identify ΨB with the Cooper-pair boson destruction operator along the

boundary.

Analogous considerations (see Appendix A for a derivation) result in the boundary la-

grangian,

L∂CVL =
e2
∗

4π

[
(∂tφ1 + At − bt)(∂xφ1 + Ax − bx)− v1(∂xφ1 + Ax − bx)2 + e∗εµνy(Aµ − bµ)∂νφ1

− (∂tφ2 − bt)(∂xφ2 − bx)− v2(∂xφ2 − bx)2 + εµνybµ∂νφ2

]
δ(y = 0),

(III.9)

when the CVL is placed in the lower half-plane. The boundary degrees of freedom ensure

invariance under the gauge transformations,

bµ 7→ bµ + ∂µΛb,

Aµ 7→ Aµ + ∂µΛA,

ψv 7→ eie∗Λbψv,

φ1 7→ φ1 − (ΛA − Λb),

φ2 7→ φ2 + Λb. (III.10)

Evidently, there are two independent local boundary operators that are neutral with

respect to the bµ gauge symmetry: Ψ1 ≡ e−ie∗φ1ψv carries electromagnetic charge e∗ and

can be identified with a Cooper-pair boson destruction operator (it creates a left-moving φ1

mode and destroys a composite vortex); Ψ2 ≡ e−ie∗φ2ψv carries no electromagnetic charge

(it destroys a right-moving φ2 mode and a composite vortex). In particular, φ2 and ψv do

not minimally couple to electromagnetism. Ψ2 can be identified with a vortex destruction

operator along the boundary. The appearance of the boundary field φ1 is similar to the

filled Landau level boundary mode in the composite hole liquid introduced in [83]. The

third operator Ψ3 ≡ eie∗(φ2−φ1) is proportional to Ψ†2Ψ1 since the composite vortex density

is fixed by the external magnetic field.

3. Conjugate perturbative descriptions

The CBL and CVL theories were found by applying the flux attachment procedure to

particle-vortex dual descriptions of the SIT. We now define a mapping under which the CBL
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and CVL lagrangians are conjugate. If we act twice with the transformation, we recover

the original lagrangian; this is equivalent to taking the duality transformation interchanging

Cooper-pair bosons and vortices to act as an element of the modular group.

At the level of the CBL and CVL bulk lagrangians in Eqs. (III.4) and (III.5), we imple-

ment the transformation by combining the anti-unitary mapping (i 7→ −i),

(at, ax, ay) 7→ (at,−ax,−ay),

(At, Ax, Ay) 7→ (−Ãt, Ãx, Ãy),

(t, x, y) 7→ (−t, x, y), (III.11)

with the shift of the lagrangian by 1
2π
εµνρÃµ∂νAρ. The relabeling aµ ↔ bµ and ψΦ ↔ ψv

completes the transformation under the assumption mΦ = mv For ease of reference we

refer to this combined transformation by Eq. (III.11), however, we emphasize that the full

transformation includes both the (local) mapping of fields and lagrangian shift.

The transformation defined above is equal to a discrete spacetime transformation which

is then followed by a modular transformation. In [68], the action of the modular group was

defined for conformal field theories with U(1) global symmetry. The first operation, called

T, adds a level-1 1
4π
AdA Chern-Simons term to the lagrangian; the second operation, called

S, makes the background field dynamical A → Ã, and reintroduces the background gauge

field A via the term 1
2π
ÃdA. These operations on the lagrangian induce the action of the

modular group on the complexified conductivity σxy + iσxx, which can be obtained from

the two-point function of the U(1) current conjugate to A. Thus, the above transformation

can be decomposed into the discrete anti-unitary (i 7→ −i) spacetime transformation which

takes (t, x, y) 7→ T (t, x, y), a 7→ T (a), and A 7→ CT (A) which is then following by the S

transformation of [68]. (T and C are the time-reversal and charge-conjugation operations

defined below (II.5)).

It is more convenient to study the CVL lagrangian in Eq. (III.6) which was found by

choosing the gauge Ãt = 0 and subsequently integrating out the spatial components Ãi.

Since Aµ and Ãµ transform into one another in Eq. (III.11), self-consistency requires that

we also take At = 0. As noted in Appendix A, the Ãt = 0 gauge fixes Ãi = Ai − bi + ∂iφ1,

which when substituted into Eq. (III.5) gives the simplified bulk lagrangian in Eq. (III.6)

and the contribution to the boundary lagrangian in Eq. (A.4). No such equation results

from fixing At = 0 since it is taken to be a non-dynamical field.
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In At = Ãt = 0 gauge, the transformation in Eq. (III.11) becomes

(at, ax, ay) 7→ (at,−ax,−ay),

(Ax, Ay) 7→ (Ax, Ay)− (ax, ay) + ∂iφ1,

(t, x, y) 7→ (−t, x, y). (III.12)

Combined with the shift of the lagrangian by 1
2π
εµνρÃµ∂νAρ with (Ãt, Ãi) = (0, Ai−ai+∂iφ1)

and At = 0, Eq. (III.12) allows us to infer the transformation of the boundary fields,

φΦ 7→ φ2 + cΦ,

φ1 7→ −φ1 + c1,

φ2 7→ φΦ + c2, (III.13)

up to a shift by undetermined constants. We have set the velocities of the edge fields to zero

in verifying the conjugacy of the boundary lagrangians under Eq. (III.13). Note that the

bulk contributes e2∗
4π

(∂tφ1 − ct)∂xφ1 with ct = bt or at to the transformation of the boundary

lagrangian. We see that Eq. (III.12) and subsequent shift of the lagrangian coincide with

the action of the particle-vortex transformation on the gauge fields defined in Sec. II B.

4. The argument for restoration

It is expected that the description of the physics away from ν = 1 in terms of either

composite Cooper pairs or vortices is different. But why do the descriptions in Eqs. (III.4)

and (III.6) and their respective boundary completions appear to differ physically at the

putative self-dual point where duality predicts identical physics? We believe the difficulty

lies in perturbation theory about the mean-field saddle-points for the CBL and CVL theories.

To highlight the (perturbative) inadequacy, it is useful to calculate the determinant of

the electrical conductivity tensor produced by the mean-field saddles of the CBL and CVL

theories in order to test how the self-duality condition in Eq. (I.1) might be satisfied.

Assuming finite longitudinal composite boson/vortex conductivity, a mean-field treatment

of the two theories results in self-dual electrical response at ν = 1 only if the CBL Hall

conductivity,

σCBL
xy =

1

2

e2
∗

2π
, (III.14)
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or the CVL Hall conductivity

σCVL
xy = −1

2

e2
∗

2π
. (III.15)

Such a large Hall effect would not be expected at ν = 1 where the composite bosons/vortices

experience vanishing effective magnetic flux on average. (Recall that the particle-vortex

symmetric theory requires the self-dual dyons to exhibit vanishing Hall effect – in a sense

the “average” of the above two values.84) We interpret this “inconsistency” as a reflection

of the inadequacy of perturbation theory about the mean-field saddle-points. An identical

issue arises in the context of the half-filled Landau level [85, 83].

A hint at a possible resolution comes from the mapping defined in Eq. (III.12) that

transforms the CBL and CVL lagrangians into one another. The fact that the CBL and

CVL theories are not invariant under this mapping (at least within perturbation theory)

helps to explain the challenging requirement, highlighted by Eqs. (III.14) and (III.15), that

self-duality imposes on the CBL and CVL theories.

CBL

PVSL

CVL

FIG. 2. Particle-vortex symmetry restoration: the composite boson liquid (CBL) and composite

vortex liquid (CVL) define distinct perturbative theories; particle-vortex symmetry can be restored

by appropriate tuning or possibly renormalization group flow (indicated by the arrows) to the

particle-vortex symmetric liquid (PVSL) at long wavelengths.

If the CBL and CVL theories coincide non-perturbatively (or possess a self-dual limit

upon variation of appropriate parameters), then we expect the resulting description to be
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symmetric under the transformation in Eq. (III.12) and realized by the particle-vortex

symmetric liquid. The particle-vortex transformation described in Sec. II B – under which

the particle-vortex symmetric liquid is invariant – coincides with the transformation in Eq.

(III.12) up to its action on the matter fields. The composite bosons and composite vortices

are interchanged by Eq. (III.12); this may be identified with the exchange of the upper and

lower components of the self-dual dyon Dirac spinor under the particle-vortex transformation

in Eq. (II.5). In this way, the self-dual dyon incorporates the composite Cooper-pair boson

and composite vortex degrees of freedom. We thus come to the picture of particle-vortex

symmetry restoration in Fig. 2.

At weak gauge coupling and for non-zero symmetry-breaking mass mψ̄ψ, the particle-

vortex symmetric liquid flows to either the CBL or CVL upon taking the non-relativistic

limit (see Appendix B), depending upon the sign of the mass m. It is possible that a

large anomalous dimension could alter this weak coupling intuition, driving the Dirac mass

irrelevant (in the renormalization group sense) about the particle-vortex symmetric liquid

fixed point, and thereby provide additional support for the picture in Fig. 2.

IV. DISCUSSION

In this paper, we introduced the particle-vortex symmetric liquid in order to describe a

field-tuned superconductor-insulator transition with approximate particle-vortex symmetry.

In this theory, Cooper-pair bosons or field-induced vortices undergoing an order-disorder

transition are traded for an electrically-neutral Dirac (composite) fermion – that we refer

to as a self-dual dyon – which experiences zero “magnetic” flux on average and interact via

an emergent Chern-Simons gauge field. In contrast to the composite Fermi liquid treatment

of bosons at ν = 1, within a mean-field treatment, this theory exhibits particle-vortex

symmetric electrical transport, i.e., Eq. (I.1), when the self-dual dyons have vanishing Hall

effect. Furthermore, no constraint need be imposed on the current relaxation mechanism

of the dyons; self-dual transport can be satisfied via a single condition! In addition, we

examined the expected thermoelectric response and found Sxx ≈ Sxy in the vicinity of a self-

dual superconductor-insulator transition with a deviation parameterized by the (electrical)

Hall response.

There are a variety of directions for future exploration.
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Perhaps, the most pressing is a careful treatment of the effects of disorder on the particle-

vortex symmetric liquid. The working hypothesis of this paper is that at strong disorder,

the theory flows to a strong-disorder critical point. A demonstration of the flow and charac-

terization of the disordered critical point are crucial to the picture presented here. Can the

particle-vortex symmetric liquid provide a correct demonstration of the measured critical

exponents? If a disordered critical point is achieved, what is the value of the critical longi-

tudinal conductivity? We believe the particle-vortex symmetric liquid may enable a more

accessible attack on these problems.

The metallic region (see Fig. 1) found to obtain in cleaner samples does not appear to

exhibit self-dual response at any value of the applied magnetic field [9, 53–55]. Within the

context of the particle-vortex symmetric liquid, this violation of self-duality indicates the

existence of a non-zero symmetry-breaking mass and a possible effective description of the

metallic phase advocated in [26]. (An alternative proposal of the clean limit might instead

utilize the ideas presented in [86].)

In Sec. II C, we showed how the particle-vortex symmetric liquid achieves self-dual elec-

trical response and described the expected thermoelectric response in Sec. II D. Is there

a thermal transport analog of Eq. (I.1)? Furthermore, it is important to examine ther-

mal transport more generally and any signatures of unbroken particle-vortex symmetry.

See Appendix C for a discussion of how the particle-vortex symmetric liquid obeys the

Wiedemann-Franz “law” following the logic in [43].

It would be interesting to better understand whether the particle-vortex symmetric liquid

motivates a modification to the wave function advocated to describe bosons at ν = 1 [29,

30]. Such wave functions, in the context of the half-filled Landau level, have provided crucial

insights to the physics [37] and so it is worthwhile to better understand the role that unbroken

particle-vortex symmetry (or particle-hole in the half-filled Landau level) may play.

Recent commensurability experiments [87, 88] have tested the validity of the composite

fermion picture and partially motivated a reconsideration of the conventional theoretical

description [36] of the half-filled Landau level [27, 83]. We believe that similar experiments

performed on the thin films could provide valuable information regarding the scenario pro-

posed in Ref. [26] and extended here in which a Fermi liquid-like state arises from a collection

of interacting bosons.

As we have emphasized, our work closely parallels recent studies of the role of emergent
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particle-hole symmetry in the composite fermion treatment of the half-filled Landau level.

At electronic filling fraction νe = 1/4, there is no such electronic particle-hole symmetry,

however, quarter electronic filling fraction translates to half-filling of the composite fermions.

Might there be an emergent composite fermion particle-hole symmetry pertinent in the

vicinity of the fractional quantum Hall transition νe = 1/3→ 089? Indeed, there is electrical

transport evidence that such a symmetry is realized [90]; commensurability experiments may

provide additional insight.

During the completion of this work, there appeared two papers studying the implementa-

tion of particle-hole, rather than particle-vortex, symmetry in fermionic and bosonic systems

at various filling fractions [91,92].
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Appendix A: Derivation of the composite vortex liquid boundary lagrangian

We describe the bulk physics of the CVL with the lagrangian,

LCVL = ψ†v

(
i∂t + e∗bt +

1

2mv

(∂j − ie∗bj)2
)
ψv −

e2
∗

4π
εµνρ

(
bµ∂νbρ − 2Ãµ∂ν(Aρ − bρ) + Ãµ∂νÃρ

)
.

(A.1)

If the CVL is placed on the lower half-plane (y < 0) (or any space with boundary, more

generally) with topologically trivial vacuum in the upper half-plane (y > 0), boundary

degrees of freedom living at y = 0 are required to maintain gauge invariance. Our task in

this appendix is to derive the boundary lagrangian governing their dynamics.
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The Ãt = 0 gauge imposes the constraint,

Ãi = Ai − bi + ∂iφ1, (A.2)

where φ1 7→ φ1−(ΛA−Λb) under the gauge transformations Ai 7→ Ai+∂iΛA and bi 7→ bi+Λb.

We choose the gauge variation of Ãµ to vanish on the boundary at y = 0. Substituting the

solution of the constraint into LCVL, the bulk lagrangian becomes

LCVL = ψ†v

(
i∂t + e∗bt +

1

2mv

(∂j − ie∗bj)2
)
ψv −

e2
∗

4π
εµνρ

(
bµ∂νbρ − (bµ − Aµ)∂ν(bρ − Aρ)

)
.

(A.3)

In addition, we obtain a contribution to the boundary lagrangian at y = 0,

L∂CVL ⊃
e2
∗

4π

[
(∂tφ1 + At − bt)(∂xφ1 + Ax − bx)− v1(∂xφ1 + Ax − bx)2 + εµνy(Aµ − bµ)∂νφ1

]
,

(A.4)

after performing an integration by parts to put LCVL into the above form. A second bound-

ary degree of freedom of opposite chirality to φ1 is required to ensure invariance under

the transformation bµ 7→ bµ + Λb. Because the coefficient of the Chern-Simons term pro-

portional to εµνρbµ∂νbρ vanishes in Eq. (A.3), the anomalous gauge variation proportional

to Λbεµνy∂µbν of the lagrangian governing φ1 can be entirely canceled by the variation of

the lagrangian for the boundary degree of freedom represented by φ2 which transforms as

φ2 7→ φ2 + Λb. (Recall that the anomalous variation appears at the classical level in this

bosonized description – see, for example, [95].) Thus, we find the boundary lagrangian,

L∂CVL =
e2
∗

4π

[
(∂tφ1 + At − bt)(∂xφ1 + Ax − bx)− v1(∂xφ1 + Ax − bx)2 + εµνy(Aµ − bµ)∂νφ1

− (∂tφ2 − bt)(∂xφ2 − bx)− v2(∂xφ2 − bx)2 + εµνybµ∂νφ2

]
δ(y = 0).

(A.5)

The terms quadratic in spatial derivatives, which represent intra-boundary mode density-

density interactions, have been added by hand and are parameterized by the velocities

v1, v2 > 0.

Appendix B: Non-relativistic limit of the particle-vortex symmetric liquid

In this appendix, we review the non-relativistic limit of the particle-vortex symmetric

liquid deformed by a finite Dirac mass mψ̄ψ. Restoring the “speed of light” c, i.e., setting
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t→ ct, αt → 1
c
αt, and At → 1

c
At, the deformed particle-vortex symmetric liquid lagrangian

becomes

Lpv =
1

c
ψ̄iγtDtψ + ψ̄iγjDjψ +mcψ̄ψ +

e2
∗

4πc
εµνρ

(1

2
αµ∂ναρ − 2Aµ∂ναρ + Aµ∂νAρ

)
, (B.1)

where Dµ = ∂µ − ie∗αµ.

At finite external magnetic field ∂xAy − ∂yAx ≡ B > 0, the anti-particles (or holes) of ψ

are “massive.” Focusing on the “light” particles, we write

ψ = e−i|m|c
2t

ψv

ψΦ

 (B.2)

and substitute into the lagrangian to find

Lpv = c
(
|m|+m

)
ψ†vψv + c

(
|m| −m

)
ψ†ΦψΦ + ψ†viDz̄ψΦ + ψ†ΦiDzψv

+
1

c

(
ψ†vDtψv + ψ†ΦDtψΦ

)
+

e2
∗

4πc
εµνρ

(1

2
αµ∂ναρ − 2Aµ∂ναρ + Aµ∂νAρ

)
, (B.3)

where D− ≡ Dy − iDx and D+ ≡ Dy + iDx. For m > 0, the ψ†v equation of motion sets

ψv = − i

2mc
D+ψΦ (B.4)

which to leading order in a 1/c expansion gives

LΦ =
1

c
ψ†ΦDtψΦ +

1

2mc
ψ†Φ

(
D−D+

)
ΨΦ +

e2
∗

4πc
εµνρ

(1

2
αµ∂ναρ − 2Aµ∂ναρ + Aµ∂νAρ

)
. (B.5)

Alternatively, for m < 0, we use the ψ†Φ equation of motion to solve for ψΦ in terms of ψv.

When substituted into Lpv, we obtain

Lv =
1

c
ψ†vDtψv +

1

2mc
ψ†v

(
D+D−

)
Ψv +

e2
∗

4πc
εµνρ

(1

2
αµ∂ναρ − 2Aµ∂ναρ + Aµ∂νAρ

)
. (B.6)

Up to a positive (negative) shift of the coefficient of the Chern-Simons term for αµ by e2∗
8πc

and the “Zeeman” couplings − e∗
2mc

(∂xαy − ∂yαx)ψ†ΦψΦ and e∗
2mc

(∂xαy − ∂yαx)ψ†vψv, LΦ and

Lv are identical to the CBL and CVL lagrangians. The Zeeman couplings are allowed by

symmetry, but are of higher order in the derivative expansion of the effective lagrangians.

Evidently, the “massive” anti-particles contribute a Chern-Simons term for αµ with co-

efficient equal to e2∗
8π

m
|m| . This may be seen without explicit calculation simply from the

requirement of the preservation of the “ultraviolet” and “infrared” contributions to the par-

ity anomaly constraint [69–71]: the self-dual dyon fermion determinant contribution to the
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would-be anomaly must be matched by that of the infrared theory. Under the assumption

that the non-relativistic fermions in LΦ and Lv make no contribution, the desired Chern-

Simons term must be generated upon decoupling the massive anti-particle. Adding the

anti-particle contribution to LΦ or Lv, we recover the CBL or CVL lagrangians.

Appendix C: Wiedemann-Franz

Inspired by the observation in [43, 91], we consider the possible violation of the Wiedemann-

Franz “law.” Under the assumption that there exists a Wiedmann-Franz law between the

electronic contribution to the thermal conductivity κxx and self-dual dyon conductivity σψxx

with Lorenz number L equal to that of a Fermi liquid of charge e∗ electrons, we consider

the ratio,

rL =
1

L
κxx
Tσxx

. (C.1)

σxx is the measured longitudinal electrical conductivity. The possibility of a Wiedemann-

Franz “law” is an immediate consequence of scaling about the pertinent low-energy fixed

point; its realization requires that the thermal and electrical current relaxation mecha-

nisms be the same (or at least the operators which relax the currents have equal scaling

dimensions). In assuming a Wiedemann-Franz “law” between the thermal conductivity and

self-dual dyon conductivity, we are ignoring any contribution to the thermal conductivity

from the emergent gauge fields.

The ratio rL quantifies the possible deviation from the behavior expected from a Fermi

liquid. This Fermi liquid may be thought of as the “normal state” electrons extrapolated to

T → 0. Using Eq. (II.9), we can express σψxx in terms of the measured electrical resistivity

to find:

rL =
ρ2
xx + ρ2

xy

ρ2
xx + (2π

e2∗
+ ρxy)2

≈ 1

2(1 + e2∗
2π
ρxy)

. (C.2)

The second equality obtains for approximate self-duality. Near a SIT with approximate

self-duality with ρxx ≈ h/4e2 and ρxy ≈ 0 [7–9, 11–13], rL ≈ 1/2. Deviations away from

self-duality with ρxy = 0 and ρxx � 2π/e2
∗, result in rL < 1/2.
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This behavior contrasts that which is expected [43] using a composite fermion treatment

for the half-filled Landau level where the analog of the factor (2π
e2∗

+ ρxy) ≡ ( h
4e2

+ ρxy) is

replaced by (2h
e2

+ ρxy) ≈ 0 and ρxx � ρxy so that rL � 1. As the strength of the disorder

is increased so that the metallic phase pinches into an IQHT critical point, ρxx is increased

and rL → 1 similar to a self-dual SIT.
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