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The insulating state of matter can be probed by means of a ground state geometrical marker,
which is closely related to the modern theory of polarization (based on a Berry phase). In the
present work we show that this marker can be applied to determine the metal-insulator transition
in disordered systems. In particular, for non-interacting systems the geometrical marker can be
obtained from the configurational average of the norm-squared one-body density matrix, which can
be calculated within open as well as periodic boundary conditions. This is in sharp contrast to
a classification based on the static conductivity, which is only sensible within periodic boundary
conditions. We exemplify the method by considering a simple lattice model, known to have a metal-
insulator transition as a function of the disorder strength and demonstrate that the transition point
can be obtained accurately from the one-body density matrix. The approach has a general ab-initio
formulation and could in principle be applied to realistic disordered materials by standard electronic
structure methods.

I. INTRODUCTION

The metal-insulator transition in solid state systems is
notoriously difficult to approach from a theoretical point
of view. The description of the Mott transition, where
the metal-insulator transition is induced by electron-
electron interactions, traditionally involves explicitly cor-
related methods such as Dynamical Mean Field Theory
(DMFT).1 While it is indeed possible to unravel the Mott
transition in real materials,2 the application of DMFT is
computationally demanding and still restricted to rather
simple systems. In the case of the Anderson transition,
where a metal-insulator transition is induced by disorder,
the calculational probes are invariably specific to model
lattice Hamiltonians4,5 and a first principles treatment of
the transition seems to be out of reach with the present
theoretical tools.

Here we adopt a different and more general approach,
stemming from the 1964 seminal paper by W. Kohn.6,7

According to Kohn the qualitative difference between in-
sulators and conductors manifests itself in a different or-
ganization of the electrons in their many-body ground
state. A series of more recent papers8–11 has established
Kohn’s pioneering viewpoint on a sound formal and com-
putational basis, rooted in geometrical concepts. These
developments followed (and were inspired by) the mod-
ern theory of polarization, based on a Berry phase.12,13

and we will refer to these developments altogether as to
the modern theory of the insulating state (MTIS). Its ba-
sic ingredient is the quantum metric tensor14 as we will
explain below.

The MTIS has previously been adopted to address the
Mott transition by adopting either lattice models8,15–17

or first-principle Hamiltonians.18,19 To the best of our
knowledge it has never been adopted to investigate the
Anderson transition in three-dimensional (3D) disor-
dered samples. In the latter case, the tools currently

in use focus on properties either of the spectrum or of
the individual Hamiltonian eigenstates.5 In contrats, for
the case of independent electrons, the only ingredient of
the MTIS is the ground-state density matrix. Moreover,
the MTIS unites the concepts of Anderson insulators and
Mott insulators into a common framework based on the
quantum metric tensor and offers the exciting possibility
of studying the metal-insulator transition in cases where
both disorder and electronic correlations play an impor-
tant role in the transition. In principle the framework
presented here can be straightforwardly implemented in
any first principles electronic structure code. However,
the required computations may still be too demanding
for any faithful prediction of Anderson transitions in real
materials.

In the present work we address a paradigmatic model:
a tight-binding Hamiltonian on a 3D simple cubic lat-
tice, with random onsite matrix elements. The Anderson
transition for this model has been studies in the previous
literature by means of various tools5,20–23. Here we show
that—according to MTIS basic tenet—the ground-state
density matrix of finite samples within “open” bound-
ary conditions (OBCs) carries the information needed to
detect the metal-insulator transition.

II. THEORY

For the sake of simplicity we address isotropic systems
only, whose scalar longitudinal conductivity is

σ(ω) = σ′(ω) + iσ′′(ω); (1)

the real and imaginary parts σ′ and σ′′ obey Kramers-
Kronig relationships. In a conductor the low-ω real part
of σ takes the general form24

σ′(ω) = D δ(ω) + σ′reg(ω), (2)



2

whereD is the Drude weight, and the regular part σ′reg(ω)
may be non-vanishing for ω → 0. The nomenclature owes
to the classical Drude theory in the dissipationless limit,
where D = πe2(n/m); n is the carrier density and m the
corresponding mass. Taking into account the Kramers-
Kronig relationships and Eq. (2), we may also rewrite

σ(ω) = D

[
δ(ω) +

i

πω

]
+ σreg(ω), (3)

whence the alternative definition6,25

D = π lim
ω→0

ωσ′′(ω). (4)

The insulating behavior of a material implies both D = 0
and σ′reg(ω)→ 0 for ω → 0 at zero temperature, while in
conductors one has either D 6= 0 (in pristine crystalline
metals) or σ′reg(0) 6= 0.

The Kubo formulae provides the quantum-mechanical
expression for σ′reg(ω), while instead D is a ground-state
property. In the special case of a pristine crystal at the
independent-particle level D measures the current due to
freely accelerating electrons at the Fermi surface, while
σreg(ω) is due to interband transitions. Both terms in
Eq. (3), however, have a more general meaning and are
well defined even for an interacting many-body system26.
In either case a non-vanishing static conductivity requires
periodic boundary conditions (PBCs) and the vector-
potential gauge for the electric field. Indeed there cannot
be any steady-state current in a finite crystallite within
OBCs. The Kubo formulae for the conductivity is the
standard approach to discriminating between insulating
and metallic phases. However, the MTIS implies that an
alternative approach is possible as will be shown below.
Notably, the difference between an insulator and a metal
can be detected within either PBCs or OBCs. We will
adopt the latter in the present investigation, stressing the
fact the the metallic/insulating behavior is a ground state
property that can be adressed without reference to the
static conductivity.

Consider N interacting electrons in a box of volume
V , with Hamiltonian (in atomic units)

Ĥ(κ) =
1

2

N∑
i=1

(p̂i + κ)2 + Û , (5)

where Û comprises one- and two-body interactions. At
κ = 0 Eq. (5) is the standard many-body Hamiltonian
of the system, while setting κ 6= 0 amounts to a gauge
transformation. Such a transformation within OBCs is
trivial, and can be easily “gauged away”: for instance,
the ground-state energy is κ-independent. Matters are
instead nontrivial within PBCs, where the ground-state
energy E0(κ) is in general κ-dependent. For the sake of
clarity we remind that PBCs means that the wavefunc-
tion at any κ is periodical in the supercell of volume V
in each electronic coordinate (the coordinates are indeed

angles). It has been shown by Kohn6,25 that within PBCs
the Drude weight is given (for isotropic systems) by

D =
π

V

d2E0(κ)

dκ2

∣∣∣∣
κ=0

. (6)

If we define the projector

Q̂(κ) = 1̂− |Ψ0(κ)〉〈Ψ0(κ)|, (7)

the quantum metric tensor14 is

Gαβ(κ) =
1

N
Re 〈∂kαΨ0(κ)| Q̂(κ) |∂kβΨ0(κ)〉, (8)

where we have divided by N in order to obtain an in-
tensive quantity. This tensor has the dimensions of a
squared length, and is a scalar in isotropic systems, where
we define the MTIS localization length as

λ2 = Gαα(0), (9)

in the thermodynamic limit. We note in passing that
the imaginary part of 〈Ψ0(κ)| Q̂(κ) |∂kβΨ0(κ)〉 is closely
related to the Berry curvature of the system, thus em-
phasizing the geometric interpretation of the MTIS lo-
calization length. The MTIS basic tenet is that λ is
the main marker for the insulating state of matter: in
fact λ is finite in any insulator, while it diverges in any
metal.8–11 For the sake of clarity, we stress that the MTIS
localization length λ bears no relationship to the Ander-
son localization length:5 the former is a property of the
many-body ground state, while the latter is a property
of the one-body eigenstates in an independent-electron
system. In appendix B we demonstrate the relationship
between the λ and the regular part of the conductivity
from which it follows that a finite static regular conduc-
tivity implies a diverging MTIS localization length.

The convergence/divergence of λ has been often
used to address the Mott transition in correlated
systems;8,15–19 the present Letter is about adopting the
same viewpoint to address the Anderson transition in a
3D disordered system. The metal-insulator transition in
presence of both disorder and electron-electron interac-
tion has received much interest as well.27 Here we only
quote two very recent simulations based on 1D model
Hamiltonians within PBCs: Ref17. adopts MTIS, while
Ref. 28 proposes a marker based on the one-body den-
sity matrix ρ. The two approaches are not equivalent,
since in the correlated case λ cannot be evaluated from
a knowledge of ρ only.

One of the virtues of the MTIS is that Eqs. (8) and (9)
can be equally well implemented within either PBCs or
OBCs. In this work we adopt OBCs, where the metric
assumes a very transparent meaning. If we define the
many-body operator

r̂ =

N∑
i=1

r̂i, (10)
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then the κ-dependence of the ground eigenstate is very
simple within OBCs:

|Ψ0(κ)〉 = e−iκ·r̂|Ψ0(0)〉 = e−iκ·r̂|Ψ0〉, (11)

with an obvious simplification of notations. From this we
easily get

∂kα |Ψ0(κ)〉 |κ=0 = −ir̂α|Ψ0〉 (12)

Gαβ(0) =
1

N
Re ( 〈Ψ0|r̂αr̂β |Ψ0〉

−〈Ψ0|r̂α|Ψ0〉〈Ψ0|r̂β |Ψ0〉 ), (13)

i.e. the metric tensor is the second cumulant moment
of the electron distribution in the many-electron system.
From Eq. (13) it is clear that within OBCs the MTIS
localization length is a function of the two-body density
matrix.10 In the case of noninteracting particles Eq. (13)
can be expressed in terms of the one-body density matrix
as

Gαβ(0) =
1

2N

∫
dr

∫
dr′(r−r′)α(r−r′)β |ρ(r, r′)|2. (14)

Here we have adopted a “spinless electron” formulation,
which we will use throughout the present work. The
scaling behavior of |ρ(r, r′)| for |r− r′| → ∞ determines
whether the integral in Eq. (14) converges or diverges
in the large-system limit. The crystalline case is well
known:29 |ρ(r, r′)| decays exponentially in insulators and
algebraic in metals, resulting in convergence in the former
case, and typically divergence in the latter.

In a disordered system |ρ|2 in Eq. (14) has to be re-
placed with its configurational average 〈|ρ2|〉c. A very
crucial point is that 〈|ρ2|〉c is in general different from
the squared modulus of the configurational average of |ρ|.
Thus, knowing the decay of |ρ| is in general not sufficient
to determine whether a disordered system is insulating
or metallic. This is closely related to the so-called ver-
tex corrections in the well established transport theories
based on Green’s functions.24,30 We discuss this point in
detail in appendix B.

III. RESULTS

Our case study is a paradigmatic system displaying the
metal-insulator transition. We consider the half-filled 3D
tight-binding model

H = t
∑
<ij>

c†i cj + H.c. +W
∑
i

εic
†
i ci, (15)

where i, j denote sites on a simple cubic lattice, < ij >
are pairs of nearest neighbor sites and the onsite ener-
gies εi are randomly picked from the interval [−1, 1].
W is the disorder strength and the model has previ-
ously been shown to exhibit an Anderson transition at
Wc/t = 8.25.20–23 We set t = 1 in the following.

We have calculated the localization length λ, Eq. (9),
within OBCs for various values of W using rods of size
L × d × d where L = 100 and d = 3, 5, 7. To obtain the
configurational average we used 100 configurations and
for each configuration the component of the localization
tensor, Eq. (14), along the rod was obtained by averag-
ing over the two short dimensions. The results for various
values of W are shown in Fig. 1 for different rod widths
d. We clearly observe a tendency for λ to saturate when
W becomes large. For small W , instead, λ appears to be
increasing monotonically with the rod length L. Within
MTIS the Anderson transition would emerge as a transi-
tion from a divergent to a finite λ in the limit of large L.
While it seems plausible that this may happen around
Wc = 8.25, it is very difficult to extract a quantitative
estimate of Wc from λ alone. For example, for W = 10,
the localization length appears to be saturated at a finite
value for L ∼ 100, but it is hard to verify if this is re-
ally the case or if λ is merely increasing too slowly to be
observable at the size of our simulations.

In the following we will analyze the density matrix di-
rectly, showing that the Anderson transition can be in-
deed detected from the long range behavior of 〈|ρ2|〉c.
As discussed above (and in appendix B) it is essential to
take the square of the density matrix before the configura-
tional average, and not the reverse. In Fig. 2 we show the
result of our computer experiments, performed for W = 5
(in the conducting regime) andW = 15 (in the Anderson-
insulating regime), after averaging over 300 random con-
figurations; both options—〈|ρ2|〉c and |〈ρc〉|2—are shown,
and both are plotted in semi-logarithmic and double log-
arithmic scales. The panels in Fig. 2 show first of all
that 〈|ρ2|〉c is a much smoother quantity: this property
will allow us (see below) to locate the critical disorder
strenght Wc. The top left panel in Fig. 2 clearly indi-
cates a power-law behavior at W = 5, while the bottom
right panel indicates an exponential behavior at W = 15:
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FIG. 1. (Color online). Localization length λ2 = 〈x2〉 as a
function of rod length L. λ diverges for small values of W
and saturates to a finite value for large values of W .
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FIG. 2. (Color online). Configurational averaged density ma-
trix. Top: density matrix with W = 5.0 in log-log scale to the
left and in semi-log scale to the right. Bottom: same as top,
but with W = 15.0. The norm-squared density matrix is seen
to be well approximated by power-law decay for W = 5.0 and
exponential decay for W = 15.0.

this is indeed qualitatively consistent with Fig. 1, and
also with analytical results in the literature.31 It should
be noted, however, that exponential decay is a sufficient,
but not a necessary condition for the finiteness of λ. For
example, in a homogeneous system it can be seen from
Eq. (14) that λ stays finite if 〈|ρ2|〉c ∼ |r − r′|−β and
β > 5.

In order to get a quantitative estimate for the Ander-
son transition, we consider two alternative formulae for
representing the scaling of y(x) = 〈|ρ(x)|2〉c, where we
set x = |r− r′|. The two formulae have either power-law
or exponential decay:

ỹpow(x) = ae−bx, (16)

ỹexp(x) = αx−β . (17)

We indicate with ỹX any of the two. Then, assuming
constant Gaussian noise, the probability of obtaining the
data displayed in Fig. 2 using each of the two formulae

FIG. 3. (Color online). Ratio of the two cost functions,
Eq. (19), from a least-square fit using both power-law and
exponential formulae. The displayed values of β are the fit-
ted exponents. The vertical red line is at the value Wc =
8.25, taken from the literature.20–23 Our best estimate of the
metal insulator transition from the present method is where
Cpow/Cexp becomes unity. This happens at W ≈ 8.5.

is

PX ∼ e−CX , (18)

where the “cost” function is

CX =
∑
i

(ỹX(xi)− yi)2

2σ2
. (19)

Here the index i labels lattice sites along L and yi are
configuration-averaged values of 〈|ρ(xi)|2〉c.

We can then obtain the parameters in the two for-
mulae by a least-square fit and compute the resulting
cost function for either formula. In Fig. 3 we show the
cost-function ratio, as obtained from a fit to the two for-
mulae: we observe a very steep increase (two orders of
magnitude) between W = 8 and W = 9. The transi-
tion is therefore very sharp using our indicator, which
switches from nearly vanishing to one in a narrow W in-
terval. The present approach yields a critical disorder
parameter Wc ≈ 8.5. It should also be noted that the
fitted exponents in the W region where power-law decay
is most likely satisfy β < 5, i.e. all yield a divergent λ.

IV. CONCLUSION

In conclusion we have proved that the modern theory
of the insulating state, adopted so far in the previous lit-
erature for band insulators and Mott insulators, success-
fully applies even to a paradigmatic Anderson insulator.
The standard computational methods to address the An-
derson transition are often peculiar to lattice models (re-
cursive methods and the like), while the MTIS approach
adopted here is quite general. The present methodology
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could thus in principle be applied to ab initio studies,
allthough the the actual computations required may still
be too demanding. Another merit of the present method
is that the expression Eq. (13) is valid for generic many-
body systems and thus provides a general framework to
include interactions in the study of the Anderson transi-
tion. The general framework can thus treat cases where
disorder and correlations play equally important roles in
the metal-insulator transition.

We stress that the present approach should still be re-
garded as complementary to the standard treatments of
the Anderson transition based on lattice models. For ex-
ample, it is not simple to derive the critical exponents
characterizing the localization length in the vicinity of
the transitions from the MTIS. Furthermore, for specific
lattice models the well-established methods may provide
a more accurate prediction of critical disorder strength
at which the Anderson transition emerges. For example,
in the present work we studied the simple cubic lattice

with random onsite disorder and found Wc = 8.5, which
compares well, but not exactly, with the values from lit-
terature of Wc = 8.25. Nevertheless, we believe that the
present methodology comprises a promising path that
may lead to first principles predictions of the Anderson
transition in real materials.
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Appendix A: Pure state

We start by considering a pure state of our system. The one-body density matrix thus coincides with the projector
over the occupied single-particle states:

ρ(r, r′) = 〈r| P̂ |r′〉 =
∑
n

fn〈r|n〉〈n|r′〉, (A1)

where fn is the Fermi occupancy factor (either 0 or 1 for spinless electrons). If we then define the complementary

projector Q̂ = 1− P̂ it is easy to cast Eq. (14) of the main text into the equivalent trace form

Gαβ(0) =
1

N
Re Tr {r̂αP̂ r̂βQ̂} =

1

N

∑
m,n

fm(1− fn)Re [〈m| r̂α |n〉〈n| r̂β |m〉]. (A2)

For isotropic systems the MTIS localization length is then

λ2 =
1

N

∑
m,n

fm(1− fn)|〈m| x̂ |n〉|2. (A3)

The MTIS localization length is related to the real part of longitudinal conductivity Re σ(ω) by an integral sum rule,
due to Souza, Wilkens, and Martin (SWM):9

λ2 =
~V
Nπe2

∫ ∞
0

dω

ω
Re σ(ω), (A4)

which we are going to prove below.
The Kubo formula for conductivity can be cast in several equivalent ways; a useful expression is in terms of the

velocity operator v̂ and of the advanced and retarded Green’s functions Ĝ± = (ε− Ĥ ± iη)−1, where the η → 0+ limit

is understood.24,30,32–34 If we define G̃(ε) = Ĝ+(ε)− Ĝ−(ε) = −2πiδ(ε− Ĥ) the real part of conductivity can be cast
as a trace:

Re σ(ω) = − e2

4πV ω

∫ ∞
−∞

dε f(ε)Tr {G̃(ε)v̂xG̃(ε+ ~ω)v̂x − G̃(ε)v̂xG̃(ε− ~ω)v̂x}

= − e2

4πV ω

∫ ∞
−∞

dε [f(ε)− f(ε+ ~ω)] Tr {G̃(ε)v̂xG̃(ε+ ~ω)v̂x}. (A5)

The latter form clearly shows that the static limit—whenever nonvanishing—is a Fermi-surface integral. The integrand
is singular and needs to be regularized; a standard approach is to start with a finite η, with ~ω � η, taking the η → 0+
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limit first and then the ω → 0 limit.33 Nonetheless here we are not focussing on the static limit, since the full ω-integral
enters the SWM sum rule, Eq. (A4), which reads

λ2 = − ~
4π2N

∫ ∞
0

dω

ω2

∫ ∞
−∞

dε [f(ε)− f(ε+ ~ω)] Tr {G̃(ε)v̂xG̃(ε+ ~ω)v̂x}. (A6)

We then replace G̃(ε) with its spectral decomposition

G̃(ε) = −2πi
∑
n

δ(ε− εn)|n〉〈n|, (A7)

which yields

λ2 =
~
N

∑
m,n

∫ ∞
0

dω

ω2

∫ ∞
−∞

dε [f(ε)− f(ε+ ~ω)] δ(ε− εm)δ(ε− εn + ~ω)|〈m| v̂x |n〉|2

=
~2

N

∑
m,n

fm − fn
(εm − εn)2

θ(εn − εm)|〈m| v̂x |n〉|2 =
~2

N

∑
m,n

fm(1− fn)

(εm − εn)2
|〈m| v̂x |n〉|2. (A8)

Using then v̂x = i[Ĥ, x̂]/~ we finally arrive at Eq. (A3).

Appendix B: Configuration average and vertex corrections

Ideally the conductivity of a disordered system can be addressed via the pure state formulation, because all bulk
quantities are self-averaged in the large system limit. When instead working with finite-size disordered samples, one
has to take the statistical average of the relevant quantity over many random configurations. The real part of the
conductivity, Eq. (A5), then becomes24,30,32–34

Re σ(ω) = − e2

4πV ω

∫ ∞
−∞

dε [f(ε)− f(ε+ ~ω)] 〈Tr {G̃(ε)v̂xG̃(ε+ ~ω)v̂x}〉c, (B1)

where 〈. . . 〉c denotes the configurational average. This is not the same as separately averaging the two Green’s
functions entering Eq. (A5): the difference goes under the name of vertex corrections.

The above derivation makes clear that the SWM sum rule, Eq. (A4), holds if we define the MTIS localization length
as the configurational average of Eq. (A2), i.e.

λ2 =
1

N
〈Tr {x̂P̂ x̂Q̂}〉c =

1

NNc

Nc∑
i=1

∑
mi,ni

fmi(1− fni)|〈mi|x |ni〉|2, (B2)

where we average over Nc random configurations, and i is a configuration label. This clearly corresponds to using
〈|ρ2|〉c in Eq. (14) of the main text. If we adopt the alternative—and incorrect—choice of |〈ρ〉c|2, we instead get

λ̃2 =
1

N
Tr {x̂〈P̂ 〉cx̂〈Q̂〉c} =

1

NN2
c

Nc∑
i,j=1

∑
mi,mj

fmi(1− fnj )|〈mi|x |nj〉|2, (B3)

which corresponds to the no-vertex-correction case since the off-diagonal information is lost in λ̃2. It is well known—
within the Green’s functions formulation of conductivity24,30—that off-diagonal information is essential to distinguish
localized from delocalized states.
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