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Abstract    
   

Asymmetry in a three-electron double quantum dot (DQD) allows spin blockade, 

when spin-3/2 (quadruplet) states and spin-1/2 (doublet) states have different charge 

configurations. We have observed this DQD spin blockade near the (1,2)-(2,1) charge 

transition using a pulsed-gate technique and a charge sensor. We then use this spin 

blockade to detect Landau-Zener-Stückelberg (LZS) interference and coherent 

oscillations between the spin quadruplet and doublet states. Such studies add to our 

understandings of coherence and control properties of three-spin states in a double dot, 

which in turn would benefit the explorations into various qubit encoding schemes in 

semiconductor nanostructures. 

  



 

Spins in semiconductor quantum dots are a promising candidate for qubit [1]. 

Experimental studies of spin qubits have overcome a multitude of obstacles in the past 

decade in demonstrating spin preparation, manipulation, and measurement.  A key 

enabling technology for these achievements is single spin detection via spin blockade 

[2], which allows spin states to be distinguished by a charge sensor quickly [3].   

While single-electron spin is an obvious candidate for a qubit [4-12], encoding in 

multi-electron states [3,13-26] could remedy the main shortcoming of a single-spin 

qubit, i.e. the very slow single-qubit gate. Indeed, encoded three-spin qubits, whether 

in a triple dot [16-21] or a double dot [22-26], can be controlled completely 

electrically. Potential weakness of such encoded qubits lies in the more complex state 

structure, possible leakage [27], and susceptibility to charge noise [20,28,29].  It is 

therefore important to acquire a comprehensive understanding of the spectrum and 

dynamics of a multi-electron system in order to establish its feasibility for qubit 

encoding. 

In this letter we investigate three-electron spin dynamics in a GaAs double quantum 

dot (DQD). We first identify how spin blockade between electron spin doublet and 

quadruplet states can be realized in a three-electron double dot, and experimentally 

verify its existence. We then study LZS interference and coherent oscillations between 

doublet and quadruplet states near the (2,1)-(1,2) transition of the DQD. Our results 

provide important insights into the coherence and controllability of multi-electron 

states in a DQD. 

The double dot device used in this letter is fabricated on a 0.3 0.7/GaAs Al Ga As  

heterostructure, as shown in Fig. 1(a). Charge configuration of the double dot is 

monitored by measuring transconductance QPC RdI dV  of a nearby quantum point 

contact (QPC) [6,30]. High-frequency pulses are applied on gates L  and R  to 

change the inter-dot detuning rapidly. The device is placed in a dilution refrigerator 

with a base temperature of 30 mK. An external magnetic field is applied in-plane, and 

is perpendicular to the axis connecting the two dots. The double dot is operated near 

the (1,2)-(2,1) charge transition, as shown in Fig. 1(b), where (N,M) denotes electron 



 

numbers on the left and right dot. 

The low-energy spectrum of the three-electron DQD consists of two spin doublets 

and one quadruplet [18,31]. In the (1,2) [(2,1)] charge configuration, spin doublet 

state (1,2)SD  [ (2,1)SD ] with 1 2S =  is the ground state, with the two electrons in 

the right (left) dot forming a singlet state. When the two electrons in the right (left) 

dot form a triplet state, the three-electron states of the DQD consist of a spin 

quadruplet (1,2)Q  [ (2,1)Q ] with 3 2S =  and another spin doublet (1,2)TD  

[ (2,1)TD ] with 1 2S = . They are RE  ( LE ) higher in energy as compared to 

(1,2)SD  [ (2,1)SD ] [Fig. 1(c)]. Here RE  ( LE ) is the singlet-triplet splitting in the 

right (left) dot, and is closely and inversely related to the dot size. In our system, the 

left dot is smaller than the right dot, so that L RE E> . When the inter-dot detuning is 

varied, as shown in Fig. 1(d), a series of anti-crossings develop, mostly due to 

spin-independent tunnel coupling. Examples include those between ( )1,2SD  and 

( )2,1SD  at 0ε = , ( )1,2SD  and ( )2,1TD  at RE−=ε , and ( )2,1Q  and ( )1,2Q  at 

RL EE −=ε . The splittings of the first two anti-crossings are 12Δ  and 22Δ , 

respectively. Usually 12 Δ>>Δ  since ( )2,1TD  involves more extended excited 

orbital state. 

A magnetic field B  splits sublevels of a spin multiplet by Zeeman energy

Z BE g Bμ= , as shown in Fig. 1(e). Here g  is the electron gyromagnetic ratio and

Bμ  is the Bohr magneton.  Two anti-crossings are of particular interest to us.  One 

is between 1 2(2,1)SD +  and 1 2(1, 2)TD +  due to spin-independent tunneling.  We use 

2/1
~

+D  to denote the lower branch in the negative detuning region, as the two states 

mix. As ε  decreases, 21
~

+D  approaches degeneracy with 1 2(1, 2)Q +  in the absence 

of nuclear field. From here on we use ( )εJ  to denote the energy splitting between 



 

1 2(1, 2)Q +  and 21
~

+D . Another anti-crossing is between 3 2(1, 2)Q +  and 21
~

+D  at 

detuning Iε  [see inset of Fig. 1(e)]. This small anti-crossing is due to spin-flip 

tunneling enabled by the nuclear Overhauser field in GaAs [32,33]. We need this 

anti-crossing to populate the 3 2(1, 2)Q +  state from the ground 1 2(2,1)SD +  state. 

Spin blockade refers to parameter regimes in which states with different spin 

symmetries also have different charge configurations [34]. This spin-charge 

correlation leads to current rectification through a double dot [35,36], while also 

allows detection of spin states via charge sensing. A close inspection of Fig. 1(d) 

shows that in and only in the detuning window RL EE −<< ε0 , we indeed have such 

a spin-charge correlation. Specifically, here the ground doublet state is ( )2,1SD , 

while the ground quadruplet state is ( )2,1Q . Together with a strong suppression of 

spin-flip tunneling, a spin blockade window is established. 

To experimentally demonstrate the blockade of Q states, we initialize into the 

ground 1 2(2,1)SD +  state, then apply a simple square detuning pulse (toward the 

negative detuning direction) as shown in Fig. 2(a) [37]. The rise and fall of the pulse 

is sufficiently fast so that the system passes through the S SD D−  and 2321
~

++ −QD  

anti-crossings diabatically. If the pulse height is such that the double dot is detuned to 

the 2321
~

++ −QD  anti-crossing at the pulse tip, though, state mixing occurs and 

( ) 232,1 +Q  is populated. The pulse duration Sτ  is set to 200 ns, much longer than the 

dephasing time *
2T  which is on the order of 10ns [32], so that the state mixing 

should be complete. When the system is then pulsed back into the spin blockade 

regime, ( ) 232,1 +Q  remains trapped in the (1,2) charge configuration because its 

relaxation involves spin flip, and can be detected by the charge sensor. The system is 

reinitialized to ground state before the next pulse. In other words, the measurement 

time Mτ  should in general be longer than the relaxation time 1T , which is several 



 

tens of microseconds [38]. However, as discussed in Ref. [39], partial initialization 

( 1M Tτ < ) can in some cases increases the visibility. So we set 5Mτ = μs in Fig. 2 and 

Fig. 3, and 10Mτ = μs in Fig. 4. 

Figure 2(b) shows QPC RdI dV  as a function of the base detuning bε  and 

amplitude PV  of the pulse. The V-shaped region enclosed by the white dashed lines 

in Fig. 2(b) is where the system can pass through the S SD D−  anti-crossing driven 

by the pulse sequence we employ. During the rising edge of the pulse, the system 

passes through S SD D−  anti-crossing diabatically since 1Δ  is tuned sufficiently 

small. Thus the system populates 2/1
~

+D  with high probability. If the pulse tip reaches 

the 2321
~

++ −QD  anti-crossing, 3 2(1,2)Q +  is populated and is trapped in (1,2) 

charge state after detuning is pulsed back into the spin blockade window. This signal 

can be picked up by the charge sensor and shows up as a resonance line [the green 

solid line in Fig. 2(b)]. By varying the applied field B , we can track the position of 

the 2321
~

++ −QD  anti-crossing and obtain the characteristic spin funnel [Fig. 2(d)], 

which provides a direct measurement of ( )J ε  [3]. A transition line [the red solid line 

in Fig. 2(b)] truncates the resonance line, marking where spin blockade is lifted. This 

means the base detuning has reached the anti-crossing between (1,2)Q  and (2,1)Q , 

which yields 1.32L RE E− =  meV. Lastly, if the voltage pulse is applied along the 

positive detuning direction, spin blockade is not observed in the corresponding 

V-shaped region in Fig. 2(c), illustrating the directional feature of spin blockade. 

Having established the Q-state spin blockade, we can now study coherent dynamics 

between Q and D states. In the remainder of this letter, the measurement point Mε  is 

always set in the blockade window [Fig. 1(e)].  

The first experiment we perform is to generate LZS interference [32,33,40] by 

sweeping the detuning past the 2321
~

++ −QD  anti-crossing. For this experiment the 



 

system is initialized to the ground state ( ) 1 2
2,1SD +

 in the positive detuning region.  

We apply a specially designed detuning pulse as shown in Fig. 3(a), with multiple 

values of rising speed. Specifically, we set pulse parameters Drt  and Dft  as small as 

we can, with the rise time ( 1~ ns) limited by the bandwidth of the transmission line. 

The fast rise allows the initial 1 2(2,1)SD +  state to pass through the S SD D−  

anti-crossing diabatically and becomes a 2/1
~

+D  state. We set 5=Ut ns to make a 

slower passage through the 2321
~

++ −QD  anti-crossing, where 2/1
~

+D  evolves into a 

superposition of 2/1
~

+D  and ( ) 232,1 +Q  states. The system is then held at a detuning 

Iεε <  for a time period Sτ , resulting in a phase accumulation φ  between the two 

components of the superposition. A reverse ramp then takes the system back across 

the 2321
~

++ −QD  anti-crossing where interference occurs. At the end of the pulse, the 

system is taken back to the measurement point for spin readout.  

Figures 3(b) and 3(c) present the QPC conductance QPC RdI dV  as a function of 

ε  and Sτ , measured at 110B = mT and 60B = mT respectively. Both display 

typical LZS interference patterns [32,33]. The oscillation frequency is set by energy 

difference between 2/1
~

+D  and 3 2(1, 2)Q +  at ε , where phase φ  is acquired.  This 

frequency ( )ZE J hε−⎡ ⎤⎣ ⎦  increases with the applied field B , as we expect.   

In Fig. 3(d), we use a Gaussian damped cosine function to fit a trace [red line in Fig. 

3(d)] taken from Fig. 3(b) at the detuning marked by the red dashed line, and extract a 

dephasing time of *
2 7.0T = ns. The dephasing is most likely a result of fluctuations in 

the nuclear field [32,33], which determines the energy splitting of the 2321
~

++ −QD  

anti-crossing and therefore how the population is split between the two states during 

the detuning sweep.  

One key to the LZS experiment at the 2321
~

++ −QD  anti-crossing is that the 



 

initial 1 2(2,1)SD +  state passes through the S SD D−  anti-crossing diabatically and 

populates the 2/1
~

+D  state. Here we perform two control experiments to clarify the 

effects of the S SD D−  anti-crossing. We first set 5Drt = ns and 0Dft =  to make the 

first passage across S SD D−  anti-crossing adiabatic. As expected, oscillation 

disappears [bottom blue line in Fig. 3(d)] because the system cannot be initialized into 

2/1
~

+D  efficiently. Alternatively, we set 0Drt =  and 5Dft = ns to make the last 

passage across S SD D−  anti-crossing adiabatic. Now the amplitude of the oscillation 

is almost unaffected [middle green line in Fig. 3(d)], because the last passage only 

drives transitions between the doublet states, and ( ) 212,1 +SD  relaxes to 1 2(2,1)SD +  

rapidly. Thus the final readout remains unchanged. These two control experiments 

show that even though the DQD has to pass through the S SD D−  anti-crossing, our 

pulse design does allow the QPC readout to give us reliable information on what 

happens at the 2321
~

++ −QD  anti-crossing. 

One interesting sector of the energy spectrum shown in Fig. 1(e) is the subspace 

spanned by 2/1
~

+D  and 1 2(1, 2)Q + , which is remarkably similar to that spanned by S  

and 0T  in a two-electron DQD [3]. For example, we can perform an exchange 

operation in this subspace by employing the pulse sequence shown in Fig. 4(a), 

similar to what was used in Ref. [3]. Here the system is initialized into 1 2(2,1)SD +  at 

a positive detuning. After diabatic passages across the S SD D−  anti-crossing and the 

2321
~

++ −QD  anti-crossing consecutively, 2/1
~

+D  is prepared. The detuning is then 

ramped adiabatically to a point where J  is small, so that 2/1
~

+D  approaches the 

ground state of the nuclear field, | | T+↓〉 〉  or 0| | T↑〉 〉  [31], depending on the 

instantaneous nuclear field across the double dot. On the Bloch sphere [Fig. 4(b)] 

where the z  axis is defined by 2/1
~

+D  and 1 2(1, 2)Q + , our eigenstates define a tilted 



 

axis relative to z  [14]. After initialization, an exchange pulse (a sudden change of 

detuning toward Iε ) switches on ( )J ε  for a time period of Sτ , which rotates the 

state vector around the z  axis on the Bloch sphere with a frequency ( )J hε . The 

final spin state is read out by a reverse adiabatic ramp which maps | | T+↓〉 〉  [ 0| | T↑〉 〉 ] 

to 2/1
~

+D  [ 1 2(1, 2)Q + ].   

In Fig. 4(c) we plot QPC RdI dV  as a function of ε  and Sτ . The conductance 

indeed shows an oscillation whose frequency increases with ε . Fast Fourier 

transform (FFT) over Sτ  of the data in Fig. 4(c) gives the frequency of the 

oscillations, and is shown in Fig. 4(d). It exhibits a funnel shape similar to that in Fig. 

2(d). Peak centers at each detuning [green circles in Fig. 4(d)] give ( )J ε . A simple 

model for ( )J ε  [31], which includes a phenomenological suppression of tunnel 

coupling [17,19], fits well with the data [red curve in Fig. 4(d)], yielding parameters 

0.27RE = meV and 2 21Δ = μeV. From previously obtained L RE E−  we get 

1.59LE = meV, significantly different from RE , confirming our assertion on the 

asymmetry of the DQD. Comparing ( )J ε  obtained here with spin funnel in Fig. 2(d), 

we find good agreement if 0.35g = −  [red curves in Fig. 2(d)]. 

In conclusion, we identify and observe spin blockade of spin quadruplet states 

relative to spin doublet states in a three-electron GaAs double quantum dot. With the 

help of spin blockade, and using pulsed-gate technique with specially designed pulse 

sequences based on the electron spectrum, we are able to study the coherent dynamics 

between spin quadruplet and doublet states. Specifically, we have studied LZS 

interference near the anti-crossing between the 1 2zS = +  doublet and the 

3 2zS = +  quadruplet states, and examined the three-electron dynamics in the 

subspace spanned by the 1 2zS = +  quadruplet state and the 1 2zS = +  doublet 

state. Our results reveal that the new type of spin blockade could be a powerful tool 



 

for future investigations in multi-electron quantum dots, and pulsed-gate technique is 

an insightful substitute for transport experiments in studying multi-electron spectrum 

and dynamics in a double dot.  
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FIGURE CAPTIONS 
 

 
FIG. 1. (a) Scanning electron microscope image of a double dot device. (b) Stability diagram 

near (1,2)-(2,1) charge transition with charge numbers in different regions labeled. Red 

dashed lines represent missing charge addition lines due to small tunnel rates between dots 

and reservoirs. Red arrow defines the detuning axis. Two synchronized pulses on gate L  and 

R  are calibrated to change detuning along this axis. (c) Schematics of electron fillings for 

different spin and charge states. Only the two lowest orbitals in both dots and configurations 

with lowest possible energy are considered. (d) Energy levels as a function of detuning for 

0B = . (e) Energy diagram at the left of ~ L RE Eε −  in (d) for 0B > . Inset: zoom in plot 

of the portion near the black circle, highlighting states used for coherent manipulation and 

detailing the anti-crossing between 2/1
~

+D  and 3/2(1, 2)Q + . 



 

 
FIG. 2. (a) Detuning pulse used to observe spin blockade and spin funnel with 200Sτ = ns 

and 5Mτ = μs. (b) QPC RdI dV  measured at 110B = mT with a negative detuning pulse, as 

a function of base detuning bε  and pulse amplitude PV . (c) Same as in (b) but with the 

pulse applied along positive detuning direction. (d) QPC RdI dV  measured with a negative 

detuning pulse, as a function of detuning of the pulse tip, tε  and magnetic field B , 

exhibiting a funnel-shaped feature. The base detuning bε  is set in the blockade window. 

Red curves are calculated spin funnel using the model for ( )J ε  and a best-fit 0.35g = − . 



 

 
FIG. 3. (a) Detuning pulse used to measure LZ oscillations. (b), (c) LZ oscillations as a 

function of ε  and Sτ  measured at 110B = mT (b) and 60B = mT (c). (d) Traces 

measured at the detuning marked by red dashed line in (b), with different pulse parameters 

related to S SD D−  anti-crossing. Ut  is set to 5 ns for all the cases. Fitting top red line to a 

Gaussian damped cosine function yields a *
2 7.0T = ns.  



 

 
FIG. 4. (a) Detuning pulse used to measure exchange oscillations. (b) Bloch sphere 

representation of state vector evolutions under corresponding pulse stages. (c) Exchange 

oscillations measured at 110B = mT, as a function of ε  and Sτ . (d) FFT of data in (c) over 

Sτ . The vertical axis has been converted from frequency to energy by multiplying Planck’s 

constant. Green circles are peak centers found by Gaussian fit. Red curve is a fit to a model 

for ( )J ε .  

  



 

REFERENCES: 
[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). 
[2] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297, 1313 (2002). 
[3] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. 
Hanson, and A. C. Gossard, Science 309, 2180 (2005). 
[4] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. 
Kouwenhoven, and L. M. K. Vandersypen, Nature (London) 442, 766 (2006). 
[5] S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nature (London) 468, 
1084 (2010). 
[6] R. Brunner, Y. S. Shin, T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida, T. Taniyama, Y. Tokura, 
and S. Tarucha, Phys. Rev. Lett. 107, 146801 (2011). 
[7] J. W. G. van den Berg, S. Nadj-Perge, V. S. Pribiag, S. R. Plissard, E. P. A. M. Bakkers, S. M. 
Frolov, and L. P. Kouwenhoven, Phys. Rev. Lett. 110, 066806 (2013). 
[8] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and L. M. K. Vandersypen, Science 318, 1430 
(2007). 
[9] K. C. Nowack, M. Shafiei, M. Laforest, G. E. D. K. Prawiroatmodjo, L. R. Schreiber, C. Reichl, 
W. Wegscheider, and L. M. K. Vandersypen, Science 333, 1269 (2011). 
[10] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, 
A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, Nature (London) 526, 410 (2015). 
[11] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, M. Friesen, 
S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, Nat. Nanotechnol. 9, 666 (2014). 
[12] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. 
Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, Nat. Nanotechnol. 9, 981 (2014). 
[13] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, and A. Yacoby, Science 336, 
202 (2012). 
[14] B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, 
I. Alvarado-Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F. Gyure, and A. T. 
Hunter, Nature (London) 481, 344 (2012). 
[15] X. Wu, D. R. Ward, J. R. Prance, D. Kim, J. K. Gamble, R. T. Mohr, Z. Shi, D. E. Savage, M. G. 
Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Proc. Natl. Acad. Sci. 111, 11938 (2014). 
[16] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Nature (London) 408, 339 
(2000). 
[17] J. Medford, J. Beil, J. M. Taylor, S. D. Bartlett, A. C. Doherty, E. I. Rashba, D. P. DiVincenzo, H. 
Lu, A. C. Gossard, and C. M. Marcus, Nat. Nanotechnol. 8, 654 (2013). 
[18] E. A. Laird, J. M. Taylor, D. P. DiVincenzo, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. 
Rev. B 82, 075403 (2010). 
[19] J. Medford, J. Beil, J. M. Taylor, E. I. Rashba, H. Lu, A. C. Gossard, and C. M. Marcus, Phys. Rev. 
Lett. 111, 050501 (2013). 
[20] J. M. Taylor, V. Srinivasa, and J. Medford, Phys. Rev. Lett. 111, 050502 (2013). 
[21] K. Eng, T. D. Ladd, A. Smith, M. G. Borselli, A. A. Kiselev, B. H. Fong, K. S. Holabird, T. M. 
Hazard, B. Huang, P. W. Deelman, I. Milosavljevic, A. E. Schmitz, R. S. Ross, M. F. Gyure, and A. T. 
Hunter, Sci. Adv. 1, e1500214 (2015). 
[22] D. Kim, Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, T. S. Koh, J. K. Gamble, D. E. Savage, 
M. G. Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Nature (London) 511, 70 (2014). 



 

[23] D. Kim, D. R. Ward, C. B. Simmons, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, 
and M. A. Eriksson, npj Quant. Inf. 1, 15004 (2015). 
[24] T. S. Koh, J. K. Gamble, M. Friesen, M. A. Eriksson, and S. N. Coppersmith, Phys. Rev. Lett. 109, 
250503 (2012). 
[25] Z. Shi, C. B. Simmons, J. R. Prance, J. K. Gamble, T. S. Koh, Y.-P. Shim, X. Hu, D. E. Savage, M. 
G. Lagally, M. A. Eriksson, M. Friesen, and S. N. Coppersmith, Phys. Rev. Lett. 108, 140503 (2012). 
[26] G. Cao, H.-O. Li, G.-D. Yu, B.-C. Wang, B.-B. Chen, X.-X. Song, M. Xiao, G.-C. Guo, H.-W. 
Jiang, X. Hu, and G.-P. Guo, Phys. Rev. Lett. 116, 086801 (2016). 
[27] J.-T. Hung, J. Fei, M. Friesen, and X. Hu, Phys. Rev. B 90, 045308 (2014). 
[28] J. K. Gamble, M. Friesen, S. N. Coppersmith, and X. Hu, Phys. Rev. B 86, 035302 (2012). 
[29] J. Fei, J.-T. Hung, T. S. Koh, Y.-P. Shim, S. N. Coppersmith, X. Hu, and M. Friesen, Phys. Rev. B 
91, 205434 (2015). 
[30] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, L. M. K. Vandersypen, and L. P. 
Kouwenhoven, Appl. Phys. Lett. 84, 4617 (2004). 
[31] See Supplemental Material for spin states, model for J and eigenstates of the nuclear fields. 
[32] L. Gaudreau, G. Granger, A. Kam, G. C. Aers, S. A. Studenikin, P. Zawadzki, M. Pioro-Ladriere, 
Z. R. Wasilewski, and A. S. Sachrajda, Nat. Phys. 8, 54 (2012). 
[33] J. R. Petta, H. Lu, and A. C. Gossard, Science 327, 669 (2010). 
[34] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. 
Phys. 79, 1217 (2007). 
[35] S. Amaha, W. Izumida, T. Hatano, S. Tarucha, K. Kono, and K. Ono, Phys. Rev. B 89, 085302 
(2014). 
[36] A. O. Badrutdinov, S. M. Huang, K. Ono, K. Kono, and D. A. Tayurskii, Phys. Rev. B 88, 035303 
(2013). 
[37] J. R. Prance, Z. Shi, C. B. Simmons, D. E. Savage, M. G. Lagally, L. R. Schreiber, L. M. K. 
Vandersypen, M. Friesen, R. Joynt, S. N. Coppersmith, and M. A. Eriksson, Phys. Rev. Lett. 108, 
046808 (2012). 
[38] J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. 
B 72, 161301 (2005). 
[39] G. Granger, G. C. Aers, S. A. Studenikin, A. Kam, P. Zawadzki, Z. R. Wasilewski, and A. S. 
Sachrajda, Phys. Rev. B 91, 115309 (2015). 
[40] G. Cao, H.-O. Li, T. Tu, L. Wang, C. Zhou, M. Xiao, G.-C. Guo, H.-W. Jiang, and G.-P. Guo, Nat. 
Commun. 4, 1401 (2013). 
 
 


