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The dielectric function is one of the most important quantities that describes the electri-

cal and optical properties of solids. Accurate modeling of the frequency-dependent dielectric

function has great significance in the study of the long-range van der Waals (vdW) interac-

tion for solids and adsorption. In this work, we calculate the frequency-dependent dielectric

functions of semiconductors and insulators using the GW method with and without exciton

effects, as well as efficient semilocal density functional theory (DFT), and compare these

calculations with a model frequency-dependent dielectric function. We find that for semi-

conductors with moderate band gaps, the model dielectric functions, GW values, and DFT

calculations all agree well with each other. However, for insulators with strong exciton ef-

fects, the model dielectric functions have a better agreement with accurate GW values than

the DFT calculations, particularly in high-frequency region. To understand this, we repeat

the DFT calculations with scissors correction, by shifting the DFT Kohn-Sham energy lev-

els to match the experimental band gap. We find that scissors correction only moderately

improves the DFT dielectric function in the low-frequency region. Based on the dielectric

functions calculated with different methods, we make a comparative study by applying these

dielectric functions to calculate the vdW coefficients (C3 and C5) for adsorption of rare-gas

atoms on a variety of surfaces. We find that the vdW coefficients obtained with the nearly-

free electron gas-based model dielectric function agree quite well with those obtained from

the GW dielectric function, in particular for adsorption on semiconductors, leading to an

overall error of less than 7% for C3 and 5% for C5. This demonstrates the reliability of the

model dielectric function for the study of physisorption.



2

I. Introduction

The frequency-dependent dielectric response function, as the linear-order response to electric

field, plays a central role in the study of the electrical and optical properties of solids. It is re-

lated to many properties of materials. In particular, the static dielectric function has been used

in the construction of density functional approximations1,2 for the exchange-correlation energy.

The frequency-dependent dielectric function provides important screening for the van der Waals

interaction (vdW) in solids, because it has been used as an ingredient in the calculation of vdW

interactions for physisorption and layered materials3, which has been one of the most interesting

topics in condensed matter physics. However, calculation of this quantity presents a great challenge

to semilocal density functional theory (DFT)4–6, the most popular electronic structure method. A

fundamental reason is that, while DFT can describe the ground-state properties well, it tends to un-

derestimate excitation energies and the band gap, due to the absence of electronic nonlocality. For

example, the widely-used local spin-density approximation (LSDA) and the generalized-gradient

approximation (GGA) lack the electron-hole interaction information for excitons and the disconti-

nuity of energy derivative with respect to the number of electrons7–10. The GW approximation11

for the electron self-energy provides a highly-accurate method for describing the single-particle

spectra of electrons and holes. It yields accurate fundamental band gaps of solids12,13. Based on

the GW approximation, the Bethe-Salpeter equation (BSE) can be solved to capture electron-hole

interactions14,15. Therefore, GW+BSE has been widely used to calculate optical spectra and light

absorption, and the results are used as references for other methods16–18. However, as a cost of

high accuracy, this method is computationally demanding, and thus it is not practical for large

systems. As such, accurate modeling of the dielectric functions of semiconductors and insulators

with a simple analytic function of frequency is highly desired.

Many model dielectric functions have been proposed19–23. Most of them have been devoted to

the static limit, while the study of the frequency-dependent dielectric function is quite limited.

Based on a picture of the nearly-free electron gas, Penn derived a simple model dielectric func-

tion. This model was modified by Breckenridge, Shaw, and Sher to satisfy the Kramers-Kronig

relation24. The modified Penn model has been used to calculate the vdW coefficient C3 for the

adsorption of atoms on surfaces25 and the dielectric screening effect for the vdW interaction in

solids26. In particular, Tao and Rappe27 have recently applied the frequency-dependent model

dielectric function and a simple yet accurate model dynamic multipole polarizability to calculate

the leading-order as well as higher-order vdW coefficients C3 and C5 for atoms on a variety of solid
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surfaces. The results are consistently accurate.

To have a better understanding of this model dielectric function, in the present work, we per-

form GW quasiparticle calculations and solve the BSE, aiming to provide a robust reference for

benchmarking the model frequency-dependent dielectric function. To achieve this goal, we compare

the model dielectric functions with the high-level GW calculations for several typical semiconduc-

tors and insulators: silicon, diamond, GaAs, LiF, NaF and MgO. As an interesting comparison,

we also calculate the dielectric function with the GGA exchange-correlation functional4. Based

on these dielelctric calculations, the vdW coefficients on the various surfaces are also calculated

and compared to reference values. To have a better understanding of the performance of DFT,

we repeat our DFT dielectric function calculation after shifting the Kohn-Sham eigen-energies to

match experimental band gaps (scissors correction)28.

II. Computational Details

A. Model dielectric function

The Penn model is perhaps the most widely-used model dielectric function for semiconductors.

It was derived from the nearly-free electron gas. However, this model violates the Kramers-Kronig

relation19. To fix this problem, Breckenridge, Shaw, and Sher24 proposed a modification, in which

the imaginary part takes the expression

ǫ2 (ω) = πω̄2
p

[

ωg −∆
(

ω2 − ω2
g

)1/2
]2/[

2ω3
(

ω2 − ω2
g

)1/2
]

. (1)

Here, ω is a real frequency within the range ωg ≤ ω ≤ 4ǫF
√
1 + ∆2 25,27, ωp =

√
4πn̄, ǫF =

(3π2n̄)2/3/2 is the Fermi energy, and n̄ is the average valence electron density of the bulk solid.

∆ = ωg/4ǫF , and ωg is the effective energy gap, which can be determined from optical dielectric

constant ǫ1 (0) by solving the Penn’s model:

ǫ1 (0) = 1 +
(

ω2
p/ω

2
g

)

(1−∆) . (2)

Here, we use this expression to calculate ωg from the experimental static dielectric constant for

diamond, LiF, NaF, and MgO. (In Ref. 27, the ab initio values of ǫ1(0), rather than experimental

values, were used. Since the two sets of values are very close to each other, it does not make a

noticeable difference.) For other materials, ǫ1(0) values are taken from the literatures24,29. The
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real part of the dielectric function can be obtained from the Kramers-Kronig relation: ǫ1(ω) =

1 + 1
πP

∫ +∞

−∞
ǫ2 (ω

′) / (ω′ − ω) dω′. The result is given by26

ǫ1(iu) = 1 +
ω̄2
p

u2
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, (3)

where I± = [(1 + y2)(1 + u2/ω2
g)]

1/2 ± uy/ωg, y = 1/∆, and P = (1 + y2)1/2. Vidali and Cole25

found that this model dielectric function agrees well with experimental values of GaAs30–33.

B. DFT calculations

The DFT calculation of the dielectric function for solids was performed with the plane-wave

density functional theory (DFT) package QUANTUM-ESPRESSO34, with the GGA exchange-

correlation functional4. The norm-conserving, designed non-local pseudopotentials were generated

with the OPIUM package35,36. With the single-particle approximation, the imaginary part of the

dielectric response function in the long-wavelength limit can be expressed as (4)

ǫ2,j(ω) =
π

2ǫ0

e2

m2 (2π)4 ~ω2

∑

c,v

∫

BZ

dk |〈c,k| pj |v,k〉|2 δ(ωc,k − ωv,k − ω) (4)

In this equation, c and v represent the conduction and valence bands with eigen-energy ~ωn, and

k is the Bloch wave vector. In Cartesian coordinates, j indicates x, y or z. In practice, the real

part of the dielectric function, ǫ1 (iu) expressed in terms of the imaginary frequency iu, can be

obtained from the imaginary part via the Kramers-Kronig relation. Here, in order to avoid the

pole structure when integrating over the real frequency, the imaginary frequency is used.

It is well known that semilocal DFT tends to underestimate the band gaps of semiconductors

and insulators. To understand the role of band gap, we repeated the DFT calculation, replacing

the Kohn-Sham HOMO-LUMO energy gap with the experimental28 or calculated band gap from

high-level (e.g., GW or GW+BSE) methods37. This scissors correction will allow us to study the

band gap effect on the dielectric function38 by

ωmn = ωGGA
mn +∆ω, (5)

where ωmn is the energy difference between bands m and n, and ∆ω is the scissor correction for

reproducing the experimental band gap. In this work, this correction is applied to the insulators

via the rigid shifting of the imaginary part of the dielectric functions.
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C. GW and BSE calculations

The GW calculations including electron-electron screening are carried out using the Berke-

leyGW package39–41. In the GW approximation, the quasiparticle energy is given by

EQP
nk = EMF

nk + 〈ψn,k|Σ (E)− VXC |ψn,k〉 (6)

where Σ is the self-energy and ψnk is a mean-field wave function. VXC is the exchange-correlation

potential obtained from the GGA or LDA functional. The mean-field part of the DFT electronic

structure calculations was performed with QUANTUM-ESPRESSO. First, the static dielectric

matrix ǫ (q; 0) within the random-phase approximation (RPA) is calculated. Then, the generalized

plasmon-pole and static Coulomb hole and screened exchange approximation (COHSEX) were used

to evaluate the self-energy Σ. In order to have accurate quasiparticle energies, the convergence of

band energies with number of empty bands in the dielectric matrix and Coulomb hole (COH) self-

energy evaluations, and the convergence versus plane-wave cutoff were carefully tested42. While

GW can yield the self-energy precisely for charged excitations and reveal the fundamental band

gap, neutral excitation (such as optical absorption) requires consideration of the electron-hole

interaction. Due to the significance of this interaction in determining the optical response, the

BSE was solved to reveal the effect of excitons on light absorption. This is particularly important

for ionic solids, such as LiF, NaF, and MgO, with strongly bound excitons. To perform BSE

calculations, the electron-hole kernel terms evaluated on a coarse k point grid were interpolated

onto a dense grid. By diagonalizing the kernel matrix, exciton eigenvalues ΩS and eigenfunctions

|S〉 were solved and used in the calculation of the optical dielectric function40:

ǫ2 (ω) =
16π2e2

ω2

∑

S

|e · 〈0|v |S〉|2 δ
(

ω − ωS
)

(7)

where S is the exciton state with exciton energy ωS . The dielectric function with imaginary

frequency dependence can be easily obtained.

D. vdW coefficients

The vdW interaction is crucial for adsorption of atoms or molecules on solid surfaces, while

adsorption on solids is fundamentally important in probing the surface structures and properties
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of bulk solids (e.g., atomic or molecular beam scattering) as well as catalysis and hydrogen storage

(e.g., surface adsorption on fullerenes, nanotubes and graphene). In the process of physisorption,

the instantaneous multipole due to the electronic charge fluctuations of a solid will interact with

the dipole, quadrupole and octupole moments of adsorbed atoms or molecules, giving rise to vdW

attraction. However, semilocal DFT often fails to describe this process, because the long-range

vdW interaction is missing in semilocal DFT. Many attempts26,43–56 have been made to capture

this long-range part, such as nonlocal vdW-DF functional43 and density functional dispersion

correction57,58. It has been shown that with a proper dispersion correction, the performance of

ordinary DFT methods can be significantly improved27. This combined DFT+vdW method has

been widely used in electronic structure calculations of molecules and solids54,59–62.

The vdW coefficients for adsorption on solid surfaces were calculated in terms of the dielectric

function and the dynamic multipole polarizability. The molecular dynamic multipole polarizability

was computed from a simple yet accurate model described in Refs. 53,54. The molecular electronic

charge density was obtained from Hartree-Fock calculations using GAMESS63,64. With the imagi-

nary frequency dependent dielectric function and the atomic polarizabilities, the vdW coefficients

C3 and C5 were calculated from27,65,66

C2l+1 =
1

4π

∫

∞

0

duαl (iu)
ǫ1 (iu)− 1

ǫ1 (iu) + 1
(8)

where l = 1 describes the interaction of the instantaneous dipole moment of an atom with the

surface, while l = 2 describes the interaction of the quadrupole moment of the atom with the

surface. ǫ1 is the real part of the dielectric function of the bulk solid, and αl(iu) is the dynamic

multipole polarizability.

III. Results and discussion

A. Dielectric function

The experimental values of the frequency dependent dielectric function are not directly available

in the literature, but they can be extracted from experimental optical data25. On the other hand,

comparison of the calculated static dielectric function to experiment is indicative of the accuracy

of the calculated frequency dependence.

Table I shows the calculated and experimental static dielectric functions of several semicon-

ductors and insulators. The effective energy gaps derived from the static dielectric functions are
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also listed in Table I. From Table I, we can observe that the GW+BSE static dielectric functions

agree very well with experiments for all the materials considered, while the GW values have better

agreement with experiments for semiconductors than for insulators, due to the strong exciton effect

in insulators67. Table I also shows that DFT tends to overestimate the static dielectric function,

in particular for insulators. This overestimate was also observed in the adiabatic local density

approximation within the time-dependent DFT formalism68–70. However, as shown in Table I, a

scissors correction cannot cure this overestimate tendency problem. We attribute this problem to

the lack of electronic nonlocality of semilocal DFT. The frequency-dependent dielectric function

for each material is discussed below.

Silicon

Fig. 1 shows (ǫ1 (iu)− 1) / (ǫ1 (iu) + 1) of Si semiconductor calculated with the DFT-GGA,

DFT+scissor correction, GW , GW+BSE and the model dielectric function of Eq. (3). The DFT

calculated band gap is 0.62 eV, which significantly underestimates the experimental band gap by

0.55 eV. The experimental static dielectric constant is 11.7, which is reproduced by GW+BSE cal-

culations (Table. I). From Fig. 1, DFT gives quite accurate description of optical response in terms

of (ǫ1 − 1) / (ǫ1 + 1), although it gives slightly higher dielectric constant than GW+BSE at zero

frequency. At low frequencies, the model dielectric function underestimates the GW value. This

underestimate is due to the error in the effective energy gap ωg
24, which is slightly overestimated.

Nevertheless, the model dielectric function agrees with GW+BSE results quite well, particularly

in the high-frequency region.

GaAs

Fig. 2 shows the computed dielectric functions of GaAs. GW and GW+BSE show very similar

dielectric functions, indicating the weak exciton effect in GaAs72, and strong dielectric screening

effect. DFT and model dielectric functions slightly underestimate GW+BSE values, which is

because of the higher absorption calculated with GW and GW+BSE than that with DFT. In

general, similar to silicon, all the methods yield dielectric functions close to each other, in particular

in the high-frequency region. This similarity is largely due to the fact that both semiconductors

have similar band gaps and dielectric constants, as shown in Table I.

Diamond

The dielectric function of diamond is shown in Fig. 3. Diamond shares similar geometric and

electronic structures with silicon, but with much larger band gap. In this case, the overestima-

tion of dielectric function from DFT and the underestimation from model dielectric function are

more pronounced than those for silicon at low frequencies. This difference is mainly due to the
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TABLE I. Experimental band gaps (fundamental), DFT scissors band gap corrections (∆corr = Eexpt
g −

EDFT
g ), effective energy gaps (ωg) of the model dielectric function, and dielectric constants (ǫ0) of the

model dielectric function, DFT and GW+BSE. Here, the effective band gaps of C, LiF, NaF and MgO are

computed via Equation 2. This equation yields the effective band gaps of 4.9 eV and 4.6 eV for Si and

GaAs, respectively, which are close to the values from the references.

Si GaAs C LiF NaF MgO

Eexpt
g (eV) 1.17b 1.52b 5.48b 14.20b 11.70d 7.83b

∆corr (eV) 0.49 1.12 1.21 5.20 5.58 3.27

ωg (eV) 4.8a 4.3b 13.0c 23.3c 20.5c 15.5c

ǫexpt0 12.0b 11.3b 5.9b 1.9b 1.7e 3.0b

ǫmodel
0 9.8 8.9 4.4 1.6 1.5 2.3

ǫDFT
0 15.4 11.0 6.6 2.5 2.3 4.1

ǫDFT+sci.
0 13.6 8.1 5.7 2.1 1.9 3.5

ǫGW
0 11.5 10.7 5.1 1.8 1.6 2.6

ǫGW+BSE
0 12.7 11.0 5.7 1.9 1.7 2.9

a Ref.24

b Ref.29

c Obtained from Eq. (2)

d Ref.71

e Ref.22

discrepancy between the Penn model effective band gap (slightly overestimated) and the GW or

GW+BSE value. However, as energy increases to the high-energy region, this discrepancy vanishes,

matching the model dielectric function to GW+BSE results very well.

LiF

LiF is a prototypical material with strong exciton effect on its optical absorption73. As shown

in Fig. 4, at low energies, GW+BSE including electron-hole interaction yields higher value com-

pared to the dielectric function without electron-hole interaction, which corresponds to the exciton

absorption. Due to the same discrepancy observed in diamond, the model dielectric function un-

derestimates the response near zero energy, but matches GW -BSE result well in the high-energy

region. The vdW coefficients measure the strength of the dielectric response of a bulk solid to the

instantaneously induced multipole moment of the adsorbed atom or molecule. They are integrated

over the whole energy range, including both low-energy and high-energy dielectric contributions.

Thus, the noticeable discrepancy observed in the low-energy response has a minor effect on the
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FIG. 1. (ǫ1 (iu)− 1) / (ǫ1 (iu) + 1) of silicon with respect to frequency u (in hartree) calculated from DFT,

DFT+scissors correction, GW , GW+BSE and model dielectric function.
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model dielectric

DFT
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FIG. 2. (ǫ1 (iu)− 1) / (ǫ1 (iu) + 1) of GaAs with respect to frequency u (in hartree) calculated from DFT,

DFT+scissors correction, GW , GW+BSE, and model dielectric function.

overall vdW coefficients. However, the DFT-calculated dielectric response seriously overestimates

the response in the whole energy spectrum, compared to GW+BSE, leading to significantly over-

estimated vdW coefficients, as shown in the Table II. This overestimation problem cannot be fixed

even with scissors correction to the DFT band gap. Comparison of GW -BSE with GW (with-
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model dielectric

DFT
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FIG. 3. (ǫ1 (iu)− 1) / (ǫ1 (iu) + 1) of diamond with respect to frequency u (in hartree) calculated from

DFT, DFT+scissors correction, GW , GW+BSE, and model dielectric function.
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DFT + scissors correction
GW + BSE
GW without e-h interaction
model dielectric

DFT

FIG. 4. (ǫ1 (iu)− 1) / (ǫ1 (iu) + 1) of LiF with respect to frequency u (in hartree) calculated from DFT,

DFT+scissors correction, GW , GW+BSE, and model dielectric function.

out electron-hole interaction) suggests that there is an important exciton effect on the dielectric

function in the low-energy range. This suggests that semilocal DFT may not fully capture this

exciton effect as well as the many-body effect. As a result, semilocal DFT tends to overestimate the

dielectric function, although it slightly underestimates the dielectric function for semiconductors.
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DFT

FIG. 5. (ǫ1 (iu)− 1) / (ǫ1 (iu) + 1) of NaF with respect to frequency u (in hartree) calculated from DFT,

DFT+scissors correction, GW , GW+BSE, and model dielectric function.

NaF

NaF is another prototypical material with strong exciton effects. Figure 5 shows the comparison

of the dielectric function evaluated with all the methods discussed above. From Fig 5, we observe

that the model dielectric function still underestimates the response near zero frequency, but with

overall good quality matching of GW+BSE results. However, semilocal DFT and scissors-corrected

semilocal DFT strongly overestimate the dielectric function magnitude for the whole frequency

range, reflecting the inadequacy of semilocal DFT, as observed in other ionic solids.

MgO

As a support for variety of catalytic reactions74,75, MgO has attracted great attension in re-

cent years. Accurate calculation of the dielectric function for the vdW interaction is significantly

important for the prediction of the correct chemical reaction path and energy barrier. As shown

in Fig. 6, MgO also shows strong exciton effect, leading to obvious but less pronounced deviation

of the DFT curve from the GW+BSE calculation, compared to other ionic solids considered here.

On the other hand, the model dielectric function agrees with GW+BSE values rather well.
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DFT + scissors correction
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DFT

FIG. 6. (ǫ1 (iu)− 1) / (ǫ1 (iu) + 1) of MgO with respect to frequency u (in hartree) calculated from DFT,

DFT+scissors correction, GW , GW+BSE, and model dielectric function.

B. vdW Coefficients for adsorption on surfaces of solids

The vdW coefficients C3 and C5 can be calculated from Eq. (8) with the model dynamic mul-

tipole polarizability given by54

αl(iu) =
2l + 1

4πdl

∫ Rl

0

dr 4πr2
r2l−2 d4l ω

2
l

d4l ω
2
l + u2

, (9)

where Rl is the effective vdW radius and dl is a parameter introduced to satisfy the exact zero-

and high-frequency limits. Numerical tests show that the model can generate vdW coefficients

for diverse atom pairs in excellent agreement with accurate reference values, with mean absolute

relative error of only 3%54. To benchmark our model dielectric function for adsorption, we calculate

the vdW coefficients with several dielectric functions obtained fromGW , GW+BSE and DFT-GGA

methods, and compare them to the vdW coefficients obtained from the model dielectric function

and accurate reference values. The results are shown in Table II.

From Table II, we observe that the vdW coefficients calculated from the model dielectric function

are close to the reference values. They agree quite well with the GW and GW+BSE values,

with mean absolute relative deviations of 2% for C3 and 5% C5 from those calculated with the

GW dielectric function, and 4% for C3 and 8% for C5 from those evaluated with the GW+BSE

dielectric function, respectively. The strong exciton observed in ionic solids LiF, NaF and MgO

has some effect on the vdW coefficients. But this effect is relatively small for the vdW coefficients
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evaluated with GW and GW+BSE dielectric function, as the dielectric enhancement by excitons

only appears within small frequency range. The model dielectric function can also accounts for

excitons via the static dielectric function part. The vdW coefficients evaluated from the model

dielectric function agree reasonably well with these two ab initio values, even for materials with

strong exciton effect, as found in the ionic solids considered here. However, we find that the

DFT-GGA significantly overestimates vdW coefficients by 30% for C3 and 33% for C5, due to

the overestimation of the dielectric functions in the whole frequency range. Moreover, scissors

correction to the DFT dielectric function shows little improvement of vdW coefficient. The detailed

vdW results can be found from Table II.

TABLE II: vdW coefficients (in a.u.) between rare gas atoms and

the surfaces of semiconductors and insulators. These are calculated

by DFT, DFT+scissors, GW , GW+BSE, and model dielectric.

The reference values of He atom on all surfaces are from Ref. 25.

Values for other atoms are from Ref. 76. MRE = mean relative

error. MARE = mean absolute relative error.

DFT DFT+sci. GW GW+BSE Model diele. Reference

Silicon C3 C5 C3 C5 C3 C5 C3 C5 C3 C5 C3 C5

H 0.105 0.416 0.107 0.425 0.100 0.395 0.101 0.402 0.096 0.383 0.102 0.366

He 0.046 0.083 0.047 0.086 0.043 0.078 0.044 0.080 0.042 0.076 0.042 0.076

Ne 0.096 0.262 0.099 0.270 0.090 0.246 0.093 0.253 0.088 0.241 0.089 0.241

Ar 0.330 1.632 0.338 1.676 0.312 1.541 0.319 1.578 0.304 1.502 0.310 1.490

Kr 0.468 2.888 0.479 2.959 0.443 2.735 0.452 2.794 0.431 2.659 0.449 2.644

Xe 0.802 6.613 0.822 6.782 0.758 6.254 0.775 6.395 0.738 6.088 0.655 5.469

GaAs C3 C5 C3 C5 C3 C5 C3 C5 C3 C5 C3 C5

H 0.089 0.350 0.091 0.361 0.100 0.400 0.101 0.401 0.092 0.362 0.091 0.351

He 0.038 0.069 0.040 0.073 0.044 0.081 0.045 0.081 0.039 0.071 0.041 0.072

Ne 0.080 0.219 0.084 0.230 0.093 0.255 0.094 0.256 0.082 0.224 0.081 0.227

Ar 0.277 1.364 0.287 1.422 0.318 1.577 0.320 1.585 0.285 1.407 0.285 1.417

Kr 0.393 2.420 0.407 2.513 0.451 2.785 0.453 2.797 0.406 2.500 0.412 2.523

Xe 0.674 5.548 0.701 5.768 0.775 6.386 0.779 6.416 0.693 5.715 0.603 5.242

Diamond C3 C5 C3 C5 C3 C5 C3 C5 C3 C5 C3 C5

H 0.113 0.470 0.112 0.468 0.108 0.448 0.109 0.452 0.101 0.422 0.112 0.407

He 0.057 0.105 0.057 0.106 0.054 0.102 0.054 0.101 0.051 0.095 0.051 0.097

Ne 0.123 0.334 0.124 0.338 0.119 0.323 0.118 0.320 0.110 0.300 0.116 0.308

Ar 0.390 1.961 0.061 0.257 0.374 1.882 0.374 1.881 0.350 1.761 0.375 1.781
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TABLE II: Continued.

Kr 0.543 3.378 0.542 3.378 0.519 3.233 0.521 3.243 0.486 3.032 0.526 3.069

Xe 0.960 7.857 0.963 7.871 0.922 7.534 0.921 7.539 0.861 7.047 0.737 6.132

LiF C3 C5 C3 C5 C3 C5 C3 C5 C3 C5 C3 C5

H 0.066 0.276 0.061 0.257 0.046 0.194 0.050 0.208 0.042 0.178 0.048 0.169

He 0.033 0.062 0.032 0.060 0.024 0.045 0.025 0.047 0.022 0.041 0.023 0.042

Ne 0.073 0.198 0.071 0.192 0.052 0.142 0.055 0.148 0.048 0.131 0.048 0.133

Ar 0.229 1.153 0.218 1.097 0.163 0.821 0.173 0.868 0.150 0.756 0.155 0.756

Kr 0.320 1.984 0.302 1.872 0.225 1.405 0.240 1.494 0.207 1.292 0.219 1.294

Xe 0.568 4.631 0.541 4.395 0.402 3.281 0.425 3.475 0.370 3.019 0.313 2.561

NaF C3 C5 C3 C5 C3 C5 C3 C5 C3 C5 C3 C5

H 0.059 0.241 0.052 0.220 0.035 0.146 0.039 0.160 0.035 0.147 0.038 0.137

He 0.029 0.054 0.027 0.052 0.018 0.033 0.019 0.035 0.018 0.033 0.018 0.033

Ne 0.064 0.172 0.061 0.165 0.039 0.105 0.041 0.111 0.039 0.105 0.037 0.104

Ar 0.200 1.005 0.186 0.940 0.122 0.613 0.131 0.657 0.122 0.615 0.123 0.600

Kr 0.280 1.733 0.258 1.603 0.169 1.054 0.183 1.138 0.170 1.058 0.174 1.032

Xe 0.495 4.040 0.463 3.764 0.300 2.454 0.322 2.638 0.301 2.462 0.248 2.059

MgO C3 C5 C3 C5 C3 C5 C3 C5 C3 C5 C3 C5

H 0.087 0.358 0.085 0.352 0.069 0.286 0.072 0.295 0.063 0.259 0.069 0.252

He 0.042 0.079 0.042 0.079 0.034 0.064 0.035 0.064 0.031 0.057 0.032 0.059

Ne 0.092 0.249 0.092 0.250 0.074 0.202 0.075 0.204 0.067 0.182 0.066 0.188

Ar 0.295 1.476 0.292 1.465 0.237 1.189 0.242 1.212 0.214 1.073 0.224 1.094

Kr 0.412 2.557 0.407 2.527 0.329 2.050 0.338 2.101 0.298 1.854 0.315 1.892

Xe 0.725 5.934 0.719 5.880 0.582 4.764 0.594 4.867 0.524 4.299 0.439 3.796

MRE(%) 29.3 32.4 27.0 30.4 7.2 9.7 10.2 12.9 1.3 3.7 - -

MARE(%) 30.3 33.2 27.3 30.4 8.5 9.7 10.5 12.9 6.7 4.6 - -

IV. Conclusion

In summary, we have calculated the frequency-dependent dielectric function of semiconductors

and insulators with the DFT-GGA, GW and GW+BSE methods. Based on these calculations, we

study the accuracy of the modified Penn model by comparing the model dielectric function to the

highly-accurate GW and GW+BSE methods. We find that the model dielectric function agrees

quite well with these two methods, in particular for small energy-gap semiconductors. However, a

noticeable discrepancy arises for larger band gap materials. A similar trend has been also observed
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with the DFT-GGA dielectric function, which shows even greater disagreement with the GW and

GW+BSE methods, compared to the model dielectric function. To have a better understanding

of the DFT-GGA method, we adjust the GGA band gap up to the experimental value (scissors

correction). We find that this adjustment does improve the agreement of DFT-GGA with the

benchmark methods, but the improvement is not nearly enough. Then we calculate the vdW

coefficients C3 and C5 for atoms on the surface of semiconductors and insulators with the model

dynamic multipole polarizability and the dielectric functions obtained from the modified Penn

model, DFT-GGA, GW , and GW+BSE methods. The results show that, except for the vdW

coefficients obtained with the DFT-GGA dielectric function, they all agree well with each other.

The deviations of the vdW coefficients obtained with the model dielectric function from those

obtained with the GW+BSE dielectric function are 4% for C3 and 8% for C5, respectively. The

deviation is even smaller between the vdW coefficients obtained from the model dielectric function

and the GW method. However, these deviations become significantly larger for the DFT-GGA

(C3: 29%, C5: 29%) or scissor-corrected (C3: 24%, C5: 24%) dielectric function, suggesting the

significance of electronic nonlocality that is missing in semilocal DFT, leading to less accurate

performance for the dielectric function of ionic solids with strong exciton effect.
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