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A relative coordinate breathing mode in the quantum Hall system is predicted to exist with
different behavior under either Coulomb or dipole-dipole interactions. While Kohn’s theorem [1]
predicts that any relative coordinate interaction will fail to alter the center of mass energy spectrum,
it can affect excitations in the relative coordinates. One such collective excitation, which we call the
hyperradial breathing mode, emerges naturally from a few-body, hyperspherical representation of
the problem and depends on the inter-particle interactions, the ground state wave function, and the
number of particles participating in the excitation. Possible observations of this excitation will be
discussed in the context of both conventional quantum Hall experiments and cold, rotating atomic

simulations.
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In condensed matter and atomic physics alike, particle
interactions can give rise to collective behaviors in many-
body systems with dramatic and often unexpected prop-
erties [2-5]. In no system are collective behaviors more
central than in the fractional quantum Hall (QH) system,
where the properties of low energy quasiparticle excita-
tions continue to drive new theoretical and experimental
discoveries [6-11]. For example, among such low energy
excitations, one type of density oscillations known as the
magneto-roton was described quite early in the descrip-
tion of the fractional quantum Hall effect [12, 13]. How-
ever, collective excitations at higher energies, near the
cyclotron frequency w. = eB/m, are considerably less
well explored: while the the center of mass excitation,
which is indistinguishable in frequency from the single
particle excitation frequency w. by Kohn’s theorem [1],
is clearly predicted by theory, experiments in capacitance
spectroscopy [14], optical emission spectroscopy [15], and
high-intensity pulsed terahertz spectroscopy [16] have
detected behaviors that defy the simple single-particle
or Kohn’s theorem predictions, indicating that the cy-
clotron frequency excitation regime exhibits interesting
new physics. A variety of numerical treatments have
been used to characterize QH systems [17-21], but isolat-
ing any specific excitation in the cyclotron energy regime
from many of these models is daunting since the excita-
tion spectrum is highly complicated.

Recasting the quantum Hall (QH) problem in the adi-
abatic hyperspherical representation [22, 23] highlights
the existence of a unique type of vibrational mode [24]
that may be directly measurable. The adiabatic hyper-
spherical representation [25-27] has not seen widespread
use in condensed matter physics, but has contributed
to developments in many disparate fields, including nu-
clear structure and reactivity [28-32], universal Efimov
physics in cold atoms and molecules [33-38], few-electron
atoms [39-41], positron and electron systems [42-45],
Bose-Einstein condensates [46, 47], and trapped degen-

erate Fermi gases [34, 48]. The technique is broadly use-
ful because it expresses few- or many-body interacting
systems in collective coordinates and separates a parti-
cle cluster’s internal geometry from the cluster center-
of-mass motion. This paper examines the origin and
properties of a particular type of vibrational excitation
observable in quantum Hall systems, which we call the
hyperradial breathing mode, and also discusses possible
schemes for its measurement in experiments in both con-
densed matter and cold atom systems.

Consider the many-body QH Hamiltonian for N elec-
trons confined to two-dimensions in a strong, perpen-
dicular magnetic field in the symmetric gauge [49]. A
rotating two-dimensional gas of neutral atoms in a har-
monic trap (or even non-rotating, see below) shares the
same Hamiltonian, except for the form of the interac-
tions [50], making it an ideal system for comparing the
effect of different interactions on the collective behaviors
of the system. The hyperspherical transformation first
extracts the center of mass coordinate from the Hamilto-
nian then converts the remaining 2N — 2 relative Jacobi
coordinates into 2N — 3 angular dimensions known as hy-
perangles, collectively labeled €2, and a single length scale
known as the hyperradius, R. The hyperradius is a scalar
whose square is equal to the sum of the squares of the
mass-weighted relative Jacobi coordinates and essentially
defines an approximate area covered by the N-particle
system. All lengths in this paper have been scaled by the
magnetic length, A\g = \/h/m.w, for the condensed mat-
ter system, where m, is the effective mass of the electron
in the material, or by the trap length in the cold atom
system, \g = /fi/mw., where m is the atom mass and
w, is defined as twice the trap frequency [50], and is the
analog of the Landau level spacing in the conventional
system. For brevity, “hw.” will be used to represent the
Landau level separation in both systems when appropri-
ate.

In the symmetric gauge, the relative coordinate inter-



acting Hamiltonian can be rewritten in hyperspherical
coordinates as

_ i 2 H 2 l rel
Hyq = ZuVR"Q—F 8R + 2LZ +rC(Q)V(R), (1)

where V2R7Q is the Laplacian in hyperspherical coordi-

nates [29], 4 = N~1/Nret is a dimensionless mass scaling
factor, N, is equal to N — 1 (the number of relative Ja-
cobi vectors), and C(£2) is the hyperangular part of the
interactions. The Hamiltonian has been divided by hw,
to express the energies in dimensionless units. The last
term in Eq. (1) represents the interactions in terms of the
hyperspherical coordinates, with the lengths scaled by g
for the system in question. For the condensed matter sys-
tem, the interactions are simply Coulomb repulsive, but
in two-dimensional cold atom systems, a variety of in-
teractions can be implemented by different experimental
choices. We restrict our cold atom investigation to clus-
ters of electric or magnetic dipoles aligned with the axis of
rotation interacting purely via repulsive dipole-dipole in-
teractions, which are among the class of interactions that
can drive the formation of quantum Hall liquids [51-53].
Then the term x in Eq. (1) is the ratio of the interac-
tion energy to the Landau level separation: for Coulomb
interactions, k = e2/(4melohw,); for dipole-dipole inter-
actions, £ = cqa/(AT\jhw,), Where cqq = fopi,., for
polarized magnetic dipoles with magnetic moment ft;qg,
and cqq = d?/eo for polarized electric dipoles with dipole
moment d. The form of the hyperangular term C(€2) de-
pends on the form of the interactions and on the specific
choices of Jacobi vectors and hyperspherical coordinates,
and V(R) takes the simple forms 1/R for Coulomb inter-
actions or 1/R? for polarized dipole-dipole interactions.
In the absence of interactions, the quantum Hall Hamilto-
nian is exactly separable into a hyperradial and a hyper-
angular Hamiltonian. The solutions are products of hy-
perradial functions times hyperangular functions known
as the hyperspherical harmonics from K-harmonic the-
ory [28], (R, Q) = R-Nrert1/2EM (RY®) (). The
quantum number M is the familiar total relative az-
imuthal quantum number which determines the filling
factor v, K is an additional hyperangular momentum
quantum number known as the grand angular momen-
tum, and ng = 0,1, ... is a hyperradial nodal quantum
number. Particle exchange symmetry of the basis func-
tions is imposed in a separate step, for example by a
technique developed by Efros [54] as outlined in [22].
Diagonalizing the fixed-R hyperangular Hamiltonian
in a restricted hyperangular Hilbert space (a reasonable
approximation [22] is to ignore coupling between differ-
ent K-manifolds; for K = |M]|, this coincides with re-
stricting the Hilbert space to the lowest Landau level)
in degenerate perturbation theory with R as an adia-
batic coordinate reduces the many-dimensional hyperra-
dial Schodinger equation to a set of one-dimensional, un-
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FIG. 1. (Color online) Hyperradial potential curves and the
hyperradial bound states for the four particle, v = 1 system.
The ground state for v = 1 has hyperangular quantum num-
bers K =6, M = —6 and nrg = 0, and is totally isolated. The
hyperradial excitation takes the system from the ng = 0 state
with energy FEo to the first hyperradially excited state with
nr = 1 and energy F;. The FEy plus the cyclotron energy is
shown as a (blue) dashed line for contrast. Other excited po-
tential curves and their ground state energies with the same
M with are shown in pale grey.

coupled, ordinary differential equations:

1 &2 M M
(oo + U - B P ) =0, )
where the Uk ,(R) are the hyperradial potential curves,
and a is a label to distinguish different curves in the same
K, M manifold. In the noninteracting limit, the potential

curves take the form

UM (R) = (3)

(K+Nrel_1/2)(K+Nrel_3/2) H 52 1
— —M.
2UR? T

Each of these potential curves UI((A)? (R) supports a col-
lection of energies separated by Aw,. zero-th order in x,
E° = (2ng + M + K + Nye)hw./2. The excitation in
the hyperradial dimension alone is a density excitation of
the finite system, which we call the hyperradial breathing
mode. When the k-dependent term in the adiabatic po-
tential curve is treated in first order perturbation theory,
the energies for the Coulomb system exactly match those
calculated in conventional configuration interaction cal-
culations [22, 55]. If the adiabatic hyperradial differential
equation is solved numerically, Ref. [22] shows that even
higher accuracy is obtained.

Calculations beyond first-order perturbation theory
(e.g. using finite differences techniques to solve Eq. (2)),
reveal that interaction induced shifts to the potential
curves cause the hyperradial excitations within each
curve to shift so their separations no longer exactly equal
hwe. We call such an excitation a hyperradial breathing
mode. As a simple example, Fig. 1 shows the hyperradial
curves and energies for the four-particle integer quantum



Hall state (M = —6, K = 6, and ng = 0) in GaAs
and all excited states with M = —6 that are approxi-
mately fw. higher in energy. We are interested in the
lowest energy hyperradial excitation, the transition from
ng = 0 to ng = 1 with energy (F1 — Ey) for any given
set of hyperangular quantum numbers, as is highlighted
with the vertical (red) arrow in Fig. 1. It is a density
excitation, but unlike the magneto-roton, it is not a low-
energy excitation within a Landau level, and it includes
physics beyond the single mode approximation of a sim-
ple oscillator model [12, 13, 56]. Using more exact nu-
merical techniques here constitutes including some level
of Landau level mixing in our approximation; our previ-
ous studies give bounds to the hyperangular contribution
to Landau level mixing, and indicate that hyperangular
Landau level mixing, or coupling between K-manifolds,
is weak for lowest Landau level ground states and modest
values of k.

Fig. 2 gives the energy separation between the ground
state and the first hyperradial excited state for several
important lowest Landau level filling factors in the GaAs
system (top) and the cold atom system (bottom) as a
function of k (left) and the number of particles (right).
For Fig. 2(b), the values of k used for each filling factor
are taken from the experimental results of [57]. Since
cold atom systems are hypothetically more tunable and
currently lack an experimental paradigm, x was set to
1 for all filling factors of the dipole-dipole interaction
calculations shown in Fig. 2(d). We note that the hyper-
radial excitation energy E;, — Ey for Coulomb repulsion
is smaller than Aw,. for all tested systems, while the op-
posite is true for the dipole-dipole interacting system. In
general, the vibrational mode excitation energy detuning
from hw, in both cases is largest when & is large and when
the filling factor is smallest, although this trend does not
hold universally for Coulomb interactions, as there are
a few exceptions (which are difficult to see in the scales
of Fig. 2(b)). Increasing the number of particles weak-
ens the detuning in both cases as well, and this trend is
stronger in the dipole-dipole interacting system, as can
be seen in Fig. 3, which compares the two systems at
filling factor v = 1/3 on equivalent scales.

We have not yet found a simple interpretation for the
non-monotonic N-dependence of the energy shifts, but
it is likely dues to finite size effects. In the compos-
ite fermion (CF) picture, a N-electron Laughlin ground
state consists of the N transformed CF's totally filling the
lowest CF Landau levels (known in the CF picture as
Lambda levels). The N-electron Jain states, in contrast,
consist of (N/2-1) CFs filling the lowest CF Lambda level
and N/2+1 CFs filling the second Lambda level. As can
be seen from this picture, increasing the number of parti-
cles for a Laughlin system increases the Hilbert space size
of a single Lambda level at twice the rate as increasing
the number of particles for a Jain system. As a result,
the largest Jain systems we ran numerically are more

affected by finite size effects than the largest Laughlin
systems we ran. Access to more significant computing re-
sources would allow the exploration of more structurally
complicated few-body quantum Hall states in the low-
est Landau level requiring more particles (e.g. the 4/11
state [58, 59]), which could establish whether the non-
monotonicity is uniquely due to few-body behaviors.
Experimentally, this hyperradial breathing mode can-
not be excited through purely optical means because the
laser field only operates on the center-of-mass for equal-
mass, equal-charge particles, and should not induce tran-
sitions of the internal degrees of freedom of the system
without additional terms in the Hamiltonian involving
significant coupling between the center-of-mass and rel-
ative degrees of freedom (which we neglect in this work,
but could include localized anisotropic features of the
background, e.g. impurities or lattice defects). However,
the transition could be induced by a time dependent per-
turbation to the radial harmonic confinement of the form

N

V'(t) = acoswotZri2 = a coswot (%r?m + uR2> :

i=1

(4)
where a is the strength of the weak potential, r; are
the single-particle coordinates, and wqg is the hyperra-
dial transition frequency. From the form of Eq. (4), it is
clear that such a potential can perturbatively excite the
center of mass or the hyperradial degrees of freedom, but
the hyperradial excitation can be spectroscopically se-
lected by the choice of frequency. For a two-dimensional
electron gas, this oscillating potential could be achieved
by weakly oscillating the perpendicular magnetic field at
high frequencies, although the terahertz frequencies re-
quired for typical samples will be experimentally chal-
lenging to achieve, and detection will also prove difficult.

Measuring the hyperradial breathing modes should be
more feasible in trapped cold atom or cold molecule sys-
tems interacting via repulsive dipole-dipole interactions,
where the harmonic perturbation of Eq. (4) can be pro-
duced by flexing the trapping potential in a time depen-
dent manner. Collective modes have been previously ob-
served directly in Bose-Einstein condensates [60] and de-
generate Fermi gases, including in two-dimensions [61],
using trap-oscillating techniques in the absence of inter-
nal rotation as a tool to evaluate various internal prop-
erties of the gas.

Construction of a cold atom or cold molecule quantum
Hall gas remains a significant experimental challenge,
but the cold atom systems present a dramatic range of
tunability which could be ideal for probing these vibra-
tional modes. Using, for example, the magnetic dipole
interactions of %*Dy [62] and assuming a v = 1 filling
factor, dipole trap with a planar trapping frequency of
Wirap = 30kHz has x of only 2.6 x 1073, and a detun-
ing of only ~ 22Hz, but a much tighter trap could en-
hance the detuning, since s varies with the square root
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FIG. 2. (Color online) (a) The hyperradial vibrational (HRV) mode excitation energies for Coulomb interactions as a function
of k for N =4,...,9 particles at v = 1 filling factor. From the lowest curve (red) with N = 4, the number of particles increases
to N =9 for the uppermost (black) curve. (b) The HRV energies for Coulomb interactions versus particle number for various
filling factors [v =1 (red 'x’s), v = 2/3 (green squares), v = 2/5 (blue triangles), and v = 1/3 (black circles)]. The values of
are calculated from corresponding experimental magnetic fields in Tesla from [57]: v = 1 corresponds to 97", v = 2/3 to 14T,
v =2/5to 25T, and v = 1/3 to 297". (c) The HRV excitation energies for dipole-dipole interactions as a function of . In this
case the number of particles decreases from N = 4 downward to N = 9 on the plot. (d) The HRV energies for dipole-dipole
interactions at x = 1. The filling factors are labeled as in (b). For Coulomb interactions, the x = e?/(4weAohw,), and for
dipole-dipole interactions, kK = cdd/(471'/\8ﬁwc), where cqd is ,uou?nag for polarized magnetic dipoles or d2/60 for polarized electric

dipoles.

0.6

08

Coulomb, v=1/3

(@)

0.2 04

K

FIG. 3. (Color online) The hyperradial vibrational modes versus x for the v = 1/3 filling state for both (a) Coulomb, and
(b) dipole-dipole interactions shown on the same scales relative to Jw.. The detuning for the dipole-dipole interacting system

exhibits stronger N-dependence.
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of w.. Substituting magnetic dipolar atoms with cold
electric-dipolar bialkali molecules, which have intrinsic
dipole moments of around 1 Debye, can also dramati-
cally enhance the effect. For example, fermionic LiRb
has an intrinsic dipole moment of around 4.1 Debye [63],
so in a 15kHz trap, x ~ 1.5 and the detuning for the
N = 4, M = 6 integer quantum Hall state is around 2
kHz. The greatest challenge in this experimental sys-
tem will be the measurement of the energy, but there are
several methods that might prove effective. For an ar-
ray of quantum Hall droplets, photoassociation measure-
ments in the spirit of [64, 65] may be sensitive enough to
measure the few-body excitation energies. Alternately,
it may be feasible to directly measure the total absorp-
tion of the perturbative light by the many droplets. If
instead the successful quantum Hall experiment consists
of a single droplet of only a few particles in a deep-well,
optical tweezer, the excitation energy might be measured
by Coulomb explosion imaging [66] or by a sensitive trap
loss [67].

While most discussions of the quantum Hall effect for
ultracold atoms have envisioned rotating traps, it should
be pointed out that the spectra predicted here can be ob-
served also for a nonrotating isotropic 2D trap. This is
because the difference in the Hamiltonian between a ro-
tating versus a non-rotating trap is simply the presence of
the constant term %Lfl in Eq. (1), which is present only
for a rotated trap in the rotating frame. But since LI
is a conserved quantity for this system, the energy levels
should be observable if the appropriate relative angular
momentum modes are created for the number of atoms
or molecules in the trap. For example, in a non-rotating
2D trap containing 4 identical, spin-polarized fermionic
atoms, the Laughlin % state is the lowest energy eigen-
state having relative angular momentum |M| = 18, and
the breathing mode frequency predicted using the adia-
batic hyperspherical approximation should be accurate.
It is therefore an observable excitation in the Hilbert
space even though it is not the M value of the ground
state of the system as a whole.

In conclusion, we have established the existence of a
hyperradial breathing mode in the quantum Hall sys-
tem. This breathing mode energy is affected by the par-
ticle count, the strength and type of the interaction, and
the filling factor. Although experimental realizations of
this measurement face significant challenges, the modes
should be experimentally excitable and measurable. For
few-body systems, the presence of disorder will specif-
ically affect excitations located near the disorder cen-
ter. Our model does not yet account for the possible
effects of disorder, but it will likely enable coupling be-
tween different hyperangular states, including between
states within different K manifolds because the disorder
will likely break the rotational symmetry input in our
model. Disorder in the atomic traps is unlikely to be a
problem, but trap anharmonicity could similarly allow

non-hyperradial excitations. We are unable to predict
the strength of these effects in our model at this time.
As a final speculation, we suggest that, while exciting in
its own right as a new collective excitation in the system,
this particular measurement could also be useful in estab-
lishing direct measurements of the effects of Landau level
mixing. Landau level mixing refers to deviations from
the idealized single-Landau level approximation due to
coupling between different Landau levels. While Landau
level mixing has been estimated through various meth-
ods [68-71], the effect is challenging to measure exper-
imentally. In the measuring the hyperradial excitation,
deviations from the ideal hyperradial vibrational mode
energies should be attributed to hyperangular coupling
between Landau levels. Such a direct measurement of
Landau level mixing in the hyperangular picture would
provide a test for these previous models of inter-level cou-
pling effects in the quantum Hall system.
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