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We calculate the topological part of the electromagnetic response of Bosonic Integer Quantum Hall (BIQH)

phases in odd (spacetime) dimensions, and Bosonic Topological Insulator (BTI) and Bosonic chiral semi-metal

(BCSM) phases in even dimensions. To do this we use the Nonlinear Sigma Model (NLSM) description of

bosonic symmetry-protected topological (SPT) phases, and the method of gauged Wess-Zumino (WZ) actions.

We find the surprising result that for BIQH states in dimension 2m − 1 (m = 1, 2, . . . ), the bulk response to

an electromagnetic field Aµ is characterized by a Chern-Simons term for Aµ with a level quantized in integer

multiples of m! (factorial). We also show that BTI states (which have an extra Z2 symmetry) can exhibit a

Z2 breaking Quantum Hall effect on their boundaries, with this boundary Quantum Hall effect described by a

Chern-Simons term at level m!

2
. We show that the factor of m! can be understood by requiring gauge invariance

of the exponential of the Chern-Simons term on a general Euclidean manifold, and we also use this argument

to characterize the electromagnetic and gravitational responses of fermionic SPT phases with U(1) symmetry

in all odd dimensions. We then use our gauged boundary actions for the BIQH and BTI states to (i) construct a

bosonic analogue of a chiral semi-metal (BCSM) in even dimensions, (ii) show that the boundary of the BTI state

exhibits a bosonic analogue of the parity anomaly of Dirac fermions in odd dimensions, and (iii) study anomaly

inflow at domain walls on the boundary of BTI states. In a series of Appendices we derive important formulas

and additional results. In particular, in Appendix A we use the connection between equivariant cohomology

and gauged WZ actions to give a mathematical interpretation of the actions for the BIQH and BTI boundaries

constructed in this paper.

I. INTRODUCTION

In the years since the theoretical prediction and exper-

imental discovery of the electron topological insulators1,2,

the study of symmetry-protected topological (SPT) phases of

matter3–7 has emerged as an extremely rich subfield of con-

densed matter physics, with interesting and surprising connec-

tions to high-energy physics and mathematics. Although there

has been tremendous progress in the understanding of these

states of matter, some basic issues about these phases are still

the subject of intense investigation. As illustrative examples

we point to the question of which theories can describe a sur-

face termination of the time-reversal invariant electron topo-

logical insulator in three spatial dimensions8–14, as well as the

analogous question for the surface of the bosonic topological

insulator in three spatial dimensions15,16.

A very useful definition of an SPT phase is as follows17.

Consider a quantum many-body system with Hamiltonian H ,

whereH has the symmetries of a groupG and a gapped spec-

trum. Then the ground state |Ψ〉 ofH represents an SPT phase

if it satisfies several properties. First, |Ψ〉 should be unique

independently of the topology of the (closed) spatial manifold

that H is defined on. This ensures that the ground state of

H does not represent a phase with topological order (no exci-

tations with fractional charge or statistics, etc.). Second, |Ψ〉
should be invariant under the action ofG, i.e., U(g)|Ψ〉 = |Ψ〉
for any g ∈ G, where U(g) is a representation of G on the

Hilbert space of the system. This means that the ground state

ofH does not spontaneously break the symmetry of the group

G. Finally, |Ψ〉 cannot be continuously tuned to a trivial prod-

uct state (e.g., by adding terms to the Hamiltonian) without (i)

breaking the symmetry of G, or (ii) closing the gap in the

spectrum of H . Despite the lack of anyon excitations in the

bulk, interesting degrees of freedom will in general be present

at the boundary of an SPT phase.

In this paper we focus our primary attention on bosonic

SPT phases and, in particular, on those bosonic SPT phases

which are analogues of more familiar topological phases of

fermions. We are especially interested in the Bosonic Inte-

ger Quantum Hall (BIQH) effect18–28, a bosonic analog of the

ordinary ν = 1 Integer Quantum Hall effect of fermions in

three (spacetime) dimensions, and in the time-reversal invari-

ant Bosonic Topological Insulator (BTI)29–32, a bosonic ana-

logue of the time-reversal invariant electron topological insu-

lator in four dimensions. In fact, the main goal of our paper

is to consider generalizations of the BIQH and BTI states to

all odd and even spacetime dimensions, respectively, and then

to study the physical properties of these higher-dimensional

states. The reader should note that in the remainder of this

paper the word “dimension” always refers to the spacetime

dimension. We always write “spatial dimension” when we

want to discuss the dimension of space only.

BIQH phases are protected only by U(1) charge-

conservation symmetry, while the BTI phase is protected by

the symmetry groupU(1)⋊Z2, where, as we discuss later, the

Z2 symmetry is unitary charge-conjugation symmetry Z
C
2 in

dimensions 2, 6, 10, etc., and anti-unitary time-reversal sym-

metry Z
T
2 in dimensions 4, 8, 12, etc. The symbol “⋊” means

that the U(1) and Z2 symmetry operations do not commute

with each other. Since both of these phases have U(1) charge-
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conservation symmetry, they can both be coupled to an exter-

nal electromagnetic field Aµ. One can then study the electro-

magnetic response of these states.

One of our main results in this paper is an explicit deriva-

tion of the (topological part of) the electromagnetic response

of BIQH phases in all odd dimensions and BTI phases in all

even dimensions. From a physical standpoint the magnitude

of the electromagnetic response is extremely interesting, as it

is known already in three dimensions that the requirement that

a BIQH state have no topological order places a constraint on

the allowed values of the Hall conductance of any putative

BIQH state18. In particular, the Hall conductance must be a

multiple of 2 (in units of e2

h
), i.e., a BIQH state has twice the

Hall conductance that a free fermion Integer Quantum Hall

state can have. In higher dimensions we also find that the

electromagnetic response of the BIQH state is some integer

multiple of the minimum value which can be realized by free

fermions, and we find analogous results in even dimensions

for BTI states.

To calculate the electromagnetic response of these states,

we need a concrete model to work with. For reasons to be

discussed in the next section, we choose to use the Non-

linear Sigma Model (NLSM) description of bosonic SPT

phases33–38. This allows us to use the theory of gauged Wess-

Zumino (WZ) actions39–44 to study the boundary of these

states, and from our study of the boundary we are able to de-

duce the bulk response. As a byproduct, our explicit construc-

tion of gauged WZ actions for the boundaries of these states

allows us to study several physical properties of these states

in more detail. We show that the boundary theory for the BTI

displays a bosonic analogue of the parity anomaly for Dirac

fermions in odd dimensions45–49, and we also use the bound-

ary theory of the BIQH state to construct effective theories for

bosonic analogues of Weyl (or chiral) semi-metals in all even

dimensions.

For the case of the BIQH state, we also provide an alter-

native derivation of the response by requiring the gauge in-

variance of (the exponential of) the Chern-Simons functional

describing the electromagnetic response of the state. We also

use this gauge invariance argument to derive and discuss the

electromagnetic and gravitational responses of Fermionic In-

teger Quantum Hall (FIQH) phases in different dimensions.

This gauge invariance argument provides us with a general un-

derstanding of the difference in the quantization of response

coefficients of BIQH and FIQH phases.

Before moving on, we take this opportunity to provide some

justification for our study of bosonic SPT phases in dimen-

sions higher than the physically relevant dimensions of two,

three, and four. Studying a state of matter in generic dimen-

sions can often reveal underlying organizational principles or

mathematical structures which cannot be seen by studying

low-dimensional examples on their own. An obvious exam-

ple of this is the periodic table of topological insulators and

superconductors50,51, which exhibits an eightfold periodicity

in the dimension of space (i.e., the pattern does not completely

develop if one considers only low dimensions). In the case of

bosonic SPT phases, low-dimensional examples suggest that

the response of the bosonic analogue of a given fermionic

state (Integer Quantum Hall or electron topological insulator)

is twice that of its fermionic counterpart. However, our results

in this paper clearly show that this is not the case in higher di-

mensions. Finally, it is also worth mentioning that many new

insights on four-dimensional physics can be gained by imag-

ining that our four-dimensional spacetime is the boundary of

a five-dimensional SPT phase52–54.

This paper is organized as follows. First, in Sec. II we out-

line our basic approach and summarize our main results. In

Sec. III we review the relevant background information on

BIQH and BTI phases, the NLSM description of SPT phases,

and the method of gauged WZ actions. In Sec. IV we con-

struct the gauged WZ action for the boundary of the BIQH

phase, and we use the anomaly of the gauged boundary action

to deduce the bulk response of the BIQH phase. We also give

an alternative derivation of the BIQH response which relies on

only the bulk physics of the NLSM. In Sec. V we use a gen-

eral gauge invariance argument to understand the electromag-

netic response of BIQH states, and also the electromagnetic

and gravitational responses of FIQH states in odd dimensions.

In particular, we illuminate the important differences between

the quantization of response coefficients in BIQH and FIQH

phases. In Sec. VI we construct the gauged WZ action for the

boundary of the BTI phase, and we use the gauged boundary

action to study the symmetry-breaking BIQH response of the

BTI boundary. In Sec. VII we use the results from Sec. IV

and Sec. VI to (i) construct effective theories for bosonic ana-

logues of Weyl, or chiral, semi-metals in all even dimensions,

(ii) show that the boundary of a BTI state displays an ana-

logue of the parity anomaly for Dirac fermions in odd dimen-

sions, and (iii) study the physics of symmetry-breaking do-

main walls on the boundary of BTI states. Sec. VIII presents

our conclusions. Finally, in a series of Appendices we exam-

ine the results of the paper from a more mathematical point

of view, and also derive several important formulas which are

used throughout the paper.

II. BASIC APPROACH AND SUMMARY OF RESULTS

In this section we outline our basic approach to calculating

the electromagnetic response of higher-dimensional bosonic

SPT phases, and then we present our results. In this paper

we work in units where ~ = e = 1, where e is the charge

of the basic particles (bosons or fermions) which make up the

state we are interested in. To restore e in any formula one can

simply replace Aµ (the external electromagnetic field) with

eAµ.

Let us first discuss the general form that the topological

part of the electromagnetic response is expected to take for

BIQH and BTI states. In odd dimensions, the response of a

higher-dimensional analogue of a Quantum Hall state to an

external field A = Aµdx
µ (we use differential form notation)

is characterized by a Chern-Simons (CS) term SCS [A] in the

effective action for the external field. In 2m − 1 dimensions

this term takes the form

SCS [A] =
N2m−1

(2π)m−1m!

ˆ

M
A ∧ Fm−1 , (2.1)
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where N2m−1 is called the level of the CS term, F = dA,

Fm−1 is shorthand for the wedge product of F with itself

m − 1 times, and M represents the spacetime manifold. Let

us also note here that all actions in the paper are written down

in Minkowski signature (real time) except in Sec. V and Ap-

pendix B, where we consider CS and other terms in Euclidean

spacetimes. On the other hand, the response of an analogue of

a topological insulator in 2m dimensions is characterized by

a “Chern character” term (we avoid using “theta-term” here

since that name is also used for a type of topological term in

the NLSM action),

SCC [A] =
Θ2m

(2π)mm!

ˆ

M
Fm . (2.2)

Here the coefficient Θ2m should be interpreted as an angular

variable, although its period is not necessarily 2π. We call

this term a “Chern character” term as the quantity 1
m!

(

F
2π

)m

appears as the mth term in the expansion of the total Chern

character ch[F ] = e
F
2π of a U(1) principal bundle with cur-

vature F.55 Since locally we can write Fm = d(A ∧ Fm−1),
we see that for a BTI state with a boundary, the term SCC [A]
can be interpreted as a CS term at level Θ2m

2π on the (2m− 1)-
dimensional boundary of the BTI state (more precisely, this is

only true when the bulk field configuration F has vanishing

topological contributions).

For the analogues of Integer Quantum Hall states of

fermions (FIQH states) in odd dimensions, the level N2m−1

of the CS term can be any integer56–59, while for free fermion

topological insulators, and their generalizations to higher di-

mensions, the angle Θ2m is 2π-periodic and the value which

represents a non-trivial topological insulator state is Θ2m =
π60 (the result for fermionic topological insulators in any

even dimension is easily established using the axial anomaly

for a Dirac fermion in 2m dimensions). For bosonic SPT

phases in low dimensions we know that N3 = 2k, k ∈ Z

for BIQH states in three dimensions18,19, that Θ4 has 4π-

periodicity, and Θ4 = 2π for the non-trivial BTI state in four

dimensions29,30,61,62.

One of the main purposes of this paper is to calculate the

values of the response coefficientsN2m−1 and Θ2m for BIQH

and BTI states in all dimensions. There are (at least) two ways

that one could go about doing this. The first way would be to

formulate a general physical argument based, for example, on

the consistency of the value of N2m−1 or Θ2m and the fact

that a bosonic SPT state should have no fractionalized excita-

tions, and in this way determine a constraint on the possible

values of N2m−1 or Θ2m. In fact, such an argument has al-

ready been given for the BIQH state in the case m = 2 (three

spacetime dimensions). In Ref. 18 the authors showed that

if the response coefficient N3 (which is just the Hall conduc-

tance in units of e2

h
) is odd, then the underlying theory must

contain an excitation of charge one (in units of the charge e
of the underlying bosons) with fermionic exchange statistics.

An excitation with fermionic statistics is not allowed in a state

of bosons which has no fractionalized excitations, and so the

authors of Ref. 18 concluded that N3 must be an even inte-

ger for BIQH states in three dimensions. Generalizing this

argument to higher dimensions clearly represents a significant

conceptual difficulty, as in higher dimensions one is probably

forced to consider generalized braiding processes for extended

objects such as string or membrane excitations63–65. For this

reason we do not pursue this approach in this work, and in-

stead use a second method.

The second method for answering this question, and the

method that we choose to use, is to (i) start with a concrete

field-theoretic model which is believed to accurately describe

the low-energy physics of a BIQH or BTI state in the relevant

dimension, (ii) couple this model to the external field A, and

(iii) directly calculate the electromagnetic response for this

particular model. In the literature there are two main kinds of

field-theoretic models that can describe SPT phases: topolog-

ical quantum field theory (TQFT) in terms of gauge field vari-

ables (e.g., Chern-Simons theory in three dimensions19,25,66,67

and twisted gauge theory68–70 in four dimensions32,71 ) and

the Nonlinear Sigma Model (NLSM) description in terms of

constrained bosonic fields33–38. In both approaches the bulk

topological order is trivial but global symmetry is imposed

nontrivially on the field variables. In this paper we choose to

use the NLSM description since this description can be easily

generalized to any spacetime dimension.

In the NLSM description, a bulk bosonic SPT phase in

d + 1 spacetime dimensions is described by an O(d + 2)
NLSM with topological theta term having coefficient θ = 2πk
where k ∈ Z. In this description the boundary of the SPT

phase is then described by an O(d + 2) NLSM with Wess-

Zumino (WZ) term, where the coefficient of the WZ term,

known as the level of the WZ term, is equal to k. Conven-

tionally, writing down the WZ term in the boundary theory

requires defining an extension of the NLSM field into an aux-

iliary direction of spacetime. In a series of works33–38, the

NLSM description has been shown to accurately describe the

structure of the ground state wave function of SPT phases17,

the point and loop braiding statistics of excitations in gauged

SPT phases17,63,64,72,73, the decorated domain wall construc-

tion of SPT phases74, as well as several other properties of

these phases. In addition, a mathematical classification of

bosonic SPT phases based on the NLSM description has been

shown to be completely identical to the group cohomology

classification6 in situations where both classification schemes

can be applied. In fact, there is even a concrete procedure

for calculating the cocycle which classifies an SPT phase in

the group cohomology approach by starting with the NLSM

description of that SPT phase75. Additional applications of

NLSMs to the study of SPT phases with translation symmetry

and to exotic quantum phase transitions in Weyl semi-metals

were considered recently in Refs. 76 and 77. However, de-

spite the many successes of the NLSM description, deriving

the electromagnetic response of a bosonic SPT phase directly

from its NLSM description remains a difficult problem. In the

few instances in which the response of an SPT phase has been

determined from its NLSM description it has been by an indi-

rect method such as an appeal to gauge invariance of the final

effective action78, a dual vortex description of the theory29, or

a description of the NLSM involving auxiliary fermions which

also carry charge of the external field A16,79. The descriptions

in terms of auxiliary fermions are in turn based on a set of



4

formulas due to Abanov and Wiegmann80 which allow one to

generate an O(d + 2) NLSM with theta term by coupling the

NLSM field to a set of auxiliary fermions and then integrating

out those fermions.

In this paper we overcome this difficulty and give a di-

rect computation of the response of higher-dimensional gen-

eralizations of BIQH and BTI states in all dimensions from

their NLSM description. To do this we use a two-pronged

approach. First, instead of focusing on the bulk of the SPT

phase, we study the boundary, and in particular, the behavior

of the gauged boundary theory. In the case of the BIQH state

we find that the boundary has a perturbative U(1) anomaly,

which we explicitly calculate. Since the CS action changes

by a boundary term under a gauge transformation, requiring

the entire system (bulk plus boundary) to be gauge-invariant

allows us to determine the bulk response coefficient N2m−1

from the boundary anomaly. In the BTI case we show that

the boundary exhibits a Quantum Hall response when the as-

sociated discrete symmetry (e.g., time-reversal in four dimen-

sions) of the BTI state is broken. Again, from this boundary

response we can directly read off the coefficient Θ2m using

the fact that for a system with boundary, the action SCC [A] is

equivalent to a CS action with level Θ2m

2π on the boundary of

the BTI.

To study the boundary theory coupled to the external

field electromagnetic A we use the method of gauged WZ

actions39,40,42–44 (see also Refs. 81 and 82 for some re-

cent applications of gauged WZ actions in condensed mat-

ter physics). This machinery can be applied to this problem

since, in the NLSM description, the boundary of an SPT phase

in d+ 1 dimensions is described by an O(d+ 2) NLSM with

WZ term. Therefore we require knowledge of the proper way

to gauge a WZ action in order to gauge the boundary theory of

the SPT phase. For readers who are familiar with gauged WZ

actions it is also worth remarking that all terms in the gauged

actions we write down (with the sole exception of the origi-

nal un-gauged WZ term) are expressed as integrals of fields

only over the physical boundary spacetime. That is, we do not

assume an extension of the external field A into the auxiliary

direction of spacetime which is used to write down the WZ

term. This is to be contrasted with the general approach of

Ref. 44, in which all terms in the gauged action are written as

integrals over the extended spacetime, and an analogue of the

method used to obtain the Chern-Simons form from the Chern

character must then be used to reduce the terms in the action

to integrals only over the physical spacetime. This difficulty

usually prevents one from writing down an explicit local (i.e.,

not involving integrals over the extended spacetime) form for

the gauged WZ action in any dimension. We emphasize that

here we do not encounter this difficulty. For the BIQH and

BTI systems that we study, we give explicit local expressions

for the gauged boundary action in all dimensions.

In Sec. IV we use this method to derive the unusual result

that for BIQH states in 2m− 1 dimensions the level of the CS

term in the effective action for A is quantized as

N2m−1 = (m!)k , k ∈ Z , (2.3)

where m! denotes the factorial of m. This general formula

agrees with existing results for the cases of three18,19,25 and

five79 dimensions (m = 2 andm = 3, respectively), and gives

a prediction for all higher odd dimensions. In this case we

also provide an alternative derivation of the value of N2m−1

using only the NLSM description of the bulk of the BIQH

state, which confirms our result derived using the anomaly of

the boundary theory.

Next, in Sec. V we show that the BIQH response com-

puted in Sec. IV can be understood by requiring the expo-

nential of the CS response action for the BIQH state to be

invariant under large U(1) gauge transformations when the

response theory is formulated on general closed, compact Eu-

clidean manifolds. Furthermore, we apply these gauge invari-

ance arguments to study the electromagnetic and gravitational

responses of fermionic SPT phases with U(1) symmetry in

odd dimensions, and point out the distinctive features between

the bosonic and fermionic cases.

Moving on to the BTI case, we show in Sec. VI, using the

NLSM description of the BTI phase, that the non-trivial BTI

state in 2m dimensions is characterized by a coefficient

Θ2m = 2π

(

m!

2

)

. (2.4)

Again, this general formula agrees with the known answer in

four dimensions29,30,61,62 (m = 2) and gives a prediction for

all higher even dimensions. It also suggests that the period

of the parameter Θ2m is 2π(m!) for BTI states in 2m dimen-

sions.

In Sec. VII we use the gauged boundary actions derived in

Sec. IV and Sec. VI to derive several other interesting results.

First, we construct an effective theory for a bosonic analogue

of a two-node Weyl (or chiral) semi-metal in all even dimen-

sions d using two copies of the boundary action for the BIQH

state. We refer to this state as a bosonic chiral semi-metal

(BCSM). The theory that we construct has an electromagnetic

response of the form (Rd−1,1 is d-dimensional Minkowski

spacetime)

S
(b)
eff [A,B] = −2

(

d

2
+ 1

)

1

(2π)
d
2

ˆ

Rd−1,1

B∧A∧(dA)
d
2−1

(2.5)

where B = Bµdx
µ is a one-form whose componentsBµ rep-

resent the separation in energy and momentum of the two

copies of the BIQH boundary theory (in the fermionic case

the components of Bµ specify the separation in energy and

momentum of the two Weyl cones). This response is larger

than the response of the fermionic chiral semi-metal in the

same dimension by a factor of
(

d
2 + 1

)

!. This factor turns

out to be identical to the factor of m! discussed earlier for the

BIQH state, since our semi-metal theory in d dimensions is

constructed from two copies of the boundary theory for the

BIQH state in d + 1 = 2m − 1 dimensions. Next, we show

that the boundary theory of the BTI exhibits a bosonic ana-

logue of the parity anomaly of a single Dirac fermion in odd

dimensions45–49. This parity anomaly is essentially the state-

ment that although the boundary theory of the BTI is gauge-

invariant and possesses the Z2 symmetry of the BTI state, the

Z2 symmetry can be spontaneously broken at the boundary of
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the BTI, resulting in a half-quantized BIQH response on the

boundary. This anomaly then provides strong evidence that

the boundary theory of the BTI (with the symmetries of the

BTI phase) cannot be realized intrinsically in 2m− 1 dimen-

sions. Finally, we analyze the physics of symmetry-breaking

domain walls on the boundary of the BTI state, and we show

that the physics of such domain walls provides a nice exam-

ple of the phenomenon of anomaly inflow83 in bosonic SPT

phases.

The Appendices of the paper contain several additional re-

sults, most of a more mathematical nature. In Appendix A we

use the well-known connection between gauged WZ actions

and equivariant cohomology to understand the mathematical

structure of the gauged WZ actions that we construct for the

boundaries of BIQH and BTI states. In particular, we show

that the construction of these actions is related to the mathe-

matical problem of constructing an equivariant extension of

the volume form for the sphere S2m−1 (in the BIQH case) or

S2m in the BTI case, and we study this mathematical problem

in detail. In Appendix B we show an example of the compu-

tation of the Chern character for the field strength F on the

complex projective space CPm. This example serves to il-

lustrate the necessity of the peculiar quantization of the CS

level required for gauge invariance of the CS term on general

manifolds as derived in Sec. V. In Appendix C we discuss

a dimensional reduction procedure which allows one to ob-

tain the response action for the BTI phase from the response

action for the BIQH phase in one higher dimension. In Ap-

pendix D we derive a general dimensional reduction formula

for topological theta terms in NLSMs. Finally, in Appendix E

we compute the electromagnetic response of the O(2) NLSM

in one dimension.

III. BACKGROUND

In this section we introduce the relevant background mate-

rial necessary for understanding the later sections of the paper.

We start with a brief review of the physics of the BIQH and

BTI states, and also present definitions of higher-dimensional

generalizations of these states. We then review the NLSM de-

scription of the bulk and boundary of bosonic SPT phases, and

discuss the specifics of the NLSM descriptions of the BIQH

and BTI states that we study in this paper. Finally, we give a

general discussion of the tool of gauged WZ actions, and we

describe in concrete terms the procedure that we use in this

paper to construct gauged WZ actions for the boundaries of

BIQH and BTI states.

A. BIQH and BTI phases

In its original formulation18,19, the BIQH phase was con-

ceived of as a gapped quantum phase of bosons in three space-

time dimensions which exhibits a non-zero Hall conductance,

but does not have any bulk topological order. As an SPT phase

it is protected by only charge-conservation symmetry, i.e., we

have G = U(1) where G is the symmetry group of the SPT

phase. Physically, the BIQH state is characterized by a CS

term in the effective action for the external field A,

Seff [A] =
N3

4π

ˆ

M
A ∧ dA , (3.1)

in which the coefficient N3 (which is just the Hall conduc-

tance in units of e2

h
) is quantized in integer multiples of 2. The

authors of Ref. 18 gave a very appealing physical argument

for why the value of N3 = 1 is not allowed if the BIQH state

is required to have no fractionalized excitations, and we now

briefly review their argument. Consider a hypothetical BIQH

state on flat space, and a configuration of A in which a thin

tube of 2π flux pierces the spatial surface. According to the

action Seff [A], the point in space where the flux tube pierces

the plane will bind a charge equal to N3. Now one invokes a

standard argument84 that 2π flux is gauge-equivalent to zero

flux, and so the point-like excitation created by threading the

flux is in fact an excitation of the BIQH fluid and not an exter-

nal defect. One can therefore ask about the phase obtained by

the wavefunction of the system after a process in which two

such excitations are exchanged. By the Aharanov-Bohm ef-

fect, taking one excitation completely around another results

in a statistical phase of 2πN3. The phase for an exchange pro-

cess is therefore half of that, ϑex = πN3. From this result the

authors of Ref. 18 concluded that the state described by the

effective action of Eq. (3.1) contains a fermionic excitation if

N3 is odd, and so N3 must be an even integer in order for the

action of Eq. (3.1) to represent the electromagnetic response

of a BIQH phase.

In this paper we consider generalizations of the BIQH state

to all odd spacetime dimensions. One definition of a BIQH

state in 2m − 1 dimensions which is sufficient for our pur-

poses is that a BIQH state is an SPT phase of bosons which

is protected by the symmetry group G = U(1), where U(1)
is charge conservation symmetry, and which exhibits a CS re-

sponse to an applied electromagnetic field A of the form of

Eq. (2.1). We should also mention here that in odd dimen-

sions there is a countable infinity of different BIQH states,

i.e., these states have a Z classification6,34. This means that

the coefficient N2m−1 takes on a countable infinity of values

which all have the form of some particular number times an

integer.

On the other hand, the BTI phase6,29,32 is a bosonic ana-

logue of the time-reversal invariant electron topological insu-

lator in four spacetime dimensions. As an SPT phase it is pro-

tected by the symmetry group G = U(1) ⋊ ZT
2 , where U(1)

represents charge conservation and ZT
2 is time-reversal sym-

metry. If we write ZT
2 = (1, T ) where T is the time-reversal

operator, then we have T 2 = 1 for the BTI. This should be

contrasted with the relation T 2 = (−1)F which holds for the

electron topological insulator, where F is the fermion num-

ber. The semi-direct product “⋊” indicates that the U(1) and

ZT
2 symmetries do not commute with each other. In the next

subsection we will see an explicit representation of the action

of the groupU(1)⋊ZT
2 on the fields in the NLSM description

of the BTI.

The bulk of the BTI phase is characterized by an effective
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action for A of the Chern character form

Seff [A] =
Θ4

8π2

ˆ

M
F ∧ F , (3.2)

where F = dA, and Θ4 = 2π for the BTI (compare with

Θ4 = π for the electron topological insulator60). The param-

eter Θ4 has 2π-periodicity in the case of the electron topolog-

ical insulator60 but 4π-periodicity in the BTI case29,30. One

way to understand this effective action is to consider what

happens when the spacetime M has a boundary ∂M. In this

case, if the bulk field configuration F is topologically trivial,

then we can write F ∧ F = d(A ∧ dA) to find

Seff [A] =
Θ4

2π

1

4π

ˆ

∂M
A ∧ dA , (3.3)

which is equivalent to a Quantum Hall state with Hall con-

ductance σH = Θ4

2π on the boundary of M. In particular,

for the BTI we have Θ4 = 2π so that the surface of the BTI

exhibits a half-quantized BIQH effect (i.e., σH = 1 on the

surface). Such a surface Quantum Hall response breaks the

time-reversal symmetry of the BTI.

Now we turn to the question of how to generalize the BTI

state to all even dimensions. The main issue with generalizing

the BTI state to all even dimensions is that the discrete part of

the symmetry group G, which was anti-unitary time-reversal

symmetry ZT
2 in four dimensions, should be chosen differ-

ently when the spacetime dimension is equal to zero or two

modulo four. Whenever the spacetime dimension is equal to

zero modulo four we choose the discrete part of G to be anti-

unitary time-reversal symmetry ZT
2 . On the other hand, when-

ever the spacetime dimension is equal to two modulo four we

choose the discrete part ofG to be unitary charge-conjugation

(or particle-hole) symmetryZC
2 . This choice is consistent with

the results of the group cohomology6 and NLSM34 classifica-

tions of SPT phases in these dimensions, and with the symme-

tries which protect the fermion topological insulators in two

and four spacetime dimensions, respectively60.

We therefore choose to use the following definition of a BTI

phase in all even dimensions. A BTI phase in spacetime di-

mension 2m is an SPT phase of bosons with symmetry group

G =

{

U(1)⋊ ZT
2 , m = even

U(1)⋊ Z
C
2 , m = odd

, (3.4)

and which exhibits a bulk response to an external field A of

the form of Eq. (2.2). As we noted earlier, when the spacetime

M has a boundary ∂M, and when the field configuration F
is topologically trivial, this bulk response is equivalent to a

boundary Quantum Hall response of the form of Eq. (2.1) with

coefficient N2m−1 = Θ2m

2π . In addition, this boundary Quan-

tum Hall response breaks the ZT
2 symmetry (for m even) or

ZC
2 symmetry (for m odd) of the BTI phase. When we dis-

cuss the BTI phase in a general dimension 2m, and when we

do not have a particular m in mind, we just write Z2 for the

discrete part of G. However, the reader should always keep

in mind that the Z2 symmetry is different for the cases of m
even and m odd as discussed in this subsection.

Finally, we also mention that based on the group

cohomology6 and NLSM34 classification schemes, only the

smallest value of Θ2m is expected to represent a non-trivial

BTI phase in 2m dimensions. This can be understood as fol-

lows. For SPT phases with U(1) ⋊ ZT
2 symmetry in four

dimensions the group cohomology and NLSM classifications

predict a (Z2)
2 classification. One of these Z2 factors corre-

sponds to the BTI state, while the other corresponds to a state

in which the U(1) symmetry plays no role30 (so this second

state cannot be interpreted as an insulator). This means that

there is only a single non-trivial BTI state in four dimensions.

In addition, in two dimensions the classification for SPTs with

U(1)⋊ZC
2 symmetry is Z2, and the U(1) symmetry does play

a role in the non-trivial phase, so we identify that phase with

the BTI phase in two dimensions. Based on this evidence we

expect the existence of a single non-trivial BTI phase to gener-

alize to all even dimensions. In the context of the NLSM clas-

sification this can be understood as coming from the fact that

in 2m dimensions theO(2m+1) NLSM theory with θ = 2πk
can be smoothly connected to the theory with θ = 2π(k ± 2)
(see, e.g., the discussion in Ref. 34).

B. NLSM description of the bulk and boundary of SPT phases

We now give a brief review of the NLSM description of

SPT states, which was presented in its fully developed form

in Ref. 34. Let us consider bosonic SPT phases in d + 1
spacetime dimensions. The spacetime coordinates are xµ,

µ = 0, . . . , d (x0 = t is the time coordinate), and for now

we focus on the case of flat Minkowski spacetime R
d,1 with

the mostly minus metric η = diag(1,−1, . . . ,−1). Following

the prescription of Ref. 34, a bosonic SPT phase in this di-

mension is described by an O(d+ 2) NLSM with topological

theta term where the coefficient of the theta term is given by

θ = 2πk with k ∈ Z. The O(d + 2) NLSM is a theory of a

(d + 2)-component unit vector field n (i.e., n · n = 1) with

components na, a = 1, . . . , d+ 2. Because of the constraint,

the configuration space (or target space) of the NLSM field is

the d+ 1-dimensional sphere Sd+1. Latin indices a, b, c, . . . ,
which label components of na, can be raised and lowered with

the Euclidean metrics δab, δab, and so na and na are numeri-

cally equal to each other. In what follows we use the summa-

tion convention for any indices (Latin or Greek) which appear

once in an upper position and once in a lower position in any

expression.

The NLSM action describing the SPT phase is

Sbulk[n] =

ˆ

dd+1x
1

2g
(∂µna)(∂µna) + Sθ[n] , (3.5)

where g > 0 is the coupling constant of the NLSM (with units

of (length)d−1), and Sθ[n] is the theta term. To write the theta

term in a compact way we first introduce some notation. Let

ωd+1 be the volume form on Sd+1. Explicitly, we have

ωd+1 =

d+2
∑

a=1

(−1)a−1nadn1∧· · ·∧dna∧· · ·∧dnd+2 , (3.6)
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where the overline means to omit that term from the wedge

product. We also use the notation Ad+1 ≡ Area[Sd+1] =

2π
d+2
2

Γ( d+2
2 )

for the area of the sphere Sd+1. In terms of these

quantities, the theta term can be written compactly in differ-

ential form notation as

Sθ[n] =
θ

Ad+1

ˆ

Rd,1

n∗ωd+1 , (3.7)

where n∗ωd+1 denotes the pull-back to spacetime of the form

ωd+1 via the map n : Rd,1 → Sd+1. In coordinates this

becomes

Sθ[n] =
θ

Ad+1

ˆ

dd+1x ǫa1···ad+2na1∂x0na2∂x1na3 · · · ∂xdnad+2
. (3.8)

For the description of SPT phases we have θ = 2πk for in-

teger k. The reason for choosing θ = 2πk is that at these

values of θ the NLSM is expected to flow to a disordered

(g → ∞) fixed point under the Renormalization Group34. In

addition we note that the full action of Eq. (3.5) (including

theta term) has an SO(d+ 2) global symmetry, where the ac-

tion of the group on the NLSM field is given by na → Ra
bnb

for any matrix R ∈ SO(d + 2). When the coefficient θ is set

to zero this symmetry is promoted to an O(d+2) global sym-

metry (under a general transformationR ∈ O(d+2) the theta

term transforms only by acquiring the sign det[R] = ±1). The

fixed point theory (with g → ∞ at θ = 2πk) is gapped and

has a unique ground state which does not break the SO(d+2)
symmetry of the NLSM with theta term33. This property of

the disordered ground state of the NLSM at θ = 2πk is one

of the main reasons why these field theories are useful for de-

scribing SPT phases.

SPT phases are classified according to their symmetry

groupG. In the NLSM description of Ref. 34 this symmetry is

encoded in a homomorphism σ : G→ O(d+2), which maps

g ∈ G to some (d + 2) × (d + 2) matrix σ(g) ∈ O(d + 2).
We refer to such a σ as a symmetry assignment. According

to the NLSM classification of SPT phases, if g ∈ G repre-

sents an internal unitary symmetry operation (i.e., g does not

have any action on the spacetime coordinates) then σ should

be chosen so that det[σ(g)] = 1. In this case it is then clear

that the action of g leaves the theta term invariant. On the

other hand, if g ∈ G represents the time-reversal operation,

then σ should be chosen so that det[σ(g)] = −1. Since the

time-reversal operation also sends t → −t (in addition to its

action on the components of the NLSM field), the minus sign

in the theta term from det[σ(g)] will be canceled by the minus

sign from sending ∂t → −∂t. Thus, choosing det[σ(g)] = −1
in this case ensures that the theta term is invariant under the

time-reversal transformation.

Not all NLSMs with a symmetry assignment will describe

a non-trivial SPT phase. For example an NLSM with a sym-

metry assignment σ will describe a trivial phase if there exists

a vector v such that σ(g)v = v ∀g ∈ G. This is because

in this case we are allowed to add a term n · v to the NLSM

action without breaking the symmetry of the groupG. Such a

term will then drive the system into a trivial phase in which n

is parallel or anti-parallel to v at all points in space. If a vec-

tor v with this property does not exist, then the NLSM with

symmetry assignment σ can describe a non-trivial SPT phase.

When an SPT phase has a bulk description in terms of an

O(d+ 2) NLSM with theta term and theta angle θ = 2πk, its

d-dimensional boundary is described by an O(d + 2) NLSM

with Wess-Zumino (WZ) term at level k. Let us for simplic-

ity study the boundary perpendicular to the xd direction, so

on the boundary we have coordinates xµ, µ = 0, . . . , d − 1,

and the boundary spacetime is Rd−1,1. To write down the

WZ term we need to extend the field configuration na into

a fictitious extra dimension of the boundary spacetime. We

take s ∈ [0, 1] to be the coordinate for this extra direction,

and define B = [0, 1] × Rd−1,1 to be the extended boundary

spacetime. Let ña(x
µ, s) be an extension of the field na into

the s direction. It is typical to choose boundary conditions

in the extra direction so that ña(x
µ, 1) = δa,1 (i.e., a trivial

configuration) and ña(x
µ, 0) = na(x

µ) so that the physical

boundary spacetime is located at s = 0. Then the action for

the boundary theory takes the form

Sbdy[n] =

ˆ

ddx
1

2gbdy
(∂µna)(∂µna) + SWZ [n] , (3.9)

where the WZ term is

SWZ [n] =
2πk

Ad+1

ˆ

B
ñ∗ωd+1 . (3.10)

Here gbdy is the coupling constant for the boundary theory,

and the WZ term now involves the pull-back of ωd+1 to B (the

extended boundary spacetime) via the map ñ : B → Sd+1.

Again, in coordinates this takes the form

SWZ [n] =
2πk

Ad+1

ˆ 1

0

ds

ˆ

ddx ǫa1···ad+2 ña1∂sña2∂x0 ña3 · · ·∂xd−1 ñad+2
. (3.11)
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We now discuss the specific symmetry assignments σ :
G→ O(d+2) which will be used to construct NLSM descrip-

tions of BIQH states in odd spacetime dimensions and BTI

states in even spacetime dimensions. We start with the case of

BIQH states in 2m− 1 spacetime dimensions. In this case the

integer m is related to d by the relation 2m = d + 2, and the

BIQH state is described by an O(2m) NLSM with theta term.

In the BIQH case the symmetry group is just G = U(1) and

the particular U(1) symmetry that we are interested in is em-

bedded in the full O(2m) group as follows. We first combine

pairs of the 2m components na of the NLSM field to create

the m boson fields

bℓ = n2ℓ−1 + in2ℓ , ℓ = 1, . . . ,m . (3.12)

Then the U(1) symmetry we consider acts on the NLSM field

as

U(1) : bℓ → eiξbℓ, ∀ℓ , (3.13)

where ξ is a constant parameter. We can consider the fields

bℓ to be m complex scalar fields of charge 1, but subject to

the constraint
∑m

ℓ=1 |bℓ|2 = 1, which is equivalent to the

constraint n · n = 1 for the NLSM field na. This choice

of U(1) transformation, and the corresponding pairing of the

components of n into the bosons bℓ, is convenient, but it is

not unique. Since the NLSM action with theta term (or WZ

term) is still invariant under the group SO(2m), we can do

any change of basis na → Ma
bnb with M ∈ SO(2m) to

obtain a theory with a different action of the U(1) symmetry,

but with the same physical properties. As discussed above,

the most important property of the symmetry assignment is

that there should not be any vector v that remains fixed under

the U(1) action. Indeed, if such a v exists then the NLSM

with this symmetry assignment describes a trivial phase. The

choice above satisfies this requirement.

For the case of BTI states in even dimensions 2m, the inte-

ger m is instead related to d by the formula 2m+ 1 = d+ 2,

so that these states are described by O(2m+ 1) NLSMs with

theta term. As we discussed in the previous subsection the

symmetry group in this case isG = U(1)⋊ZT
2 form even and

G = U(1) ⋊ ZC
2 for m odd. To define the symmetry assign-

ment σ in this case we again take pairs of the first 2m com-

ponents of the NLSM field and combine them into bosons bℓ,
ℓ = 1, . . . ,m as done for the BIQH case. The U(1) symmetry

we consider again acts as in Eq. (3.13) on these bosons, but

leaves the final component n2m+1 of the NLSM field fixed.

Finally, in the BTI case the additional discrete Z2 symmetry

(which is either ZT
2 or ZC

2 depending on the parity of m) is

taken to act on the NLSM field as

Z2 : na → na , a = 1, 3, . . . , 2m− 1, (3.14a)

na → −na , a = 2, 4, . . . , 2m, 2m+ 1 . (3.14b)

In the case where the Z2 symmetry is time-reversal ZT
2 , we

also need to send t→ −t in the argument of na and in the ac-

tion. Under the transformation in Eq. (3.14), the theta term of

the NLSM picks up the sign (−1)m+1. So we see that for m
odd the theta term in the NLSM automatically has this sym-

metry, while in the case of m even it must be supplemented

with the replacement t→ −t, which gives an extra minus sign

in the theta term. So the NLSM has the internal, unitary ZC
2

particle-hole symmetry in the case ofm odd, while in the case

of m even it has the anti-unitary time-reversal symmetry ZT
2 .

Now that we know how the fields in the NLSM description

transform under the U(1) symmetry of the BIQH and BTI

phases, we can considering coupling the NLSM theory, and in

particular the boundary theory which involves a WZ term, to

the external electromagnetic field A = Aµdx
µ. In order to do

this, we are going to need the tool of gauged WZ actions.

C. Gauged Wess-Zumino actions

We now give a discussion of the theory of gauged WZ ac-

tions, mostly focusing on the general philosophy behind the

construction of a gauged WZ action. The details of this con-

struction will be worked out explicitly for the boundary the-

ories of the BIQH and BTI phases in all dimensions in later

sections of this paper. In addition, in Appendix A we review

the relation between gauged WZ actions and equivariant co-

homology, and we re-examine the gauged WZ actions con-

structed in this paper from this more mathematical point of

view.

Before we start, let us note that the kinetic term for the

NLSM is easily gauged using ordinary minimal coupling (also

known as a “Peierls substitution” in a condensed matter con-

text). In fact, the gauged kinetic term is most simply written

in terms of the bℓ as

Skin,gauged[n, A] =

ˆ

ddx
1

2gbdy

m
∑

ℓ=1

(Dµbℓ)
∗(Dµbℓ) ,

(3.15)

for the boundary of the BIQH state (d+ 2 = 2m), or

Skin,gauged[n, A] =

ˆ

ddx
1

2gbdy

[

m
∑

ℓ=1

(Dµbℓ)
∗(Dµbℓ)

+ (∂µn2m+1)(∂µn2m+1)

]

, (3.16)

for the boundary of a BTI state (d + 2 = 2m + 1), where

Dµ = ∂µ − iAµ is the usual covariant derivative. Note here

that since we are only interested in enforcing a U(1) subroup

of the full SO(d+2) symmetry group of the NLSM, we could

allow a different boundary coupling constant gbdy,ℓ for each

species bℓ of boson. This type of anisotropy in the coupling

constant will not affect the results in the rest of the paper, since

those results only depend on the form of the WZ term.

Gauging the WZ term is more subtle. The main problem

we face in attempting to gauge this term is the fact that the

WZ term is written as an integral of an expression involving

the field ña over the (d+ 1)-dimensional extended spacetime

B. One method44 for gauging a WZ term involves defining

an extension Ã of the gauge field A into the extra s-direction,

and then applying the usual minimal coupling procedure (but

using the extended field Ã) inside the WZ term. This has

the effect of replacing the integrand ñ∗ωd+1 of the WZ term
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in Eq. (3.10) with ñ∗ωÃ
d+1, where ωÃ

d+1 represents the vol-

ume form on Sd+1 but with the ordinary exterior derivative

d replaced with a gauge-covariant exterior derivative D (the

precise form of D is not important for the general discussion

here). However, minimal coupling alone is not sufficient, as

varying the minimally-coupled WZ action does not lead to d-

dimensional equations of motion, i.e., the resulting equations

of motion depend on the extensions ña and Ã. To remedy

this the authors of Ref. 44 used the following prescription.

They suggested that one should add a second term U(ña, Ã)
to the integrand of the WZ term such that the combination

ωÃ
d+1 + U is a closed form on the extended spacetime. Since

a closed form is locally exact (i.e., a closed form ω can be

written as ω = dγi for some γi on each coordinate patch Ui

of the manifold), variation of this new WZ term leads to d-

dimensional equations of motion on each coordinate patch of

the original spacetime manifold. There is, however, one con-

ceptual issue with this method, which the authors of Ref. 44

point out (see their discussion in the paragraph after equa-

tion 4.7). The problem is that in the usual setup of the WZ

term, the form ωÃ
d+1 (and also ωd+1) is a (d + 1)-form on the

(d + 1)-dimensional extended spacetime B, and so it is triv-

ially closed. Therefore in order to apply the method of Ref. 44

one has to imagine that the extended spacetime B is embed-

ded in a spacetime X of even higher dimension so that dωÃ
d+1

is not trivially equal to zero.

From this discussion it is clear that gauging a WZ is in

general a difficult procedure. However, for the problems en-

countered in this paper, in which we only deal with a U(1)
subgroup of the full O(d + 2) symmetry of the NLSM the-

ories, we do not need the complicated machinery developed

in Ref. 44. Instead, we use the following concrete procedure

(which is similar in spirit to the methods used in Refs. 42 and

43) to gauge the U(1) symmetry of our theories. First we

consider how the WZ term changes under the transformation

bℓ → eiξbℓ (with a spacetime-dependent ξ). We will see that

it changes by a term which is a total derivative, which means

that the change of the WZ term can be written as an integral

only over the physical boundary spacetime Rd−1,1 instead of

over the extended spacetime B. Next we attempt to cancel this

change in the action by adding an integral over spacetime of

the NLSM field coupled to A. We will see that this procedure

usually needs to be iterated several times because the coun-

terterms that we add to the action may not transform nicely

under a gauge transformation, where “nicely” is defined be-

low by Eq. (3.17). We use the following criterion, inspired by

the discussion in Ref. 43, for determining when the action has

been properly gauged.

Gauging principle: The correctly gauged action

Sgauged[n, A], if it is not completely gauge-invariant,

must transform under a gauge transformation bℓ → eiξbℓ,
A→ A+ dξ, as

Sgauged[n, A] → Sgauged[n, A] + δξSgauged[A, ξ] , (3.17)

where we have used the notation δξSgauged to indicate the

change in Sgauged under a gauge transformation. The key

point here is that the change in the action under a gauge trans-

formation depends only onA and ξ, but not on the matter field

n.

Let us also note here that in this paper we use the word

“anomaly” to refer to the change in the action (or action plus

path integral measure) under a U(1) gauge transformation.

There is no anomaly if the action (plus path integral measure)

is gauge-invariant. The gauging principle stated above then

simply asserts that the anomaly δξSgauged[A, ξ] of the gauged

action Sgauged[n, A] should only depend on A and ξ.

We will see in the following sections that we may need to

add several counterterms to the WZ action to get Eq. (3.17) to

hold. In the BIQH case the correctly gauged action still trans-

forms under a gauge transformation, and so the U(1) symme-

try of the boundary theory of the BIQH phase is anomalous.

This fact is what allows us to deduce the bulk CS response of

the BIQH state. On the other hand, for the surface of the BTI

it is possible to construct a completely gauge-invariant action.

However, from the form of the gauge-invariant action we will

be able to see that if the NLSM field condenses in a way that

preserves the U(1) symmetry, but breaks the Z2 symmetry of

the BTI phase, then the surface of the BTI will exhibit a Z2

symmetry-breaking Quantum Hall response.

IV. ELECTROMAGNETIC RESPONSE OF BIQH STATES

IN ALL ODD DIMENSIONS

In this section we construct the gauged WZ action for the

boundary of BIQH states in all odd dimensions. The action we

construct satisfies the gauging principle of Eq. (3.17), but is

still not completely gauge-invariant, as evidenced in the U(1)
anomaly of the boundary theory of the BIQH state. We then

use the U(1) anomaly of the gauged boundary action to calcu-

late the bulk CS response of the BIQH state in all odd dimen-

sions. As we discussed in the introduction, we find that for the

BIQH state in 2m− 1 dimensions the level N2m−1 of the CS

term appearing in the effective action is quantized in units of

m!. We then give a more intuitive derivation of the BIQH re-

sponse using only the dimensional reduction properties of CS

terms and of theta terms in NLSMs. This second derivation

relies on results which we derive in Appendices D and E. This

intuitive picture confirms our more technical derivation using

gauged WZ actions.

The result in this section is related to the results of several

other sections of this paper. In the next section, Sec. V, we

show that the factor of m! for the CS response of the BIQH

state computed in this section can be understood by requiring

that partition functions containing the CS response action be

invariant under large U(1) gauge transformations on general

Euclidean manifolds. Later, in Appendix A, we re-examine

the gauged WZ action constructed in this section in light of

the well-known connection between gauged WZ actions and

equivariant cohomology of the target space of the NLSM. The

construction of a gauged WZ action for the boundary of the

BIQH state is equivalent to the problem of constructing an

equivariant extension (with respect to the U(1) symmetry) of

the volume form ω2m−1 for S2m−1. In Appendix A we at-

tempt to construct such an extension, and then show that the
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construction fails at the last step. The fact that such an exten-

sion does not exist is mathematically equivalent to our finding

that the gauged action for the boundary of the BIQH state still

has a U(1) anomaly. In Appendix A we also show that the

differential forms Ω(r), which appear later in this section in

the counterterms of Eq. (4.29), are the same forms which ap-

pear in the construction of the equivariant extension of ω2m−1

(although the extension fails at the last step in this case as

mentioned above).

Let us make a few remarks on the notation used in this sec-

tion and in later sections of the paper. In what follows we

omit the pull-back symbol n∗ so as not to clutter the notation,

but one should always remember that the integrand of any in-

tegral should be pulled back to spacetime (or the extended

spacetime, in which case one would write ñ∗). In addition we

will express many quantities in terms of the integer m instead

of d. Recall that these are related by 2m = d+2 in the BIQH

case. So for example we write the WZ term as

SWZ [n] =
2πk

A2m−1

ˆ

B
ω2m−1 . (4.1)

For later use we also define several differential forms which

are constructed from the components of the NLSM field. We

define the one form Jℓ and two form Kℓ by

Jℓ = n2ℓ−1dn2ℓ − n2ℓdn2ℓ−1 (4.2a)

Kℓ = dn2ℓ−1 ∧ dn2ℓ . (4.2b)

Under a gauge transformation bℓ → eiξbℓ these forms trans-

form as

Jℓ → Jℓ + (n2
2ℓ−1 + n2

2ℓ)dξ (4.3a)

Kℓ → Kℓ + (n2ℓ−1dn2ℓ−1 + n2ℓdn2ℓ) ∧ dξ . (4.3b)

We also note here that

Kℓ =
1

2
dJℓ , (4.4)

and so

dKℓ = 0 , (4.5)

i.e., Kℓ is an exact differential form.

A. O(4) NLSM with WZ term in two spacetime dimensions

Before presenting the gauged action for any integer m, we

warm up with an explicit calculation for the simplest possible

case, which is the O(4) NLSM with WZ term which appears

at the two-dimensional boundary of the BIQH state in three

dimensions. We also mention here that an O(4) NLSM with

WZ term in two dimensions is equivalent to a model of an

SU(2) matrix field U = n4I+
∑3

a=1 naσ
a (where σa are the

three Pauli matrices) with WZ term for U , so the analysis in

this subsection is actually a special case of the analysis done in

Refs. 42 and 43. Although we focus on the case of a continu-

ous symmetry (namely the U(1) charge conservation symme-

try), we also note here that anomalies in the two-dimensional

boundary theories of SPT phases protected by the symmetry

of a finite abelian group were considered previously in Ref. 85.

In the O(4) case the volume form can be written as

ω3 = J1 ∧ K2 + J2 ∧K1 . (4.6)

Under the transformation bℓ → eiξbℓ we have

δξω3 = K1 ∧ dξ +K2 ∧ dξ

=
1

2
dJ1 ∧ dξ +

1

2
dJ2 ∧ dξ

=
1

2
d [J1 ∧ dξ + J2 ∧ dξ] , (4.7)

which is a total derivative. So we find (neglecting any terms

coming from the boundary of the physical spacetime R1,1)

δξSWZ [n] =
2πk

A3

1

2

ˆ

R1,1

(J1 + J2) ∧ dξ . (4.8)

We attempt to cancel this variation by adding the counterterm

S
(1)
ct [n, A] = −2πk

A3

1

2

ˆ

R1,1

(J1 + J2) ∧ A . (4.9)

It is clear that when we sendA→ A+dξ in S
(1)
ct it will cancel

the gauge variation of the WZ term.

At this point our candidate for the gauged WZ term is then

SWZ,gauged [n, A] = SWZ [n] + S
(1)
ct [n, A] . (4.10)

However, this action is not completely gauge-invariant, and

under a gauge transformation we find

δξSWZ,gauged [n, A] = −2πk

A3

1

2

ˆ

R1,1

(δξJ1 + δξJ2) ∧ A

= −2πk

A3

1

2

ˆ

R1,1

dξ ∧A

= − k

2π

ˆ

R1,1

dξ ∧ A

= k

ˆ

R1,1

ξ

(

F

2π

)

, (4.11)

where we used the formula for δξJℓ from Eq. (4.3), the fact

that n is a unit vector field, A3 = 2π2, and also performed an

integration by parts in the last line (F = dA). We conclude

that the U(1) symmetry here is anomalous and, since the ki-

netic term has been made completely gauge-invariant, the to-

tal anomaly of the boundary theory is given by Eq. (4.11).

We also note that the anomaly in Eq. (4.11) is exactly what is

needed to cancel the gauge variation of the bulk CS action of

Eq. (3.1) with N3 = −2k.

B. The O(2m) NLSM with WZ term in 2m− 2 spacetime

dimensions

Now we move on to the general case of an O(2m) NLSM

with WZ term on the 2m−2 dimensional boundary of a BIQH

state in 2m − 1 dimensions (recall that m is related to the
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integer d in the BIQH case by d = 2m − 2, so that d is also

the dimension of the boundary spacetime). In this case we

find that a total of m− 1 counterterms are needed in order for

the gauged WZ action to transform as in Eq. (3.17) under a

gauge transformation. To start we note that the volume form

ω2m−1 can be re-written using the forms Jℓ and Kℓ as

ω2m−1 =
1

(m− 1)!

m
∑

ℓ1,...,ℓm=1

Jℓ1∧Kℓ2∧· · ·∧Kℓm . (4.12)

To see it, simply note that if any of ℓ2, . . . , ℓm are equal to

each other or to ℓ1 then the wedge product vanishes. So each

index ℓs can be summed over the full range of 1 to m. How-

ever, this means that we are actually over-counting in the sum

over all ℓs. This is not a problem though as Kℓs can be com-

muted past each other in the wedge products (they are all two-

forms), so all we need to do to remedy this is to divide by the

factor of (m − 1)!, where m − 1 is the number of factors of

Kℓ appearing in the expression.

Now for any integer r in the range 0, . . . ,m− 1, we intro-

duce the form

Ω(r) =

m
∑

ℓ1,...,ℓm−r=1

Jℓ1 ∧ Kℓ2 ∧ · · · ∧ Kℓm−r
. (4.13)

In particular, we have ω2m−1 = 1
(m−1)!Ω

(0) and Ω(m−1) =
∑m

ℓ1=1 Jℓ1 . In Appendix A we give a mathematical interpre-

tation of these forms in terms of U(1)-equivariant cohomol-

ogy of S2m−1. The following formula for the change in Ω(r)

under a gauge transformation is the essential ingredient in our

construction of the full gauged WZ action.

Claim: Under a gauge transformation bℓ → eiξbℓ we have

Ω(r) → Ω(r) + δξΩ
(r) with

δξΩ
(r) =

1

2
dΩ(r+1) ∧ dξ . (4.14)

Proof: Using Eqs. (4.3) we can show

δξΩ
(r) =

m
∑

ℓ1,...,ℓm−r=1

(n2
2ℓ1−1 + n2

2ℓ1)Kℓ2 ∧ · · · ∧ Kℓm−r
∧ dξ (4.15)

+

m−r
∑

s=2

m
∑

ℓ1,...,ℓm−r=1

Jℓ1 ∧ Kℓ2 ∧ · · · ∧ Kℓs ∧ · · · ∧ Kℓm−r
∧ (n2ℓs−1dn2ℓs−1 + n2ℓsdn2ℓs) ∧ dξ ,

where the overline again means to omit that term from the

wedge product. Next we use the two properties

m
∑

ℓ=1

(n2
2ℓ−1 + n2

2ℓ) = 1 (4.16a)

m
∑

ℓ=1

(n2ℓ−1dn2ℓ−1 + n2ℓdn2ℓ) = 0 , (4.16b)

which follow from the fact that n is a unit vector field with

2m components, to find that

δξΩ
(r) =

m
∑

ℓ2,...,ℓm−r=1

Kℓ2 ∧ · · · ∧ Kℓm−r
∧ dξ , (4.17)

or after re-indexing,

δξΩ
(r) =

m
∑

ℓ1,...,ℓm−(r+1)=1

Kℓ1∧· · ·∧Kℓm−(r+1)
∧dξ . (4.18)

So in fact, only the term in the first line of Eq. (4.15) has

contributed. Next we write Kℓ1 = 1
2dJℓ1 and use the fact that

Kℓ is closed to find

δξΩ
(r) =

1

2

m
∑

ℓ1,...,ℓm−(r+1)=1

dJℓ1 ∧ Kℓ2 ∧ · · · ∧ Kℓm−(r+1)
∧ dξ

=
1

2
dΩ(r+1) ∧ dξ , (4.19)

which completes the proof. �

With Eq. (4.14) in hand we can now construct the properly

gauged action step by step. We go through the first few steps

explicitly, and then write down the final answer. To start, the

change of the WZ term under a gauge transformation is

δξSWZ [n] =
2πk

A2m−1

1

(m− 1)!

ˆ

B
δξΩ

(0)

=
2πk

A2m−1

1

(m− 1)!

1

2

ˆ

B
dΩ(1) ∧ dξ

=
2πk

A2m−1

1

(m− 1)!

1

2

ˆ

Rd−1,1

Ω(1) ∧ dξ . (4.20)

So the first counterterm we should add is

S
(1)
ct [n, A] = − 2πk

A2m−1

1

(m− 1)!

1

2

ˆ

Rd−1,1

Ω(1)∧A . (4.21)

The part of the action containing the WZ term is now

S′
WZ,gauged [n, A] = SWZ [n] + S

(1)
ct [n, A] , (4.22)

and under a gauge transformation we find

δξS
′
WZ,gauged[n, A] =

− 2πk

A2m−1

1

(m− 1)!

1

2

ˆ

Rd−1,1

δξΩ
(1) ∧ A , (4.23)
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which becomes

δξS
′
WZ,gauged[n, A] =

− 2πk

A2m−1

1

(m− 1)!

1

22

ˆ

Rd−1,1

dΩ(2) ∧ dξ ∧ A . (4.24)

Now we note that

d
(

Ω(2) ∧ dξ ∧ A
)

= dΩ(2)∧dξ∧A+Ω(2)∧dξ∧F , (4.25)

and we use this to do an integration by parts. Neglecting

boundary terms (in general we neglect all terms coming from

the boundaries of the physical boundary spacetime), we now

have

δξS
′
WZ,gauged[n, A] =

2πk

A2m−1

1

(m− 1)!

1

22

ˆ

Rd−1,1

Ω(2)∧dξ∧F .

(4.26)

Therefore we should choose the second counterterm to be

S
(2)
ct [n, A] = − 2πk

A2m−1

1

(m− 1)!

1

22

ˆ

Rd−1,1

Ω(2) ∧ A ∧ F ,

(4.27)

and the total gauged action is now

S′′
WZ,gauged[n, A] = SWZ [n] + S

(1)
ct [n, A] + S

(2)
ct [n, A] .

(4.28)

At this point the pattern is clear. After iterating this proce-

dure we find that a total of m− 1 counterterms are needed to

construct a gauged WZ action which satisfies Eq. (3.17). The

rth counterterm (for r = 1, . . . ,m− 1) is given by

S
(r)
ct [n, A] = − 2πk

A2m−1

1

(m− 1)!

1

2r

ˆ

Rd−1,1

Ω(r)∧A∧F r−1 ,

(4.29)

where F r−1 is shorthand for the wedge product of F with

itself r − 1 times. The total gauged action is then

SWZ,gauged[n, A] = SWZ [n] +

m−1
∑

r=1

S
(r)
ct [n, A] . (4.30)

In Appendix A we discuss this gauged WZ action from the

point of view ofU(1)-equivariant cohomology over the sphere

S2m−1.

When we look at the change of the full action

SWZ,gauged[n, A] under a gauge transformation we find that

it is not completely gauge-invariant. In other words, the U(1)
symmetry of the boundary theory of the BIQH state is anoma-

lous, as we expect on physical grounds. The anomaly is con-

trolled only by the final counterterm S
(m−1)
ct [n, A], since all

other contributions cancel by construction. Under a gauge

transformation we have

δξSWZ,gauged[n, A] =

− 2πk

A2m−1

1

(m− 1)!

1

2m−1

ˆ

Rd−1,1

δξΩ
(m−1) ∧ A ∧ Fm−2 .

(4.31)

Now we use δξΩ
(m−1) = dξ, the formula A2m−1 = 2πm

(m−1)! ,

and integrate by parts to arrive at the final formula

δξSWZ,gauged[n, A] = k

ˆ

Rd−1,1

ξ

(

F

2π

)m−1

, (4.32)

or in terms of the boundary spacetime dimension d,

δξSWZ,gauged[n, A] = k

ˆ

Rd−1,1

ξ

(

F

2π

)
d
2

. (4.33)

C. Chern-Simons effective action for bulk electromagnetic

response

We now use the result of the previous subsection to under-

stand the bulk electromagnetic response of BIQH states in all

odd spacetime dimensions. As we discussed in the Introduc-

tion, a Quantum Hall state in 2m − 1 dimensions is char-

acterized by the presence of a CS term in the effective ac-

tion Seff [A] for the electromagnetic field A. Recall that on

(2m− 1)-dimensional spacetime the CS term takes the form

SCS [A] =
N2m−1

(2π)m−1m!

ˆ

M
A ∧ (dA)m−1 . (4.34)

Now it is well known that under a gauge transformationA→
A+ dξ the CS action changes by a boundary term,

δξSCS [A] =
N2m−1

m!

ˆ

∂M
ξ

(

F

2π

)m−1

. (4.35)

We can then deduce the coefficient N2m−1 for the bulk re-

sponse of BIQH states by matching the variation of the bulk

CS effective action for A with the anomaly of the boundary

theory of the BIQH state (the O(2m) NLSM with WZ term)

which we calculated in the previous subsection. The gauge

transformation of the bulk CS term must cancel the anomaly

of the boundary theory in order for the entire system (bulk plus

boundary) to be gauge-invariant. This is exactly the concept

of anomaly inflow83 which we mentioned in the introduction.

Comparing Eq. (4.35) to Eq. (4.32) for the U(1) anomaly of

the O(2m) theory with WZ term, we deduce that the coeffi-

cient N2m−1 must be given by

N2m−1 = −(m!)k, k ∈ Z , (4.36)

in order to cancel the anomaly of the boundary theory. There-

fore we find that the level N2m−1 of the CS effective action

for BIQH states in 2m− 1 spacetime dimensions is quantized

in units of m!. This answer agrees with the known cases for

three and five spacetime dimensions and gives a prediction

for all odd dimensions beyond those. In Sec. V we discuss

this peculiar quantization of the CS level from a mathemat-

ical point of view by studying the transformation of the CS

term under large U(1) gauge transformations on general Eu-

clidean manifolds (including manifolds which do not admit a

spin structure).
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We also remark here that based on the form of the CS re-

sponse for the BIQH state in 2m− 1 dimensions, we can con-

clude that the chiral anomaly of the boundary theory of the

BIQH state is m! times larger than the chiral anomaly of the

boundary theory for a fermionic SPT phase in 2m− 1 dimen-

sions with a bulk CS response at level one. So, for example,

the anomaly of the boundary theory is twice as large when the

bulk is three-dimensional (m = 2 case) and six times as large

when the bulk is five-dimensional (m = 3).

D. A derivation of the response from the bulk physics

To close this section we present an alternative derivation of

the response of the BIQH state. This derivation uses only bulk

properties of the BIQH state, which should be contrasted with

our derivation using gauged WZ actions which was based on

the anomaly of the boundary theory. Recall again that the

bulk of the BIQH state is described by an O(2m) NLSM with

theta term and theta angle θ = 2πk (so we have a theta term

and not a WZ term in the bulk description). The main reason

for including this alternative derivation is that it provides a

clear physical reason for the appearance of the m! factor in

the response. The derivation in this subsection uses only the

dimensional reduction properties of the CS response action

for the external field, and the theta term of the NLSM, which

we now review.

We start by considering the CS response action at level N
in 2m− 1 dimensions,

SCS [A] =
N

(2π)m−1m!

ˆ

RD,1

A ∧ (dA)m−1 , (4.37)

where D is the spatial dimension so that D + 1 = 2m −
1. Let x = (x1, . . . , xD) be the spatial coordinates. Now

suppose we thread a delta function of 2π flux at a point x0

in the (xD−1, xD) plane (i.e., xj0 = 0, j = 1, . . . , D − 2).

Concretely, we set

FxD−1xD = 2πδ(xD−1 − xD−1
0 )δ(xD − xD0 ) , (4.38)

and we assume that FxjxD−1 = FxjxD = 0 ∀j = 1, . . . , D −
2, and that Fxjxk is independent of (xD−1, xD) for j, k =
1, . . . , D − 2. Then, for this configuration, the CS response

action reduces to

SCS [A] →
N

(2π)m−2(m− 1)!

ˆ

RD−2,1

Ã ∧ (dÃ)m−2 .

(4.39)

The key point is that it reduces to a CS term at the same level

N on the (D − 2)-dimensional space located at the point x0

in the (xD−1, xD) plane.

Now that we know what happens in the CS response action

when we thread a 2π delta function flux of F in a particular

plane, let us also see what happens in the NLSM description

of the BIQH phase when this flux is inserted. In the NLSM

description, the m bosons bℓ are all charged under the U(1)
symmetry. Therefore, threading a 2π delta function flux at the

point x0 in the (xD−1, xD) plane will cause all of the bosons

bℓ to have a vortex configuration in that plane around the point

x0. By a vortex configuration we just mean that the phases

of the complex numbers bℓ all wind by 2π as one encircles

the point x0 in the (xD−1, xD) plane. So we conclude that

threading a 2π delta function flux of F will create m vortex

excitations in the O(2m) NLSM which describes the bulk of

the BIQH.

On the other hand, we are going to show that if a single

boson bℓ for some ℓ has a vortex configuration at a point x0

in the (xD−1, xD) plane, then the O(2m) NLSM action with

θ = 2πk reduces to anO(2m−2) NLSM with θ = 2πk living

on the (D−2)-dimensional space at x0. So if we have a vortex

in one boson only, then the NLSM theory for the BIQH state

in 2m − 1 dimensions reduces to the NLSM theory for the

BIQH state in 2m− 3 dimensions (inside the vortex core) and

with the same theta angle.

We now prove the assertion in the previous paragraph that

a vortex in one boson bℓ in the O(2m) NLSM traps an

O(2m−2) NLSM with the same theta angle inside the vortex

core. To do this we consider an explicit vortex ansatz for the

NLSM field in which the last boson bm = n2m−1 + in2m

takes on a vortex configuration. To set up the notation let

(r, φ) be polar coordinates for the (xD−1, xD) plane, and let

y = (x1, . . . , xD) be the coordinates for the remaining direc-

tions of space. Then our vortex ansatz has the form

n(t,x) = {sin(f(r))N(t,y), cos(f(r))m(φ)} . (4.40)

where N(t,y) is a (2m − 2)-component unit vector field de-

pending only on t and y, and m(φ) = (cos(φ), sin(φ)) rep-

resents the vortex configuration of the last two components

of n. The function f(r) is assumed to satisfy the boundary

conditions

f(0) =
π

2
(4.41)

lim
r→∞

f(r) = 0 , (4.42)

which means that the field N(t,y) lives in the core of the vor-

tex. This vortex ansatz is equivalent to the q = 1, nq = 1, case

of the more general defect configurations for NLSMs consid-

ered in Appendix D. Using the dimensional reduction formula

from Eq. (D10) of Appendix D we immediately derive that on

this configuration the theta term of theO(2m) NLSM reduces

to

Sθ[n] =
θ

A2m

ˆ

RD,1

n∗ω2m

→ θ

A2m−2

ˆ

RD−2,1

N∗ω2m−2 . (4.43)

This is the theta term for the O(2m− 2) NLSM with field N

living in the vortex core, and we see that the theta angle is the

same as for the originalO(2m) NLSM. This proves our claim

from the previous paragraph.

From the discussion above we see that threading a 2π flux

of F in the O(2m) NLSM theory will produce m copies of

the O(2m − 2) theory, since the 2π flux creates a vortex in

all m species of bosons, and a vortex in just one species pro-

duces one copy of the O(2m− 2) NLSM with theta term. We

should mention a technical point that them vortices cannot all
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be localized at a point and should spread or separate slightly

in space after we thread the 2π flux. This is because the ampli-

tude |bℓ| should vanish at the core of a vortex in the phase of

bℓ, but the NLSM constraint
∑

ℓ |bℓ|2 does not allow the am-

plitudes |bℓ| for all ℓ to simultaneously vanish at a particular

point. However, this subtlety does not effect the basic phys-

ical point which is that threading the 2π flux of F produces

m vortices (at nearly the same point), each of which carries a

copy of the lower dimensional BIQH state.

Let us denote the CS level for the response of the O(2m)
NLSM with θ = 2πk in 2m− 1 dimensions byN2m−1. From

what we have just learned, and from Eq. (4.39) for the reduc-

tion of the CS term after threading 2π flux, we find that the CS

levels for the response of the NLSMs in dimensions 2m − 1
and 2m− 3 = 2(m− 1)− 1 must obey the recursion relation

N2m−1 = mN2m−3 . (4.44)

We can now iterate this equation to generate

N2m−1 = (m!)N1 . (4.45)

This equation gives the electromagnetic response of the

O(2m) NLSM with θ = 2πk in terms of the response of the

O(2) NLSM in one dimension with θ = 2πk. In Appendix E

we directly calculate N1 for the O(2) NLSM (in the limit of

large coupling g) and show that N1 = −k in that case. This

then implies that

N2m−1 = −(m!)k , (4.46)

and this agrees (in magnitude and in sign) with our boundary

calculation using gauged WZ actions. Thus, the dimensional

reduction approach employed in this subsection gives a clear

physical picture for them! factor in the response, and crucially

depends on the fact that all the bosons bℓ carry a U(1) charge.

V. GENERAL GAUGE INVARIANCE ARGUMENT FOR

THE BIQH RESPONSE AND COMPARISON WITH THE

FERMIONIC CASE

In this section we show that the factor of m! in the BIQH

response derived in Sec. IV can be understood by studying

large U(1) gauge transformations of the CS action on general

(closed, compact) Euclidean manifolds which do not neces-

sarily admit a spin structure. Physically, we require the ex-

ponential of the CS term to be gauge-invariant, since this ob-

ject is part of the partition function of a short-range entangled

(gapped) phase coupled to the external fieldA. In such phases,

since the ground state is always unique, one can always safely

integrate out the matter field and obtain a gauge-invariant ac-

tion. In contrast, if we do the same thing for a topologically

ordered state, for example a Laughlin state, we will indeed

get a non-gauge-invariant response theory. This is because the

calculation to arrive at a response theory is only perturbatively

defined around a single ground state.

The level N2m−1 of the CS term must be quantized for the

exponential of the CS term to be gauge-invariant, but we find

that the required quantization of N2m−1 is different depend-

ing on whether or not the Euclidean manifold admits a spin

structure. Bosonic theories may be formulated on any generic

manifold, but the Dirac equation cannot be formulated prop-

erly on a manifold which does not admit a spin structure, and

so we cannot place fermions on these manifolds. In partic-

ular we find that the CS action will be gauge-invariant on a

generic manifold if the level N2m−1 is quantized in integer

multiples of m!, which agrees with our direct calculation for

the NLSM theory from Sec. IV. For the fermionic case we

use the Atiyah-Singer index theorem for the twisted Dirac

complex55 to show that the CS response action will not, in

general, be U(1) gauge-invariant unless suitable gravitational

terms are also included in the response action. We also discuss

an explicit example of how these gravitational terms can con-

tribute to the response of a fermionic SPT phase with U(1)
symmetry. Furthermore, using these examples, we compare

the quantization of FIQH and BIQH states, as well as an-

other type of bosonic SPT state with non-trivial topological

electromagnetic- gravitational response.

A. Gauge invariance argument for bosonic and fermionic

states

In Euclidean spacetime the CS term takes the form

SCS [A] = −i N2m−1

(2π)m−1m!

ˆ

M
A ∧ Fm−1 . (5.1)

Here M is a (2m−1)-dimensional closed, compact manifold,

and for the moment let us assume thatN2m−1 is some number,

not necessarily an integer. A more careful way to define the

CS term is to consider an extension of the field configuration

A into a 2m-dimensional manifold B such that ∂B = M (this

type of analysis of CS terms dates back at least to Ref. 86). Let

Ã denote this extension. Then the CS term is more properly

written as

SCS [A] = −i N2m−1

(2π)m−1m!

ˆ

B
F̃m , (5.2)

where F̃ = dÃ. In this formulation, a large U(1) gauge trans-

formation of the action can be understood as a change of the

extension ofA into the larger space B. Suppose Ã(1) and Ã(2)

are two different extensions of A. In order for the CS term to

be well-defined, we require that the difference

− i N2m−1

(2π)m−1m!

ˆ

B
(F̃ (1))m−

(

−i N2m−1

(2π)m−1m!

ˆ

B
(F̃ (2))m

)

(5.3)

be an integer multiple of 2πi so that the exponential of the

difference of the two Euclidean actions is equal to one. This

is equivalent to the requirement that the exponential of the CS

term be invariant under a large U(1) gauge transformation.

This difference can in turn be written as the integral of the

field strength F of a gauge field in 2m dimensions over the

closed manifold 2m-dimensional manifold X constructed by

gluing B to another copy of B (with the opposite orientation)
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along their boundary (which is the original lower-dimensional

manifold M). So the requirement for a well-defined CS term

is to check that

I[A] = −i N2m−1

(2π)m−1m!

ˆ

X

Fm , (5.4)

is equal to 2πk for some integer k, where X is a 2m-

dimensional closed, compact manifold, and F is now the field

strength of a gauge field A living in 2m dimensions.

We must also make one crucial assumption about the con-

figuration of F on X, which is that F should be chosen to

satisfy the Dirac quantization condition

ˆ

C

F

2π
∈ Z , (5.5)

where C is any non-trivial two-cycle on X (i.e., an element

of the second homology group H2(X,R)). This require-

ment tells us how a general background field F on X can

be expanded in terms of the elements of the second coho-

mology group H2(X,R) of X (more precisely, we expand

F in terms of elements of the second de Rham cohomology

group H2
dR(X), which is in turn isomorphic to H2(X,R) by

de Rham’s theorem).

If we enforce the Dirac quantization condition of Eq. (5.5),

then on a generic closed, compact Euclidean manifold X we

have

ˆ

X

(

F

2π

)m

∈ Z . (5.6)

Briefly, this comes from the fact that (assuming the Dirac

quantization condition) F
2π is the first Chern class c1 of a com-

plex line bundle overX . The integral overX of itsmth power

(c1)
m is then one of the Chern numbers of this complex line

bundle, and is therefore an integer87. Note that here we also

need to assume that X is orientable. From this result we de-

duce that the (exponential of the) CS term will be invariant un-

der large U(1) gauge transformations on any Euclidean man-

ifold provided that

N2m−1 = (m!)k , k ∈ Z (5.7)

which agrees with our result from Sec. IV derived using the

NLSM description of the BIQH state. In Appendix B we show

that the minimum value with
´

X

(

F
2π

)m
= 1 can be achieved

for X = CPm if we thread 2π flux of F through the non-

trivial two-cycle on CPm.

We can also compare this result with the result for FIQH

phases with U(1) symmetry in the same dimension. In any

odd dimension, we can consider the massive Dirac fermion

as a model for a FIQH state with the global U(1) symmetry

associated to charge conservation. The Lagrangian of a mas-

sive Dirac fermion on flat, (2m− 1)-dimensional Minkowski

spacetime takes the form

LDirac[ψ,A] = ψ(i/∂ − /A−M)ψ , (5.8)

where γµ, µ = 0, . . . , 2m − 2, are the standard Gamma

matrices satisfying {γµ, γν} = 2ηµν with ηµν =

diag(1,−1,−1, ...,−1),ψ = ψ†γ0, andM > 0 is the mass of

the Dirac fermion. We also used the Feynman slash notation
/∂ ≡ γµ∂µ, etc. Here we have also coupled the fermion ψ to

the background U(1) gauge field (electromagnetic field) Aµ.

After integrating out the massive Dirac fermion, we arrive at

a topological response theory given by the CS theory at level

one:

SDirac[A] = −i 1

(2π)m−1m!

ˆ

M
A ∧ Fm−1 , (5.9)

where in this case the spacetime manifoldM is just (2m−1)-
dimensional Minkowski spacetime. In deriving this response

theory we have employed a Pauli-Villars regularization pro-

cedure (see Ref. 45 or the more recent discussion in Ref. 48)

such that integrating out a Dirac fermion with a negative mass

M does not produce any topological term (i.e., a CS term with

level zero). Also, we have omitted all the non-topological

terms, for example the Maxwell term, from the final response

action. Since a single massive Dirac fermion gives rise to a

CS term for A at level one, we have the result that

N2m−1 ∈ Z (5.10)

for generalU(1) fermionic SPT phases in 2m−1 dimensions.

However, as we know from the discussion of the CS term

earlier in this section, on a generic manifold M the CS term

will not be invariant under large U(1) gauge transformations

unless the levelN2m−1 is an integer multiple ofm!. Thus, one

might naively conclude that the response action for the FIQH

state on a generic manifold M is not invariant under large

U(1) gauge transformations. Of course, this is not the case.

The resolution of this problem is to recall that on a curved

manifold M a Dirac fermion also has non-trivial gravitational

and (when coupled to the gauge field A) mixed gauge and

gravitational responses. The gravitational part of the response

comes from the coupling of the Dirac fermion to the metric

gµν of the curved spacetime M. The response action for the

FIQH state (as modeled by the massive Dirac fermion) will

include these additional terms. The effective action for a mas-

sive Dirac fermion on a (2m−1)-dimensional closed, compact

manifold M can be written in the form47

SFIQH[A, g] = 2πi

ˆ

B
ch(F̃ ) ∧ Â(B) , (5.11)

where ∂B = M, ch(F̃ ) = e
F̃
2π is the Chern character of

the extended field strength F̃ and Â(B) is the A-roof genus

(or Dirac genus) on B. Since we are focusing on fermionic

phases here, we should only consider spin manifolds M and

B. The A- roof genus Â(B) can be expressed in terms of the

Pontryagin classes pi(B) of B as88,

Â(B) = 1− 1

24
p1 +

1

5760
(7p21 − 4p2) + ..., (5.12)

with

p1 = − 1

8π2
TrR̃2, (5.13)

p2 = − 1

64π4
TrR̃4 +

1

128π4

(

TrR̃2
)2

. (5.14)
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Here, R̃ is the 2m× 2m matrix of two-forms (curvature two-

form) on B:

R̃ν
µ =

1

2
R̃αβµ

νdxα ∧ dxβ (5.15)

which depends on the Riemann curvature tensor R̃αβµ
ν in the

extended space B. In Eq. (5.11) it is understood that the inte-

gral is only over the terms of (differential form) degree 2m in

the product ch(F̃ ) ∧ Â(B) on B. It is easy to see that when

we only consider the electromagnetic response in SFIQH[A, g]
(e.g., by setting all pi to 0 on B), it recovers the response the-

ory Eq. (5.9) of the massive Dirac fermion in 2m− 1 dimen-

sions. More importantly, the response theory SFIQH[A, g] is

fully gauge-invariant. This is because on any closed, com-

pact 2m-dimensional spin manifold X , the Atiyah-Singer in-

dex theorem for the twisted Dirac complex (see, for example,

Ref. 55) states that

ˆ

X

ch(F̃ ) ∧ Â(X) = index( /D) ∈ Z , (5.16)

where index( /D) is the index (the difference between the num-

ber of positive and negative chirality zero modes) of the Dirac

operator on X , and is necessarily an integer. Although we

originally derived Eq. (5.11) by using the theory of a massive

Dirac fermion on the curved manifold M as a model for the

FIQH state, we argue that due to the requirement of largeU(1)
gauge invariance, Eq. (5.11) is the minimal (or “level 1”) non-

trivial gauge and gravitational response theory of any putative

FIQH phase with U(1) symmetry in (2m− 1) dimensions.

There is one more subtlety here. When m is even (i.e.,

when the spacetime dimension is 4k − 1 with k ∈ Z), the

object ch(F̃ )∧ Â(B) contains a purely gravitational term that

comes from Â(B) alone. Such a term itself can be well-

defined (the index theorem for the untwisted Dirac complex

guarantees that it integrates to an integer on a closed, com-

pact spin manifold) and can capture the non-trivial gravita-

tional response of certain short-range entangled states even

without the inclusion of a global U(1) symmetry. For ex-

ample, for m = 2 the purely gravitational term is given by

− 1
24p1 on B, which is equivalent to the three-dimensional

gravitational Chern-Simons term on M. This term is tied to

the chiral central charge. Hence, we can separately consider

the purely gravitational term Â(B) and the rest of the terms
[

ch(F̃ ) ∧ Â(B)− Â(B)
]

in Eq. (5.11).

In general, we can consider the FIQH phase at level

N2m−1 ∈ Z, whose topological response theory (minus the

purely gravitational term) is given by

S′
FIQH[A, g] = 2πiN2m−1

ˆ

B

[

ch(F̃ ) ∧ Â(B)− Â(B)
]

.

(5.17)

S′
FIQH[A, g] naturally contains both a term capturing the elec-

tromagnetic response of the FIQH state and other terms that

describe various different types of mixed gauge-gravitational

response. The coexistence of all these terms is enforced by

the properties of spin manifolds and the Atiyah-Singer index

theorem, and reflects the fermionic nature of the FIQH phase.

This combination also informs us that we should not use each

of the terms to independently classify fermionic SPTs with

U(1) symmetry. For bosonic systems, we can, in principle,

separately study each single term in S′
FIQH[A, g] by itself, and

use each of them to characterize a different class of bosonic

SPTs. However, just like the quantization of the level of the

U(1) CS term, we expect gauge invariance to enforce a larger

quantization unit of the “level” when we isolate a single term

as a bosonic response theory, as opposed to the case where that

term appears in the full combination S′
FIQH[A, g] as a part of

a fermionic theory. The difference in the quantization unit of

the “level” between fermionic and bosonic systems will also

lead to very different behaviors under dimensional reduction,

the details of which will be elaborated using examples. In

Sec. V B, we provide an example of the electromagnetic and

gravitational response theory of FIQH states in five dimen-

sions. In Sec. V C, we compare the example fermionic re-

sponse theory with five-dimensional bosonic theories, includ-

ing the BIQH state and another type of bosonic U(1) SPT

state with non-trivial mixed electromagnetic and gravitational

response.

B. An example of electromagnetic and gravitational response

theories of FIQH states and their dimensional reduction

In this section, we restrict our discussion to the topolog-

ical response theory of a five-dimensional FIQH phase, and

we study its dimensional reduction to the response theory

of a FIQH state in three dimensions. We start with the re-

sponse theory of the FIQH phase at level N5 = 1 on a five-

dimensional spin manifold M5:

SFIQH[A, g] = 2πi

ˆ

B6





1

6

(

F̃

2π

)3

− p1
24

∧ F̃

2π



 , (5.18)

where B6 is a six-dimensional spin manifold such that M5 =
∂B6. We first consider its dimensional reduction to the re-

sponse theory of a FIQH state in three dimensions. In order to

do so, we take the spacetime manifold to be M5 = S2 ×M3

where M3 is a closed, compact three-dimensional manifold,

and S2 is a two-sphere. In this case, it is natural to consider the

bounding space B6 = S2×B4 whereB4 is a four-dimensional

spin manifold such that M3 = ∂B4. Also, we consider the

configuration with 2π flux of F̃ piercing the S2 part. The re-

sponse theory is then reduced to

SFIQH[A, g]
∣

∣

∣

S2×M3
= 2πi

ˆ

B4

(

F̃ 2

8π2
− p1

24

)

= i

ˆ

M3

[

A ∧ F
4π

− 1

24

1

4π
Tr

(

ω ∧ dω +
2

3
ω ∧ ω ∧ ω

)

]

,

(5.19)
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where ω is the SO(1, 2) spin connection on M3. The first

term describes the standard Integer Quantum Hall effect in

three dimensions with unit Hall conductance. The second

term, which is the gravitational Chern-Simons term, captures

the gravitational response of a three-dimensional chiral state

with chiral central charge c = 1. On the other hand, we can

directly consider a five-dimensional massive Dirac fermion

as a model of a five-dimensional FIQH state at level one on

this background. When put on the manifold S2 × M3 with

2π flux of F inside the S2 part, the five-dimensional massive

Dirac fermion effectively reduces to a three-dimensional mas-

sive Dirac fermion on M3 at low energies when the linear size

of the S2 part is small compared to the length scale set by the

Dirac fermion mass M . The U(1) and gravitational response

of the three-dimensional FIQH state is indeed given by the

dimensionally-reduced response theory SFIQH[A, g]
∣

∣

∣

S2×M3
.

Finally, let us also remark here that the response theory

Eq. (5.18) for the five-dimensional FIQH state can also be

used to derive the electromagnetic and gravitational responses

of a topological superconductor in four dimensions using a

dimensional reduction procedure89.

C. Comparing bosonic and fermionic systems: quantization

and dimensional reduction

As we have discussed, we can consider each term of

SFIQH[A, g] separately as a topological response theory for

bosonic U(1) SPTs in five dimensions:

SBIQH[A] = 2πiN5

ˆ

B6

1

6

(

F̃

2π

)3

, (5.20)

SBSPT[A, g] = −2πiN ′
5

ˆ

B6

p1
24

∧ F̃

2π
. (5.21)

SBIQH[A] is the response theory of a five-dimensional BIQH

state, and requires a quantization of level as N5 ∈ 6Z as

we showed in this section and in Sec. IV. SBSPT[A, g] char-

acterizes an independent class of bosonic SPT states in five

dimensions without a requirement of U(1) symmetry90. Sim-

ilar to the BIQH and FIQH cases, gauge invariance requires

N ′
5

´

X6
p1

24 ∧ F̃
2π ∈ Z on any closed six-dimensional manifold

X6. Since p1 and F̃
2π are both cohomology classes ofX6 with

integer coefficients, gauge invariance then enforces the quan-

tizationN ′
5 ∈ 24Z. We would like to point out that previously

Ref. 90 considered only closed six-dimensional manifolds that

can be decomposed into products of two and four-dimensional

manifolds, and concluded that N ′
5 ∈ 8Z. However, when we

take into account more general six-dimensional manifolds, for

exampleCP3, we arrive at the stronger quantization condition

N ′
5 ∈ 24Z.91 As seen here, for both of the bosonic theories

SBIQH[A] and SBSPT[A, g], the quantization units of their lev-

els are larger than when these two terms appear together in the

fermionic theory SFIQH[A, g] in Eq. (5.18).

Now let us consider a similar dimensional reduction of both

SBIQH[Aµ] and SBSPT[Aµ, g] to three dimensions, as we did in

the fermion case. Now the five-dimensional spacetime mani-

fold M5 is taken to be the product S2×M3 with M3 a three-

dimensional manifold. Again, we consider the configuration

with 2π flux of F̃ piercing the S2 part. The dimensionally

reduced theories are given by

SBIQH[A]
∣

∣

∣

S2×M3
= i2π

N5

2

ˆ

M3

A ∧ F
(2π)2

,

(5.22)

SBSPT[A, g]
∣

∣

∣

S2×M3
=

−i2πN
′
5

24

ˆ

M3

1

4π
Tr

(

ω ∧ dω +
2

3
ω ∧ ω ∧ ω

)

.

(5.23)

For the BIQH state, due to the bosonic quantizationN5 ∈ 6Z,

we notice that the most fundamental three-dimensional BIQH

state (with CS level N3 = 2) cannot be realized from such

a dimensional reduction from a five-dimensional BIQH state.

From our analysis of the CS level of the BIQH state, it should

be generally true that there are certain lower-dimensional

BIQH states that cannot be realized from the dimensional re-

duction of higher-dimensional BIQH states. In fact, this phe-

nomenon is not restricted to BIQH states. For the bosonic

SPT states described by Eq. (5.21), due to the quantization

N ′
5 ∈ 24Z, the action SBSPT[A, g]

∣

∣

∣

S2×M3
only captures chi-

ral bosonic states with chiral central charge c ∈ 24Z. The

E8 state in (2 + 1) dimensions, which has chiral central

charge c = 8, is absent in this dimensional reduction picture.

This is in strong contrast with the fermionic theory studied

in Sec. V B, in which case lower-dimensional response theo-

ries of FIQH at any level can be obtained from dimensionally

reducing higher-dimensional FIQH states.

VI. ELECTROMAGNETIC RESPONSE OF BTI STATES IN

ALL EVEN DIMENSIONS

In this section we construct the gauged WZ action for

the boundary of BTI states in all even dimensions. Again,

the action that we construct satisfies the gauging principle

of Eq. (3.17). Unlike the BIQH case, however, the gauged

boundary action that we find for BTI states is completely

gauge-invariant. From the form of the gauged action for the

boundary of the BTI, we find that if the NLSM field on the

boundary condenses in such a way that the Z2 symmetry of

the BTI is broken, but the U(1) symmetry remains intact,

then the boundary of the BTI can exhibit a Z2 symmetry-

breaking Quantum Hall response (recall from Sec. III that the

BTI phase also has a Z2 symmetry such that the total sym-

metry group is U(1) ⋊ Z2)92. We find that the boundary

Quantum Hall response is characterized by a CS levelN2m−1

which is quantized in units of m!
2 , i.e., the minimal bound-

ary Quantum Hall response is half that of the minimal BIQH

state that can be realized intrinsically in the same spacetime

dimension. This boundary response implies a bulk response

of the form of Eq. (2.2) with the parameter Θ2m quantized as

Θ2m = 2π
(

m!
2

)

.
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In Appendix A we re-interpret the gauged action con-

structed in this section in terms of U(1)-equivariant cohomol-

ogy of the sphere S2m. There we show that the problem of

constructing a gauged WZ action for the boundary of the BTI

phase in 2m dimensions is equivalent to the problem of con-

structing an equivariant extension of ω2m, the volume form

for S2m, and we explicitly construct such an extension. The

fact that an extension exists is mathematically equivalent to

the result in this section that the gauged WZ action for the

boundary of the BTI is completely gauge-invariant. We also

show that the forms Φ(r) which appear later in this section

in the counterterms of Eq. (6.25) are exactly the same forms

which are needed for the construction of the equivariant ex-

tension of ω2m.

We now construct the gauged WZ action for the boundary

of BTI states. Recall that in the BTI case we define the integer

m via 2m+ 1 = d + 2, so that the SPT phases we study live

in 2m spacetime dimensions and have a 2m− 1 dimensional

boundary (the bulk spacetime dimension was defined to be

d + 1). We again make use of the forms Jℓ and Kℓ, ℓ =
1, . . . ,m defined in Eqs. (4.2). Now, however, the NLSM field

has the extra component n2m+1, so the relations of Eq. (4.16)

are replaced with

m
∑

ℓ=1

(n2
2ℓ−1 + n2

2ℓ) = 1− n2
2m+1 (6.1a)

m
∑

ℓ=1

(n2ℓ−1dn2ℓ−1 + n2ℓdn2ℓ) = −n2m+1dn2m+1 .(6.1b)

In this case the WZ term takes the form

SWZ [n] =
2πk

A2m

ˆ

B
ω2m , (6.2)

where B = [0, 1] × Rd−1,1 is the extended boundary space-

time.

For the BTI case it is convenient to define the forms Φ(r)

for r = 0, 1, . . . ,m− 1 as

Φ(r) =
m
∑

ℓ1,...,ℓm−r=1

Kℓ1 ∧ · · · ∧ Kℓm−r
, (6.3)

and in addition we define Φ(m) = 1, so that Φ(r) is defined

for all r = 0, 1, . . . ,m. Also, note that all of these forms

are closed since each Kℓ is closed. Just as in the BIQH case,

the essential ingredient in the construction of the gauged WZ

action is a formula for how these forms change under a gauge

transformation.

Claim: Under a gauge transformation bℓ → eiξbℓ we have

Φ(r) → Φ(r) + δξΦ
(r) with

δξΦ
(r) = −(m− r)n2m+1dn2m+1 ∧ Φ(r+1) ∧ dξ . (6.4)

Proof: Using the symmetry of the summand of Φ(r) under

the exchange of any two of the indices ℓ1, . . . , ℓm−r, we first

find that

δξΦ
(r) = (m− r)

m
∑

ℓ1,...,ℓm−r=1

(n2ℓ1−1dn2ℓ1−1 + n2ℓ1dn2ℓ1) ∧ dξ ∧ Kℓ2 ∧ · · · ∧ Kℓm−r
. (6.5)

Now we can move dξ all the way to the right by commuting it

past the two-formsKℓ2 , . . . ,Kℓm−r
. This gives

δξΦ
(r) = (m−r)

m
∑

ℓ1=1

(n2ℓ1−1dn2ℓ1−1+n2ℓ1dn2ℓ1)∧Φ(r+1)∧dξ ,

(6.6)

where we used the fact that

Φ(r+1) =

m
∑

ℓ2,...,ℓm−r=1

Kℓ2 ∧ · · · ∧ Kℓm−r
. (6.7)

Finally we can do the sum over ℓ1 using the second relation

of Eqs. (6.1), and this gives the final formula of Eq. (6.4). �

In terms of the form Φ(0) we can write the volume form on

S2m as

ω2m =
1

(m− 1)!

[

m
∑

ℓ1,...,ℓm=1

Jℓ1 ∧ Kℓ2 ∧ · · · ∧ Kℓm ∧ dn2m+1

+
n2m+1

m
Φ(0)

]

. (6.8)

The last term in this expression is just the term

n2m+1dn1 ∧ dn2 ∧ · · · ∧ dn2m−1 ∧ dn2m , (6.9)

but re-written using the formula

dn1∧dn2∧· · ·∧dn2m−1∧dn2m =
1

m!

m
∑

ℓ1,...,ℓm=1

Kℓ1∧· · ·∧Kℓm .

(6.10)

We are now in a position to construct the properly gauged

action step by step as in Section IV on the BIQH system. We

demonstrate the first few steps in the construction and then

write down the final answer. To start we have

δξω2m = − 1

(m− 1)!
dn2m+1 ∧ Φ(1) ∧ dξ

= − 1

(m− 1)!
d
(

n2m+1Φ
(1) ∧ dξ

)

. (6.11)

This is computed using Eq. (6.4) for the case r = 0 combined
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with the formula

δξ





m
∑

ℓ1,...,ℓm=1

Jℓ1 ∧ Kℓ2 ∧ · · · ∧ Kℓm ∧ dn2m+1



 =

−(1− n2
2m+1)dn2m+1 ∧ Φ(1)∧dξ ,

(6.12)

which is easily proven using Eq. (4.3) and Eq. (6.1). Then we

have

δξSWZ [n] = − 2πk

A2m

1

(m− 1)!

ˆ

Rd−1,1

n2m+1Φ
(1) ∧ dξ .

(6.13)

We therefore choose the first counterterm to be

S
(1)
ct [n, A] =

2πk

A2m

1

(m− 1)!

ˆ

Rd−1,1

n2m+1Φ
(1) ∧ A .

(6.14)

The total gauged WZ action is now

S′
gauged,WZ [n, A] = SWZ [n] + S

(1)
ct [n, A] , (6.15)

and under a gauge transformation we find

δξS
′
gauged,WZ [n, A] =

− 2πk

A2m

1

(m− 2)!

ˆ

Rd−1,1

n2
2m+1dn2m+1 ∧ Φ(2) ∧ dξ ∧ A .

(6.16)

Next we integrate by parts using the formula

d

(

1

3
n3
2m+1Φ

(2) ∧ dξ ∧ A
)

=

n2
2m+1dn2m+1 ∧ Φ(2) ∧ dξ ∧ A− 1

3
n3
2m+1Φ

(2) ∧ dξ ∧ F ,

(6.17)

to find (neglecting boundary terms)

δξS
′
gauged,WZ [n, A] =

− 2πk

A2m

1

(m− 2)!

1

3

ˆ

Rd−1,1

n3
2m+1Φ

(2) ∧ dξ ∧ F .

(6.18)

We should then take the second counterterm to be

S
(2)
ct [n, A] =

2πk

A2m

1

(m− 2)!

1

3

ˆ

Rd−1,1

n3
2m+1Φ

(2) ∧A ∧ F .

(6.19)

To see the full structure of the counterterms it is necessary

to go one step further. At this point the total gauged action is

S′′
gauged,WZ [n, A] = SWZ [n] + S

(1)
ct [n, A] + S

(2)
ct [n, A] ,

(6.20)

and under a gauge transformation we have

δξS
′′
gauged,WZ [n, A] =

− 2πk

A2m

1

(m− 3)!

1

3

ˆ

Rd−1,1

n4
2m+1dn2m+1 ∧ Φ(3) ∧ dξ ∧ A ∧ F .

(6.21)

We again integrate by parts and show

δξS
′′
gauged,WZ [n, A] =

− 2πk

A2m

1

(m− 3)!

1

5 · 3

ˆ

Rd−1,1

n5
2m+1Φ

(3) ∧ dξ ∧ F 2 .

(6.22)

Note that the denominator contains the double factorial 5!! =
5 · 3 = 5 · 3 · 1. In general, we find that all of the counterterms

contain a double factorial. Then the third counterterm takes

the form

S
(3)
ct [n, A] =

2πk

A2m

1

(m− 3)!

1

5!!

ˆ

Rd−1,1

n5
2m+1Φ

(3)∧A∧F 2 .

(6.23)

At this point the pattern is clear. Continuing with this pro-

cedure we find that a total of m counterterms are needed to

construct a gauged boundary action which satisfies Eq. (3.17),

and the final gauged action is completely gauge-invariant. It

takes the form

SWZ,gauged[n, A] = SWZ [n] +
m
∑

r=1

S
(r)
ct [n, A] , (6.24)

where the rth counterterm is

S
(r)
ct [n, A] =

2πk

A2m

1

(m− r)!

1

(2r − 1)!!

ˆ

Rd−1,1

(n2m+1)
2r−1 Φ(r) ∧ A ∧ F r−1 ,

(6.25)

where (2r − 1)!! is the double factorial,

(2r − 1)!! = (2r − 1)(2r − 3) · · · (3)(1) . (6.26)

The final counterterm is just

S
(m)
ct [n, A] =

2πk

A2m

1

(2m− 1)!!

ˆ

Rd−1,1

(n2m+1)
2m−1 A∧Fm−1 ,

(6.27)

and its change under a gauge transformation comes only from

the transformation of A (the last component n2m+1 of the

NLSM field does not transform under U(1)). This explains

why the final gauged action is completely gauge-invariant: the

change due to the transformation of A in the last term cancels

the transformation from the previous counterterm in the ac-

tion, and there are no further changes in the last term which

remain to be canceled.

Now let us show that the boundary of a BTI phase exhibits a

Z2 symmetry breaking response when the field na condenses

in such a way that it preserves the U(1) symmetry, but breaks

the Z2 symmetry. The only possible way for na to condense

and fulfill these requirements is to have

n2m+1 = ±1, (6.28a)

na = 0, ∀ a 6= 2m+ 1 . (6.28b)

In this case, all terms in SWZ,gauged [n, A] vanish except for

the final counterterm (r = m), which gives the boundary elec-

tromagnetic response,

Seff,bdy[A] = ± 2πk

A2m

1

(2m− 1)!!

ˆ

Rd−1,1

A ∧ Fm−1 ,

(6.29)



20

where we used 0! = 1 and Φ(m) = 1. Now we use the formu-

las

A2m =
2πm

√
π

Γ(m+ 1
2 )
, (6.30)

and

(2m− 1)!! =
2m√
π
Γ(m+ 1

2 ) , (6.31)

to find

Seff,bdy[A] = ±1

2

k

(2π)m−1

ˆ

Rd−1,1

A ∧ Fm−1 . (6.32)

Comparing to Eq. (2.1), we see that this is a CS response with

level

N2m−1 = ±
(

m!

2

)

k , (6.33)

which is exactly half the response of the BIQH state which

appears intrinsically in the same spacetime dimension (which

we calculated in Section IV). As we discussed in Sec. III, this

boundary CS response is equivalent to a bulk electromagnetic

response of the form of Eq. (2.2) with response parameter

Θ2m = 2π

(

m!

2

)

k . (6.34)

However, we should recall from the discussion in Sec. III that

the BTI phase with k = 2 is smoothly connected to the phase

with k = 0. More generally the BTI phase with θ = 2πk is

smoothly connected to the phase with θ = 2π(k ± 2). This

means that the single non-trivial BTI phase is represented by

the choice k = 1.

Finally, we note that the boundary of the BTI can be driven

into the Z2 symmetry breaking phase without explicitly break-

ing the Z2 symmetry. This can be done by adding a term

µ n2
2m+1 to the Lagrangian. This term is invariant under the

full U(1) ⋊ Z2 symmetry of the BTI but, for µ > 0 and suf-

ficiently large, will drive the system into a phase in which the

Z2 symmetry is spontaneously broken and na = ±δa,2m+1

(i.e., n2m+1 = ±1 and na = 0 for a 6= 2m+ 1).

VII. APPLICATIONS

In this section we explore several applications of the results

obtained so far. We start with the observation that the gauged

boundary action for the BIQH state in 2m − 1 spacetime di-

mensions can be used as building block to construct a bosonic

analogue of a Weyl, or chiral, semi-metal in any even dimen-

sion. We refer to this state as a bosonic chiral semi-metal

(BCSM). We write down an effective theory for this state in

any even dimension d, compute its electromagnetic response,

and compare this response with the response of an ordinary

fermionic chiral semi-metal. This construction represents a

generalization to higher even dimensions of the work in Ref.

16 that constructed a bosonic analogue of a Dirac semi-metal

in three dimensions.

As a second application, we show that the boundary the-

ory of the BTI exhibits a bosonic analogue of the parity

anomaly of a single Dirac fermion in odd dimensions. As

we discuss below, this is closely related to the fact (derived

in Sec. VI) that the boundary theory of the BTI can exhibit

a half-quantized BIQH state when the Z2 symmetry of the

BTI is broken spontaneously at the boundary. This situation

is clearly analogous to the time-reversal symmetry-breaking

half-quantized Integer Quantum Hall state which appears on

the surface of the familiar electron topological insulator1. This

leads us to argue that the boundary theory for a BTI state in

2m dimensions cannot exist intrinsically in 2m − 1 dimen-

sions without breaking (partially or fully) the symmetry of the

BTI state.

Finally, we perform a detailed study of Z2 symmetry-

breaking domain walls on the boundary of BTI states. We

use a dimensional reduction formula for NLSMs with WZ

term, analogous to the dimensional reduction formula for

theta terms that we derive in Appendix D, to show that a

Z2 symmetry-breaking domain wall on the boundary of a

BTI state in 2m dimensions hosts a lower-dimensional the-

ory which is identical to the boundary theory of the BIQH

state in 2m− 1 dimensions. We show that the U(1) anomaly

of the theory on the domain wall is exactly canceled by an in-

flow of charge from the two Z2 breaking regions on either side

of the domain wall. This calculation is an important consis-

tency check for our results on the response of BIQH and BTI

states, and also provides a clear example of the phenomenon

of anomaly inflow in the context of bosonic SPT phases.

A. Bosonic analogue of a Weyl semi-metal in any even

dimension

In this section we describe how a bosonic analogue of a

Weyl semi-metal can be constructed in any even spacetime

dimension d using two copies of an O(d + 2) NLSM with

Wess-Zumino (WZ) term. Before discussing the bosonic ana-

logue, let us first review the basic construction of a Weyl (or

more generally a chiral) semi-metal of fermions in any even

dimension d. Note that our construction here still assumes

a point-like structure of the Fermi surface even in higher di-

mensions, as opposed to the recent construction in Ref. 93

using Weyl sheets in six spacetime dimensions. We con-

sider a Dirac fermion Ψ in d dimensions. To write down

an action for a Dirac fermion we need the gamma matri-

ces γµ, µ = 0, . . . , d − 1, which obey the Clifford algebra

{γµ, γν} = 2ηµν (and we choose η = diag(1,−1, . . . ,−1)).
When d is even we have an extra element γ of the Clifford

algebra which anti-commutes with the other gamma matri-

ces and can be chosen to satisfy γ† = γ and γ2 = I (γ is

the higher-dimensional analog of γ5 in d = 4). In the basis

(known as the Weyl basis in d = 4) in which γ takes the block

diagonal form

γ =

(

I 0
0 −I

)

, (7.1)



21

the fermion Ψ breaks up into chiral and anti-chiral parts as

Ψ = (Ψ+,Ψ−)
T . (7.2)

Now a minimal, two-node chiral (or Weyl) semi-metal

(CSM) in d dimensions is described at low energies by chi-

ral fermions Ψ± separated in momentum by 2B and in en-

ergy by 2Bt, where B = (B1, . . . , Bd−1) should be thought

of as a vector in a (d − 1)-dimensional momentum space (or

Brillouin zone). We assume here that the components Bµ

(µ = 0, . . . , d−1,B0 = Bt) are constant, although the results

below are expected to hold approximately if the components

Bµ are slowly varying functions of xµ. In addition, both chi-

ral fermions carry charge e of an external U(1) gauge field

Aµ. Using the extra gamma matrix γ, an action capturing this

low-energy physics takes the form

SCSM [Ψ, A,B] =

ˆ

ddx iΨ(/∂ − ie /A− i /Bγ)Ψ , (7.3)

where Ψ = Ψ†γ0 and we used the Feynman slash notation
/∂ = γµ∂µ, etc. In addition, we have assumed that the sep-

aration of Ψ± in momentum and energy is symmetric about

Bµ = 0, so that Ψ± is located at ±Bµ in momentum/energy

space. We also note here that in this low-energy description,

the chiral fermion fields Ψ± couple only to the linear com-

binations eAµ ± Bµ of the vector fields Aµ and Bµ. This

feature will be important later in our construction of a bosonic

analogue of the CSM.

The quasi-topological part of the electromagnetic response

of the CSM follows directly from the axial anomaly of a Dirac

fermion in d dimensions94. This is because this response is

generated by attempting to remove the coupling to Bµ from

the action via the chiral rotation

Ψ → eiξγΨ , (7.4)

with the parameter ξ chosen as

ξ = Bµx
µ . (7.5)

This transformation removes the coupling to Bµ from the ac-

tion. The physical interpretation of this transformation is that

it moves the two cones of the chiral semi-metal to the origin

of the Brillouin zone. However, the path integral measure is

not invariant under this transformation. Instead, the change in

the path integral measure generates a new term in the action

of the form (“f” stands for fermionic)

S
(f)
eff [A,B] = − 2

(

d
2

)

!

( e

2π

)
d
2

ˆ

Rd−1,1

ξ (F )
d
2 . (7.6)

Noting that dξ = Bµdx
µ ≡ B (for constant Bµ), and inte-

grating by parts gives the final form of the chiral semi-metal

response

S
(f)
eff [A,B] =

2
(

d
2

)

!

( e

2π

)
d
2

ˆ

Rd−1,1

B∧A∧(F )
d
2−1 . (7.7)

It is also interesting to consider the form Eq. (7.6) of the semi-

metal response (before integrating by parts), as it has the form

of the “Chern character” terms discussed earlier in the paper,

but with a spacetime-dependent angle ξ = Bµx
µ appearing in

the integrand.

So under the chiral transformation of Eq. (7.4), the CSM

action of Eq. (7.3) transforms as

SCSM [Ψ, A,B] → SCSM [Ψ, A, 0] + S
(f)
eff [A,B] , (7.8)

where we again emphasize that the term S
(f)
eff [A,B] was gen-

erated by the change in the path integral measure under the

chiral transformation of Eq. (7.4). Thus, we can say that the

electromagnetic response of the CSM with non-zero separa-

tion vector Bµ differs from the response of a CSM with sepa-

ration vectorBµ = 0 (i.e., a system where the two chiral parts

of the Dirac fermion sit at the same point in momentum space)

by the term S
(f)
eff [A,B] from Eq. (7.7). For d = 2 and d = 4

the responses are

S
(f)
eff [A,B] =

e

π

ˆ

R1,1

B ∧ A , (7.9)

and

S
(f)
eff [A,B] =

e2

4π2

ˆ

R3,1

B ∧ A ∧ F , (7.10)

respectively. We see that the general expression of Eq. (7.7)

agrees with the known expressions in low dimensions94,95.

Having reviewed the basic properties of fermionic chiral

semi-metals, we are now ready to describe our construction of

a bosonic analogue of a CSM (BCSM). To motivate our con-

struction we note that the low-energy theory of the CSM has

(at least) two essential properties which we use as a guide to

construct the BCSM model. The first property is that the CSM

model is constructed from two building blocks, namely the

chiral fermion theories with fields Ψ±, such that each build-

ing block on its own would have an anomaly in the U(1)
symmetry which sends Ψs → eiξsΨs, s = ±. The second

property (already noted above) is that the two building blocks

Ψ± couple only to the linear combinations eAµ ±Bµ of vec-

tor fields. This property, combined with the axial anomaly of

the Dirac fermion, is responsible for the form of the CSM re-

sponse shown in Eq. (7.7). We now describe the construction

of a bosonic theory with very similar properties.

Our low-energy theory for a BCSM in d dimensions (d
even) consists of two copies of the O(d+ 2) NLSM with WZ

term, i.e., two copies of the boundary theory of the BIQH state

in d+ 1 dimensions. To understand this system we briefly re-

call a few facts from Sec. IV about the boundary theory of

the BIQH state. The boundary of the BIQH state in 2m − 1
dimensions is described by an O(2m) NLSM with WZ term.

Here the dimension d is related to m by d = 2m − 2 as we

are constructing a model using the boundary theory for the

BIQH state. Finally, recall that under a U(1) transformation

the NLSM field transforms as in Eq. (3.13) (in units where

the boson charge e is set to 1). We showed that the properly

gauged boundary action had an anomaly in this U(1) symme-

try, with the anomaly given explicitly by Eq. (4.33).

To construct an effective theory for a bosonic semi-metal

in d dimensions we use two copies of the boundary theory
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of the BIQH state. We label the fields of the two copies by

n±, or bℓ,± when written in terms of bosons, and we take the

two copies to have opposite level on their WZ term, k± =
±k. Finally, in the effective theory we model the separation

of the two copies in momentum/energy space by coupling the

fields bℓ,± to the linear combinationsAµ ±Bµ of the external

U(1) gauge fieldAµ and the momentum/energy shift fieldBµ.

Then our action for the BCSM theory takes the form

S̃BCSM [n+,n−, A,B] =

Sgauged[n+, A+B] + Sgauged[n−, A−B] ,
(7.11)

where Sgauged[n, A] is the properly gauged action for one

O(d + 2) NLSM with WZ term and coupled to the exter-

nal field A (as constructed in Sec. IV). We put a tilde on

S̃BCSM [n+,n−, A,B] because, as we now discuss, this ac-

tion has an inconsistency and must be modified.

Suppose that the vector field Bµ, which is a constant in

the context of the chiral semi-metal, instead had a non-trivial

spacetime dependence, i.e., dB 6= 0. In this case the action

in Eq. (7.11) is not invariant under the U(1) gauge transfor-

mation bℓ,± → eiθbℓ,±, A → A + dθ. Instead, under this

transformation one can show that the change in the action of

Eq. (7.11) is

δθS̃BCSM [n+,n−, A,B] = − k

(2π)m−1

m−1
∑

p=0

(

m− 1

p

)

[1 + (−1)m−p]

ˆ

Rd−1,1

dθ ∧ (dA)p ∧B ∧ (dB)m−2−p . (7.12)

where 2m − 1 = d + 1. This equation requires some explanation. To compute it we used the relation Eq. (4.32) for the U(1)
anomaly for each gauged WZ theory in Eq. (7.11) (but coupled to the combinations of fields A ± B instead of A alone), then

expanded the powers (dA ± dB)m−1 using the binomial expansion, and finally performed an integration by parts to move one

derivative off of B and onto θ.

So in the presence of a spacetime-dependent Bµ, our putative semi-metal model is not invariant under U(1) gauge transfor-

mations. To remedy this we modify the action by adding the counterterm

Sct[A,B] =
k

(2π)m−1

m−1
∑

p=0

(

m− 1

p

)

[1 + (−1)m−p]

ˆ

Rd−1,1

A ∧ (dA)p ∧B ∧ (dB)m−2−p . (7.13)

The change in this counterterm under A → A + dθ exactly

compensates for the change in Eq. (7.11) under the U(1)
gauge transformation, and so the modified BCSM action

SBCSM [n+,n−, A,B] =

S̃BCSM [n+,n−, A,B] + Sct[A,B] , (7.14)

is completely gauge-invariant even in the presence of a

spacetime-dependent Bµ. The counterterm Sct[A,B] is the

analogue in our bosonic theory of the Bardeen counterterm

that one adds to the theory of a Dirac fermion coupled to vec-

tor and axial vector gauge fields to ensure conservation of the

vector current in the quantum theory96. Since this countert-

erm is absolutely necessary for the more general case of a

spacetime-dependentBµ, we argue that one should include it

even in the simple semi-metal setting in which we take Bµ to

be a constant. If we now restrict to the case of a constant Bµ,

then only the p = m−2 term in the counterterm survives, and

the counterterm reduces to

Sct[A,B] → − 2k

(2π)m−1
(m− 1)

ˆ

Rd−1,1

B ∧A∧ (dA)m−2 ,

(7.15)

where we used
(

m−1
m−2

)

= m− 1.

To compute the response of the modified BCSM theory in

Eq. (7.14), we attempt to remove the coupling to B from the

action via the chiral transformation

bℓ,± → e±iξbℓ,± , (7.16)

where ξ = Bµx
µ as in the fermionic case. Note that this

transformation takes the opposite sign for the two copies of

the NLSM theory: this is the analogue in the bosonic theory

of the chiral transformation of Eq. (7.4) that we performed in

the fermionic case. Using the U(1) anomaly for the boundary

theory of the BIQH state from Eq. (4.33), we find that under

this transformation the original effective action for the BCSM

state transforms as

S̃BCSM [n+,n−, A,B] →
S̃BCSM [n+,n−, A, 0] + S̃

(b)
eff [A,B] , (7.17)

where

S̃
(b)
eff [A,B] = − 2k

(2π)m−1

ˆ

Rd−1,1

B∧A∧(dA)m−2 . (7.18)
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However, this is not the end of the story as the full action for

the BCSM state contains the counterterm Sct[A,B]. When

we combine Eq. (7.18) with the counterterm (neglecting those

parts of the counterterm containing dB), then we obtain the

final expression for the response of the BCSM,

S
(b)
eff [A,B] = −2km

( e

2π

)m−1
ˆ

Rd−1,1

B ∧ A ∧ (dA)m−2 ,

(7.19)

or in terms of d,

S
(b)
eff [A,B] =

−2k

(

d

2
+ 1

)

( e

2π

)
d
2

ˆ

Rd−1,1

B ∧ A ∧ (dA)
d
2−1 ,

(7.20)

where we have restored the charge e of the bosons. This equa-

tion is the final form of the response of our BCSM model.

If we set k = 1 and compare the BCSM response in

Eq. (7.20) to the fermionic CSM response in Eq. (7.7), then we

see that the response of the BCSM in d dimensions is larger by

a factor of
(

d
2 + 1

)

!. To understand this number recall that our

BCSM model in d dimensions is constructed from two copies

of the boundary state for a BIQH state in d + 1 dimensions.

Setting d + 1 = 2m − 1, we see that
(

d
2 + 1

)

! = m!, so we

find that the coefficients for the response of the bosonic and

fermionic semi-metals in d dimensions differ by exactly the

same factor we found in Sec. IV for the coefficients for the

response of BIQH and FIQH states in one dimension higher.

We can also see from Eq. (7.20) that at the level of the elec-

tromagnetic response, the BCSM theory at level k is equiva-

lent to k copies of the BCSM theory at level 1. However, as a

quantum field theory we certainly expect the theory at level k
to be distinct from k copies of the theory at level 1. This can

be seen very clearly in the case where d = 2. In this case the

BCSM model consists of two copies of an O(4) NLSM with

WZ terms at levels k and −k, respectively. The O(4) NLSM

can be reformulated in terms of a 2 × 2 SU(2) matrix field,

and so (when the coupling constant for the NLSM takes on

a particular value), the O(4) NLSM with WZ term at level k
is equivalent to the SU(2)k Wess-Zumino-Witten conformal

field theory. Now the SU(2)k theory is distinct from k copies

of the SU(2)1 theory (this can be seen by comparing central

charges), and so we conclude that even in the simplest case

of two dimensions, the BCSM model at level k is distinct (as

a quantum field theory) from k copies of the BCSM model

at level 1. However, it is entirely possible that k copies of

the BCSM model at level 1 could flow under the Renormal-

ization Group to the BCSM model at level k. In the simple

d = 2 case discussed in this paragraph this flow is allowed by

Zamolodchikov’s c-theorem97.

B. Bosonic analogue of the parity anomaly on the boundary of

BTI phases

In this subsection we show that the half-quantized BIQH

on the BTI boundary, which we derived in Sec. VI, represents

a bosonic analogue of the parity anomaly45–49, which is an

anomaly that is usually associated to massless Dirac fermions

in odd dimensions. To start, we give a brief review of the

parity anomaly in the fermionic case before explaining the

bosonic analogue.

To understand the parity anomaly for Dirac fermions in

odd dimensions, consider a theory of a single massless Dirac

fermion Ψ with U(1) symmetry in 2m − 1 dimensions. We

can couple Ψ to an external electromagnetic field A and then

integrate out Ψ to obtain the partition function

Z[A] =

ˆ

[DΨ][DΨ]eiS[Ψ,A] , (7.21)

and the effective action for the external field A,

Seff [A] = −i ln(Z[A]) . (7.22)

The action S[Ψ, A] (with Ψ a massless fermion) has an ad-

ditional discrete symmetry, which is time-reversal symmetry

when the spacetime dimension equals 3 mod 4, or charge-

conjugation (particle-hole) symmetry98 when the spacetime

dimension equals 1 mod 4 (in Euclidean spacetime the dis-

crete symmetry in any dimension can be chosen to be reflec-

tion of a single coordinate). However, when one proceeds

to calculate the effective action Seff [A], one finds that there

is no choice of regularization procedure which yields an ac-

tion Seff [A] which has this extra discrete symmetry and is

also gauge-invariant. In other words, one can choose to pre-

serve either the discrete symmetry, or gauge invariance, but

not both. For example, when Pauli-Villars regularization is

used to compute Seff [A], the mass terms for the regulator

fermions explicitly break the discrete symmetry, and this re-

sults in the appearance of a term in Seff [A] which also breaks

the discrete symmetry.

At this point it helps to look at a specific example. We

choose the case of a massless Dirac fermion Ψ in three space-

time dimensions with U(1) symmetry and Z
T
2 time-reversal

symmetry, which was the case originally studied in Refs. 45

and 46. This case also applies directly to the study of the sur-

face of the familiar electron topological insulator in four di-

mensions. Because of the U(1) symmetry, Ψ can be coupled

to the external field A. To discuss the transformation of Ψ un-

der time-reversal, it is convenient8 to choose the gamma ma-

trices in the “mostly minus” metric to be γ0 = σz , γ1 = iσy

and γ2 = −iσx, where σa, a = x, y, z, are the three Pauli

matrices (and recall that a single Dirac fermion in three di-

mensions has two components). With this choice, the time-

reversal transformation of Ψ takes the form

Z
T
2 : Ψ(t,x) → iσyΨ(−t,x) , (7.23)

while the componentsAµ of A transform as

Z
T
2 : A0(t,x) → A0(−t,x) (7.24)

Ai(t,x) → −Ai(−t,x) , i = 1, 2 . (7.25)

In the absence of a mass term forΨ the action S[Ψ, A] forΨ
minimally coupled to A has time-reversal symmetry in addi-

tion to the U(1) symmetry. However, when Pauli-Villars reg-

ularization is used to computeSeff [A], one finds that Seff [A]
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contains the time-reversal-breaking CS term for A99. In addi-

tion, the level of this CS term is equal to ± 1
2 , which is half of

the minimum Hall conductance possible for free fermions in

three dimensions (i.e., the CS term with level ± 1
2 is like a half-

quantized Integer Quantum Hall state of fermions). One can

think of the parity anomaly as a quantum version of the spon-

taneous breaking of a discrete symmetry. Indeed, the value

of the induced CS term in Seff [A] is determined by the sign

of the mass of the Pauli-Villars regulator fermion, and this

choice of sign is arbitrary in the same way that the choice of

a particular point on the vacuum manifold of a “Mexican hat”

potential is arbitrary.

To demonstrate that a bosonic analogue of the parity

anomaly occurs in the boundary of a BTI phase, we first need

to discuss the symmetries of the BTI theory coupled to A. As

we discussed in Sec. III, the NLSM field na transforms under

theZT
2 orZC

2 symmetry of the BTI as shown in Eq. (3.14). Re-

call that in the case where the Z2 symmetry is time-reversal,

we also need to send t → −t in the argument of the NLSM

field na and in the action. For a spacetime of dimension d
(which in our convention is the dimension of the boundary of

the SPT phase) the fieldA transforms under time-reversal and

charge-conjugation as

Z
T
2 : A0(t,x) → A0(−t,x) (7.26)

Ai(t,x) → −Ai(−t,x) , i = 1, . . . , d− 1 , (7.27)

and

Z
C
2 : Aµ(t,x) → −Aµ(t,x) , ∀ µ , (7.28)

where x = (x1, . . . , xd−1) denotes the spatial coordinates.

The gauged WZ action of Eq. (6.24) for the boundary of

the BTI phase has the ZC
2 (for m odd) or ZT

2 (for m even)

symmetry of the BTI, in addition to the invariance under U(1)
gauge transformations. To see this we simply note that the

counterterms from Eq. (6.25) transform under these two Z2

symmetries as

Z
T
2 : S

(r)
ct [n, A] → (−1)mS

(r)
ct [n, A] , (7.29)

and

Z
C
2 : S

(r)
ct [n, A] → (−1)m+1S

(r)
ct [n, A] . (7.30)

So the gauged WZ action for the BTI boundary has ZT
2 sym-

metry for m even and ZC
2 symmetry for m odd.

Now, although the gauged WZ action for the BTI bound-

ary has the Z2 symmetry, we have seen in Sec. VI that it is

possible to add the symmetry-allowed term µ n2
2m+1 to the

Lagrangian and drive the boundary of the BTI into a phase in

which the Z2 symmetry is spontaneously broken by the con-

densate na = ±δa,2m+1. In addition, we showed that when

the field na condenses in this way it leads to a CS term in the

effective action for A on the boundary of the BTI phase. The

CS term in 2m − 1 dimensions breaks ZT
2 symmetry for m

even, and Z
C
2 symmetry for m odd, so the effective action for

A does not have the Z2 symmetry of the BTI phase. We also

saw that the CS level turned out to be quantized in half-integer

multiples of m!.

Since the CS term in the effective action for the bound-

ary breaks the Z2 symmetry of the BTI phase, and since the

boundary also exhibits a “half” BIQH response, we conclude

that the boundary theory of the BTI phase exhibits an anomaly

in the Z2 symmetry which is almost an exact analogue of the

parity anomaly of a Dirac fermion in odd dimensions.

There is, however, one important difference between the

bosonic analogue of the parity anomaly discussed here and the

original parity anomaly for Dirac fermions. The difference is

the fact that in the bosonic case the spontaneous breaking of

the Z2 symmetry is a classical effect, whereas in the origi-

nal fermionic case the Z2 symmetry is broken spontaneously

only at the quantum level (by the choice of the sign of the

mass of the regulator fermions). One likely explanation for

this difference is as follows. Since the NLSM description

of the bosonic SPT phase is an effective field theory descrip-

tion, i.e., it does not involve the microscopic degrees of free-

dom in the SPT phase, it is entirely possible that the quantum

anomaly of any putative microscopic description of the SPT

phase is already captured at the classical level in the effec-

tive NLSM description of the phase. This is, in fact, exactly

the way in which quantum anomalies of fermionic theories are

captured at the classical level in effective descriptions of those

fermionic theories in terms of gauged WZ actions39,40. In ad-

dition, we have already seen in this paper that the pertubative

U(1) anomaly on the boundary of BIQH states is completely

captured at the classical level in the gauged WZ description

of the BIQH boundary. For this reason we believe that the

bosonic analogue of the parity anomaly discussed here is a

bona-fide quantum effect that occurs in the boundary theory

of a BTI phase, and that this anomaly would appear as a true

quantum anomaly in a more microscopic description of the

boundary of the BTI. We are therefore led to argue that, due to

this anomaly, the boundary theory of a 2m-dimensional BTI

phase cannot be realized intrinsically in 2m − 1 dimensions

without breaking either the U(1) or the Z2 symmetry of the

BTI phase.

Finally, let us describe one more way of understanding the

bosonic analogue of the parity anomaly in the specific case

of the boundary theory of the four-dimensional BTI. As we

know, the boundary theory is an O(5) NLSM with WZ term

in three dimensions. Let us investigate what happens in this

theory when we thread a 2π delta function flux of the gauge

field at a point in space. This method of analysis in known to

expose the parity anomaly in the theory of a single massless

Dirac fermion in three dimensions (see, for example, Ref. 14)

and so it should work in this case as well. For simplicity

we consider a deformation of the O(5) theory in which we

set n5 = 0 (this deformation preserves the U(1) and time-

reversal symmetry). In this case the WZ term at level k re-

duces to a theta term for the four component field (n1, . . . , n4)
with the theta angle equal to θ = πk. In particular, for k = 1
(which represents the non-trivial BTI phase in four dimen-

sions) the WZ term with level k = 1 reduces to a theta term

with theta angle θ = π.

Threading a 2π delta function flux at a point x0 in space

will cause the phase of both bosons b1 = n1 + in2 and

b2 = n3 + in4 to wind by 2π about x0, i.e., there is a vor-
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tex centered at x0 in the phase of both bosons. In Appendix B

of Ref. 16, two of us performed a detailed study of vortex con-

figurations of a single boson b1 or b2 in the O(4) NLSM with

theta term and with θ = π. In particular we quantized global

fluctuations of the theory over such a vortex background and

showed that the ground state of these fluctuations was doubly

degenerate, with the two degenerate states having charges± 1
2 .

This analysis confirmed the arguments of Ref. 29 that a vortex

in a single boson b1 or b2 should carry charge ± 1
2 . As stated

above, threading a 2π flux ofAµ at x0 induces a vortex in both

b1 and b2 at that point. This composite object has an integer

charge and so is naively gauge-invariant, however, this com-

posite object can actually be shown to be a fermion16,29,100.

This fact clearly shows the anomaly in theory, as there should

be no local fermionic particle with integer charge in a system

made up of bosons of unit charge. The existence of a fermion

with unit charge in the boundary theory of the BTI can also be

inferred from the presence of a CS term at levelN3 = 1 in the

response action for the BTI boundary using an argument from

Ref. 18.

C. Z2 symmetry-breaking domain walls on the boundary of

BTI

We close this section by analyzing the physics of a domain

wall between two opposite Z2 symmetry-breaking regions on

the boundary of a BTI state in 2m dimensions. In particu-

lar, we derive the low-energy theory that exists on the domain

wall, and we show that this theory has a U(1) anomaly which

is exactly canceled by the contributions of the CS response

actions for the Z2 symmetry-breaking regions on either side

of the domain wall. We find that the theory which lives on the

domain wall is identical to the boundary theory for the BIQH

phase in 2m − 1 dimensions, and so this demonstration of

anomaly cancellation for domain wall configurations on the

BTI boundary provides a nice consistency check between our

gauged actions for BIQH and BTI surfaces.

To start, recall from Sec. VI that the boundary of a BTI

phase in 2m dimensions, which is described by anO(2m+1)
NLSM with WZ term at level k, can exhibit a Z2 symmetry-

breaking response of the form (d = 2m−1 is again the bound-

ary dimension)

Seff [A] = ±1

2

k

(2π)m−1

ˆ

Rd−1,1

A ∧ Fm−1 , (7.31)

when the NLSM field na condenses as in Eq. (6.28), i.e.,

n2m+1 = ±1 and all other components of n equal to zero.

As we discussed earlier, this particular condensation pattern

is the only one which preserves the U(1) symmetry of the

BTI phase while breaking the Z2 symmetry.

We now consider a domain wall configuration between

opposite Z2 breaking regions on the boundary. Let

(x0, . . . , xd−1) be the boundary spacetime coordinates. We

study a configuration of the system in which n2m+1 condenses

as n2m+1 = 1 in the region xd−1 > 0, and as n2m+1 = −1 in

the region xd−1 < 0. Hence, the domain wall is in the xd−1

direction. Then on the two sides of the domain wall the elec-

tromagnetic response is given by

Seff,+[A] =
1

2

k

(2π)m−1

ˆ

H
d−1,1
+

A ∧ Fm−1 , (7.32)

and

Seff,−[A] = −1

2

k

(2π)m−1

ˆ

H
d−1,1
−

A ∧ Fm−1 , (7.33)

respectively, where H
d−1,1
+ denotes the half space {x ∈

Rd−1,1| xd−1 > 0}, and similarly for H
d−1,1
− . If we perform

a gauge transformation then the change in the total effective

action is

δξSeff,+[A] + δξSeff,−[A] =
k

(2π)m−1

ˆ

Rd−2,1

ξFm−1 ,

(7.34)

where the integration is over the domain wall which is just

the space Rd−2,1 sitting at xd−1 = 0. Note also that the con-

tributions from Seff,±[A] add instead of subtract due to the

fact that the domain wall is on the opposite side of the two

regions (the domain wall lies to the right of the region H
d−1,1
+

and to the left of the region H
d−1,1
− , so when we integrate the

total derivative the boundary terms coming from each integral

appear with opposite signs).

Next we derive the theory which lives on the domain wall

and show that it has a U(1) anomaly which precisely can-

cels the gauge transformation from Eq. (7.34). To derive this

theory we analyze the BTI surface theory in the presence of

a domain wall in n2m+1. Concretely, we assume that the

O(2m + 1) NLSM field takes on the domain wall configu-

ration,

n = {sin(f(xd−1))N(x0, . . . , xd−2), cos(f(xd−1))} ,
(7.35)

where N is a 2m-component unit vector which depends only

on the coordinates (x0, . . . , xd−2) on the domain wall, and

where f(xd−1) is a function with the limiting behavior

lim
xd−1→∞

f(xd−1) = 0 (7.36)

lim
xd−1→−∞

f(xd−1) = π . (7.37)

This guarantees that n asymptotes to a configuration with

n2m+1 = ±1 as xd−1 → ±∞. To solve for the theory which

lives on the domain wall, we evaluate the O(2m + 1) NLSM

action (with WZ term) on this configuration. Evaluating the

kinetic term of the NLSM on the domain wall configuration is

simple, provided that we assume the function f(xd−1) is suf-

ficiently well-behaved so that the integration over xd−1 gives

a finite answer. We therefore focus our attention on the WZ

term since any anomalous behavior of the domain wall the-

ory should come from this term. The WZ term involves an

extension ñ of the field n into a fictitious extra direction with

coordinate s ∈ [0, 1], and so we need to decide how to extend

our domain wall configuration into this extra direction. Here

we assume the extension takes the form

ñ = {sin(f(xd−1))Ñ(s, x0, . . . , xd−2), cos(f(xd−1))} ,
(7.38)
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so that all of the s-dependence of the extension is in the ex-

tended 2m-component field Ñ, while the function f(xd−1)
still depends only on xd−1.

We now examine how the WZ term of the O(2m + 1)
NLSM reduces on the extended domain wall configuration ñ

of Eq. (7.38). The analysis is similar (but not identical) to that

in Appendix D for the dimensional reduction of theta terms in

NLSMs on defect configurations of the NLSM field. Recall

that the WZ term takes the form

SWZ [n] =
2πk

A2m

ˆ

[0,1]×Rd−1,1

ñ∗ω2m, (7.39)

whereω2m is the volume form for the sphere S2m, and [0, 1]×
Rd−1,1 is the extended spacetime (which we called B before).

Using the relations

dna = sin(f)dNa + cos(f)Nadf , a = 1, . . . , 2m , (7.40)

and

dn2m+1 = − sin(f)df , (7.41)

one can show that on this configuration the volume form ω2m

for n reduces to

ω2m → [sin(f)]2m−1df ∧ ω2m−1 , (7.42)

where

ω2m−1 =
2m
∑

a=1

(−1)a−1NadN1 ∧ · · · ∧ dNa ∧ · · · ∧ dN2m ,

(7.43)

is the volume form for Na. Since the WZ term involves the

pullback ñ∗ω2m of the volume form to the extended space-

time, we find that the WZ term reduces as

SWZ [n] →
2πk

A2m

ˆ ∞

−∞
dxd−1 f ′(xd−1)[sin(f(xd−1))]2m−1

ˆ

[0,1]×Rd−2,1

Ñ∗ω2m−1

=
2πk

A2m

(

−
√
π Γ(m)

Γ(m+ 1
2 )

)
ˆ

[0,1]×Rd−2,1

Ñ∗ω2m−1

= − 2πk

A2m−1

ˆ

[0,1]×Rd−2,1

Ñ∗ω2m−1 . (7.44)

We see that the theory localized on the domain wall is an

O(2m) NLSM for the field N, with a WZ term at level −k.

This theory also appears at the boundary theory of the BIQH

phase in 2m − 1 dimensions, as discussed in Sec. IV. The

extra minus sign on the level of the domain wall theory, as

compared with the level of the boundary theory of the BTI, is

very important. Indeed, from our previous formula Eq. (4.32)

for the U(1) anomaly of the O(2m) NLSM with WZ term

we see that, under a gauge transformation, the theory on the

domain wall transforms as

δξSDW [N, A] = − k

(2π)m−1

ˆ

Rd−2,1

ξFm−1 . (7.45)

This exactly cancels Eq. (7.34), which was the contribution

flowing into the domain wall from the Z2 breaking regions

on either side, and so this calculation gives a nice example of

anomaly inflow at the domain walls on the boundary of SPT

phases. It also provides an important consistency check of the

gauged WZ actions calculated in this paper for the boundaries

of BIQH and BTI phases (since it relates the calculation of the

BTI boundary CS response to the calculation of the anomaly

of the BIQH boundary theory).

VIII. CONCLUSION

In this paper we calculated the electromagnetic response

of bosonic SPT phases with U(1) symmetry in all spacetime

dimensions. In particular, we focused our attention on BIQH

phases in odd dimensions and BTI phases in even dimensions.

To calculate the response of these phases we used the NLSM

description of bosonic SPT phases and the tool of gauged WZ

actions. This enabled us to compute the coefficients N2m−1

and Θ2m which determine, via Eqs. (2.1) and (2.2), the elec-

tromagnetic response of BIQH and BTI states in all odd and

even spacetime dimensions, respectively. We found that for

BIQH states the coefficient N2m−1 was quantized in units of

m!, and that the non-trivial BTI state in 2m dimensions has

Θ2m = 2π
(

m!
2

)

. This response for the BTI is equivalent to

a Z2 symmetry-breaking Quantum Hall state on the boundary

of the BTI with CS level equal to m!
2 , which is exactly half

the response of the BIQH state which can be realized intrinsi-

cally in the same spacetime dimension. In Sec. V we showed

that the value of m! for the CS level can be understood by

studying the transformation of the CS term under large U(1)
gauge transformations on general Euclidean manifolds which

may or may not admit a spin structure. In that section we also

applied this gauge invariance argument to study the electro-

magnetic and gravitational responses of fermionic SPT phases
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with U(1) symmetry in odd spacetime dimensions.

We then used our gauged WZ actions for the boundaries of

the BIQH and BTI phases to further investigate the physics of

BIQH and BTI states, and to construct other interesting states.

In particular, we showed how two copies of the BIQH bound-

ary theory could be used to construct an effective theory for a

bosonic analogue of a Weyl, or chiral, semi-metal (a “bosonic

chiral semi-metal” or BCSM state) in any even spacetime di-

mension. We also showed that the boundary of the BTI state

exhibits a bosonic analogue of the parity anomaly of a Dirac

fermion in odd dimensions, and we used this fact to argue that

the boundary theory of the BTI in 2m dimensions cannot be

realized intrinsically in 2m − 1 dimensions while preserving

the symmetry of the BTI state. We also explored the phe-

nomenon of anomaly inflow at Z2 symmetry-breaking domain

walls on the boundaries of BTI states.

From a technical point of view one of the most interest-

ing results of the paper is our explicit construction of gauged

WZ actions for O(2m) and O(2m + 1) NLSMs, and with

the gauge group U(1). This construction allowed us to over-

come the difficulties associated with calculating the electro-

magnetic response of bosonic SPT phases from their NLSM

description. In addition, as we reviewed in Appendix A, the

problem of constructing a gauged WZ action is equivalent to

the mathematical problem of constructing equivariant exten-

sions of the volume form on the target space of the NLSM.

Then from a mathematical point of view we can say that we

have succeeding in constructing an equivariant extension of

the volume form ω2m on S2m (this is the BTI case), whereas

in the case of S2m−1 we have constructed an extension of

ω2m−1 which is almost, but not quite, equivariantly closed

(this is the BIQH case). The fact that we could not construct

an equivariant extension of ω2m−1 is mathematically equiv-

alent to the statement that the boundary theory of the BIQH

phase has a perturbative anomaly in the U(1) symmetry, as

we expect based on physical arguments.

Our work in this paper opens up many possible directions

for future investigations. In particular, it would be nice to have

a physical argument along the lines of the one in Ref. 18 for

why the CS level for the BIQH phase is quantized in units of

m! in 2m− 1 dimensions. Perhaps one can find a physical ar-

gument for this quantization by studying generalized braiding

processes of extended excitations in gapped bosonic phases

in higher dimensions, but we do not have any concrete sug-

gestions as to which excitations and braiding processes might

be relevant. Another possible direction would be to apply the

general method of gauging WZ actions from Ref. 44 to com-

pute the “electromagnetic” response of SPT phases with the

symmetry of a non-Abelian Lie group G. From a mathemat-

ical point of view it would also be interesting to investigate

whether the theory of G-equivariant cohomology over an ap-

propriate target manifold could be used to classify SPT phases

with the symmetry of a Lie group G. Finally, it would be in-

teresting to use the bosonic analogue of the parity anomaly

discussed in this paper as a guide to investigate possible dual

descriptions of the boundary of BTI phases in all dimensions,

analogous to the recent investigations into the dual description

of the boundary of the electron topological insulator and BTI

in four spacetime dimensions8–16.
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Appendix A: Equivariant Cohomology Intepretation of Gauged

Wess-Zumino Actions

In this Appendix we review the connection between the the-

ory of gauged WZ actions and equivariant cohomology. This

allows us to give a concrete mathematical interpretation of the

form of the gauged WZ actions for the boundary theories of

BIQH and BTI states that we derived in Sec. IV and Sec. VI of

this paper. Briefly, equivariant cohomology can be thought of

as a generalization of de Rham cohomology to the case where

a continuous group G acts on the manifold. In the cases of

interest in this paper the groupG is just the group U(1) repre-

senting the charge-conservation symmetry of the SPT phases

we study (i.e., the BIQH and BTI states), and this group acts

on the target space of the NLSM via the rotations shown in

Eq. (3.13). The connection between gauged WZ actions and

equivariant cohomology has been explored in Refs. 43, 101–

103. The connection was first discussed explicitly by Witten

in Ref. 43 for the case of two spacetime dimensions. Later,

Figueroa-O’Farrill and Stanciu102,103 considered NLSMs with

a generic target space and in any spacetime dimension, and

they gave an explanation of the results of Ref. 44 in terms

of equivariant cohomology. In addition, Wu104 considered

the equivalent mathematical problem of finding obstructions

to the equivariant extension (to be defined below) of closed

differential forms which are invariant under a group action.

The result of these papers is that the problem of construct-

ing a gauge-invariant WZ action is equivalent to the problem

of constructing an equivariant extension of the volume form

on the target manifold of the NLSM. We now give a brief re-

view of equivariant cohomology and the connection to gauged
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WZ actions in the case where G = U(1), and then we apply

this knowledge to give a mathematical interpretation of the

counterterms of Eq. (4.29) and Eq. (6.25) which appear in the

gauged WZ actions constructed in this paper.

1. Equivariant cohomology

To introduce equivariant cohomology we first need to re-

call some basic facts about calculus on manifolds. For a D-

dimensional manifold M a vector field V in the coordinate

patch with coordinates y = (y1, . . . , yD) can be expanded as

V = V a ∂

∂ya
. (A1)

The partial derivatives ∂
∂ya provide a basis for the tangent

space TyM of M at the point y, and a general vector field

V is a section of the tangent bundle TM of M. The differen-

tial forms dya provide a basis which is dual to the basis pro-

vided by ∂
∂ya , i.e., the dya form a basis for the cotangent space

T ∗
yM at the point y. A general differential p-form α is a sec-

tion of the bundle whose fiber over the point y is
∧p

(T ∗
yM),

the pth exterior power of T ∗
yM.

Now for any vector field V and p-form α =
1
p!αb1···bpdy

b1∧· · ·∧dybp we can define the operator iV , called

interior multiplication by V , by

iV α =
1

(p− 1)!
V aαab2···bpdy

b2 ∧ · · · ∧ dybp . (A2)

So iV takes a p-form to a (p− 1)-form. For later use we also

note that applying the interior multiplication twice gives zero,

i2V = 0, and that iV f = 0 for any function (zero form) on

M. The Lie derivative LV of any differential form α along

the vector field V is then given by Cartan’s formula,

LV α = d(iV α) + iV (dα) , (A3)

or simply

LV = diV + iV d , (A4)

in operator form.

We are now ready to introduce U(1)-equivariant cohomol-

ogy overM. To start, we pick some vector field V which gen-

erates a U(1) action, or circle action, on the manifold. This

can be understood concretely in terms of the flow generated

by V as follows. First, recall that a vector field V generates a

flow on the manifold via the set of differential equations

dya(t)

dt
= V a(y1, . . . , yD) , a = 1, . . . , D . (A5)

The condition that V generate a U(1) action on the manifold

means that this flow carries each point on M along a closed

path, and each point takes the same amount of “time” t to

return to its initial position. Now define the modified exterior

derivative

d̃ = d− iV . (A6)

Note that d̃ takes a p-form to a linear combination of a (p+1)-

form and a (p − 1)-form. If we compute the square of d̃ then

we find that

d̃2 = −LV , (A7)

which means that d̃2 = 0 on the subspace of forms which have

a vanishing Lie derivative along V . It is therefore possible to

define the cohomology of the operator d̃ in this subspace of

differential forms in the same way that one defines the ordi-

nary de Rham cohomology of the exterior derivative d.

Given this structure one can then try to understand what

kinds of objects are closed under the action of d̃. From the

definition of d̃ it is clear that a differential form of a definite

degree will not, in general, be closed under the action of d̃.

Instead, an equivariantly closed “form” α is actually a formal

linear combination of differential forms of different degrees,

i.e., a section of the bundle whose fiber over the point y is

the exterior algebra
∧

(T ∗
yM) =

⊕D
r=0

∧r
(T ∗

yM). For the

purposes of this paper we are interested in the case where α
is a sum of a form of degree D (the highest possible degree

form on the manifold), and several other forms whose parity

(even or odd) is the same as that of the form of degree D. In

this case we can expand α as

α =

D′

∑

r=0

α(D−2r) , (A8)

where α(D−2r) is a differential form of degreeD − 2r and

D′ =

{

D
2 D = even
D−1
2 D = odd .

(A9)

The condition d̃α = 0 then implies that the forms α(D−2r)

obey the set of equations

iV α
(D−2r) = dα(D−2r−2) , r = 0, . . . , D′ − 1 (A10a)

iV α
(D−2D′) = 0 . (A10b)

In these equations the second line is trivially satisfied in the

case that D is even, since in that case D − 2D′ = 0 and so

α(D−2D′) is just a function. The relation dα(D) = 0 is also

trivially satisfied since α(D) is a highest-degree form on M,

and so we have not included it in the set of equations for the

forms that make up α. The form α constructed in this way is

known as an equivariant extension of the form α(D). We now

move on and discuss the connection between these ideas and

the theory of gauged WZ actions.

2. The connection to gauged WZ actions

To understand the connection between equivariant coho-

mology and gauged WZ actions, consider a general NLSM

with D-dimensional target space M (a closed, compact man-

ifold). We denote the NLSM field by φ = (φ1, . . . , φD), so

φ labels a point on M. We formulate this NLSM on a space-

time manifold ∂B of dimensionD−1, where B is an extended
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spacetime of dimension D. So the NLSM field φ is a map

from ∂B to M. Finally, let α(D)(φ) be the volume form on

the target space M. Then a WZ term for this NLSM takes the

form (we absorb any constant factors needed for consistency

of the WZ term into the definition of α(D))

SWZ [φ] =

ˆ

B
φ̃∗α(D) , (A11)

where φ̃ is an extension of φ into B and φ̃∗α(D) again denotes

the pullback of α(D) to B via the map φ̃. In what follows

we again omit the pullback symbols φ∗ and φ̃∗ for notational

simplicity.

Now we suppose that the NLSM has a U(1) symmetry and

we attempt to probe this symmetry by coupling the system to

the external field A. The transformation of the field φ under

theU(1) symmetry is generated by a vector field V , i.e., under

an infinitesimal gauge transformation the field φ transforms as

φa → φa + ξV a , (A12)

where ξ is a small gauge transformation parameter. More gen-

erally, a differential p-form β = 1
p!βa1···ap

dφa1 ∧ · · · ∧ dφap

on M transforms under a small gauge transformation as

β → β + LξV β , (A13)

where LξV is the Lie derivative along the “small” vector field

ξV . We can now use this more general geometric formulation

to try and gauge the WZ term. We should mention that in the

case of a U(1) symmetry it suffices to study the change in the

action under infinitesimal gauge transformations since there is

only one gauge transformation parameter ξ (as opposed to the

non-Abelian case where there are several parameters ξJ with

J indexing the generators of the Lie group).

Under a small gauge transformation the WZ term trans-

forms as

δξSWZ [φ] =

ˆ

B
LξV α

(D)

=

ˆ

∂B
ξ(iV α

(D)) , (A14)

where we used the Lie derivative formula Eq. (A13), the fact

that dα(D) = 0, and the property iξV = ξiV of the interior

multiplication. This change can be canceled by a term

S
(1)
ct [φ,A] =

ˆ

∂B
A ∧ α(D−2) , (A15)

where α(D−2) is some (D − 2)-form, provided that α(D−2)

satisfies the equation

iV α
(D) = dα(D−2) . (A16)

To see this, consider the change in S
(1)
ct [φ,A] whenA→ A+

dξ. We find a term

ˆ

∂B
dξ ∧ α(D−2) = −

ˆ

∂B
ξdα(D−2) , (A17)

where we performed an integration by parts and ignored

boundary terms (since ∂B has no boundary). At this point

the candidate gauged WZ action takes the form

S′
WZ,gauged[φ,A] = SWZ [φ] + S

(1)
ct [φ,A] . (A18)

Now under a small gauge transformation we find

δξS
′
WZ,gauged[φ,A] =

ˆ

∂B
A ∧ (LξV α

(D−2)) , (A19)

which can be reduced to

δξS
′
WZ,gauged[φ,A] =

ˆ

∂B
ξF ∧ (iV α

(D−2)) , (A20)

with the help of Eq. (A16), the property i2V = 0, and an inte-

gration by parts. This change can then be canceled by a term

S
(2)
ct [φ,A] =

ˆ

∂B
A ∧ F ∧ α(D−4) , (A21)

where α(D−4) is some (D−4)-form that satisfies the equation

iV α
(D−2) = dα(D−4) , (A22)

and so on.

Proceeding in this way we find that a gauge-invariant WZ

term can be constructed if and only if there exist differential

forms α(D−2r), r = 1, . . . , D′, such that together with the

volume form α(D) they satisfy Eqs. (A10). Thus, we find that

the problem of constructing a gauge-invariant WZ action is

exactly the same as the problem of constructing an equivari-

ant extension of the volume form α(D) on the target space

manifold M. We now use this information to re-interpret the

gauged WZ actions for the boundary theories of the BIQH and

BTI phases.

3. Application to BIQH and BTI boundary theories

In the BIQH and BTI cases the vector field V which gener-

ates the U(1) gauge transformations is

V =
m
∑

ℓ=1

(

−n2ℓ ∂

∂n2ℓ−1
+ n2ℓ−1 ∂

∂n2ℓ

)

. (A23)

Now the NLSMs which describe the boundary of the BIQH

and BTI have target spaces S2m−1 and S2m, respectively.

We now consider the mathematical problem of constructing

equivariant extensions of the volume forms ω2m−1 and ω2m

for these two manifolds. In the BTI case we will see that an

equivariant extension of ω2m exists, and we will give an ex-

plicit formula for it. On the other hand, in the BIQH case we

will attempt to construct an equivariant extension of ω2m−1,

but we will find that it is not quite closed under the action of

d̃ = d − iV . This gives a mathematical interpretation of the

U(1) anomaly that we found for the boundary theory of the

BIQH phase.
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We start with the BTI case. Recall from our study of the

boundary theory of the BTI that the construction of the gauged

WZ action involved the formsΦ(r) from Eq. (6.3). If we apply

interior multiplication by V to these forms we find

iV Φ
(r) = (m− r)n2m+1dn2m+1 ∧ Φ(r+1) , (A24)

which bears a close resemblance to Eq. (6.4). In addition, for

the volume form ω2m we have

iV ω2m =
1

(m− 1)!
d
(

n2m+1Φ
(1)
)

. (A25)

We now use these relations to construct an equivariant exten-

sion of ω2m, i.e., a solution of Eqs. (A10) with α(D) = ω2m

(so D = 2m). To start we need a form α(2m−2) which satis-

fies

iV ω2m = dα(2m−2) , (A26)

and from Eq. (A25) the answer is obviously

α(2m−2) =
1

(m− 1)!
n2m+1Φ

(1) . (A27)

Next we need a form α(2m−4) such that

iV α
(2m−2) = dα(2m−4) , (A28)

and Eq. (A24) tells us exactly how to find such a form. Pro-

ceeding in this way we eventually find that an equivariant ex-

tension of ω2m exists and is given explicitly by

ω̃2m = ω2m +

m
∑

r=1

1

(m− r)!(2r − 1)!!
(n2m+1)

2r−1Φ(r) .

(A29)

The terms appearing in the equivariantly closed form ω̃2m

are exactly the same as the terms which appear multiplying

the factors A∧F r−1 in the counterterms of Eq. (6.25) for the

gauged action of the BTI boundary. So our construction of a

gauged WZ action for the BTI boundary is equivalent to the

construction of an equivariant extension of the volume form

ω2m on S2m.

Moving on to the BIQH phase, we recall that in the BIQH

case the construction of the gauged WZ action involved the

forms Ω(r) defined in Eq. (4.13). Applying the interior multi-

plication by V to these forms gives

iV Ω
(r) =

1

2
dΩ(r+1) , (A30)

which bears a close resemblance to Eq. (4.14). We also saw

that the volume form ω2m−1 for S2m−1 could be written in

terms of the Ω(r) as ω2m−1 = 1
(m−1)!Ω

(0). Using this fact,

and Eq. (A30), we can then attempt to construct an equivari-

ant extension of ω2m−1, using the same procedure as in the

BTI case. In this way we find a candidate for an equivariant

extension of ω2m−1, which is given explicitly by

ω̃2m−1 = ω2m−1 +
1

(m− 1)!

m−1
∑

r=1

1

2r
Ω(r) . (A31)

However, this object is not quite closed under the action of

d̃ = d− iV , and instead we find that

d̃ω̃2m−1 = − 1

(m− 1)!

1

2m−1
. (A32)

In fact, what has happened is that the second line of

Eqs. (A10) fails to hold in this case. This failure of ω̃2m−1

to be equivariantly closed is the mathematical reason for why

the BIQH boundary action is not gauge-invariant, but instead

has a pertubative anomaly in the U(1) symmetry.

It turns out that there is a simple mathematical explanation

for why an equivariant extension of ω2m−1 does not exist in

this case105. For the U(1) symmetry considered in this paper

(see Eq. (3.13)) the action of the groupU(1) on S2m−1 is free,

i.e., only the identity element of U(1) leaves all the points in

S2m−1 fixed. In this case the U(1)-equivariant cohomology

of S2m−1 is equal to the ordinary de Rham cohomology of the

quotient manifold S2m−1/U(1) (see, for example, Ref. 106).

Now for the specific U(1) symmetry we have chosen the quo-

tient is just S2m−1/U(1) = CPm−1, and we know that the

cohomology ring of CPm−1 is generated by the Kähler two-

formK (which we will meet in Appendix B). This means that

only the even-dimensional cohomology groups of CPm−1 are

non-trivial. On the other hand, the volume form of S2m−1 is

a (2m− 1)-form, i.e., a form of odd degree. Since the U(1)-
equivariant cohomology of S2m−1 is equivalent to the ordi-

nary cohomology of CPm−1, we conclude that an equivariant

extension of ω2m−1 does not exist for this U(1) symmetry (if

such an extension did exist, then it would imply the existence

of a non-trivial closed form of odd degree on CPm−1, but no

such form exists).

Appendix B: Chern character on CP
m

In this Appendix we compute the integral

ˆ

X

(

F

2π

)m

(B1)

for the specific case of X = CPm (complex projective space

with m complex dimensions). When the field strength F sat-

isfies the Dirac quantization condition of Eq. (5.5) in Sec. V

we find that the integral can be equal to one. This answer

is already well-known, but it provides a nice example of the

need for the peculiar quantization of the CS level on generic

manifolds, as we discussed in Sec. V.

To compute the integral in Eq. (B1) we are going to need

some background information about the complex projective

space CPm. We choose to follow the discussion in Ref. 55.

Note that in this section we depart from previous notation and

use an overline z̄, and not a star, to denote the complex con-

jugate of a complex number z. For CPm the second Betti

number is b2 = dim[H2(X,R)] = 1, meaning that CPm has

a single non-trivial two-cycle. This two-cycle, which we call

C, is essentially a copy of CP1. To understand this two-cycle,

and the element of H2(X,R) which is dual to it, first intro-
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duce the Kähler form K on CPm,

K =
i

2
gab dz

a ∧ dz̄b , (B2)

where

gab =
1

D2
[Dδab − z̄azb] , (B3)

and

D = 1 +

m
∑

c=1

zcz̄c . (B4)

Here za, a = 1, . . . ,m, are complex coordinates which each

take values on the whole complex plane C. The indices of

za can be raised and lowered with δab and δab, and as usual

there is an implied sum over any index which appears once in

a lower position and once in an upper position in any expres-

sion. The quantity gab is known as the Fubini-Study metric

and it satisfies ḡab = gba. In addition we have dK = 0, so K
is closed. That K is closed follows immediately from the fact

that it can be written as

K =
i

2
∂∂ ln(D) , (B5)

where ∂ ≡ ∂zadza, ∂ ≡ ∂zadza are the Dolbeault opera-

tors (on any Kähler manifold one has K = i
2∂∂ρ, where the

function ρ is called the Kähler potential). Since the exterior

derivative decomposes as d = ∂ + ∂, and since the Dolbeault

operators satisfy ∂2 = ∂
2
= {∂, ∂} = 0, we immediately see

that dK = 0. Hence, the Kähler form is closed. However, it is

not exact, and we will use it in order to write down non-trivial

configurations of F on CPm.

The Kähler form K is a representative of the non-trivial

element of H2(X,R). In the coordinate patch that we have

chosen (in which K takes the form shown in Eq. (B2)) we

can take the non-trivial two-cycle C to be any one of the m
complex planes whose coordinates are za. For example let us

take C to be the z1 plane. In that plane (with all other za = 0)

we have

K →
(

i

2

)

dz1 ∧ dz̄1
(1 + z1z̄1)2

. (B6)

If we introduce the real coordinates x1 and x2 by z1 = x1 +
ix2 then we have dz1 ∧ dz̄1 = −2idx1 ∧ dx2, and integrating

K over the (x1, x2) plane gives

ˆ

C
K =

ˆ

dx1 ∧ dx2
(1 + x21 + x22)

2
= π . (B7)

We learn from this that a normalized form with unit flux

through C is K
π

, so we should set F
2π = K

π
or just

F = 2K , (B8)

in order to satisfy the Dirac quantization condition of

Eq. (5.5).

Now in order to compute the integral in Eq. (B1) we need

to do the integral

ˆ

CPm

Km , (B9)

so we need to compute the wedge product of K with itself m
times. We have

Km =

(

i

2

)m
1

D2m
dza1 ∧ dz̄b1 ∧ · · · ∧ dzam ∧ dz̄bm

m
∏

r=1

[Dδarbr − z̄ar
zbr ] . (B10)

To simplify this, first note that

dza1 ∧ dz̄b1∧ · · · ∧ dzam ∧ dz̄bm =

ǫa1···amǫb1···bmdz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m .
(B11)

Now we have to contract ǫa1···amǫb1···bm with the product

m
∏

r=1

[Dδarbr − z̄ar
zbr ] . (B12)

When expanded out this product contains 2m terms. How-

ever, most of these terms contain two or more factors of

z̄ar
zbr , for example a term might contain two of them such

as z̄a1zb1 z̄a2zb2 . All such terms with two or more factors of

z̄ar
zbr will vanish when contracted with ǫa1···amǫb1···bm be-

cause of the anti-symmetry of the Levi-Civita symbol, so we

only have to worry about terms with zero or one factor of

z̄ar
zbr . The term with no factors of z̄ar

zbr is

Dm

m
∏

r=1

δarbr , (B13)

and we have

ǫa1···amǫb1···bmDm

m
∏

r=1

δarbr = m!Dm . (B14)

Then there are m terms which each have a single factor of

z̄ar
zbr . The first such term is

− z̄a1zb1Dm−1
m
∏

r=2

δarbr , (B15)
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and we find

−ǫa1···amǫb1···bm z̄a1zb1Dm−1
m
∏

r=2

δarbr =

−Dm−1(m− 1)!

m
∑

c=1

zcz̄c .

(B16)

So all together we find that (recalling that there are m terms

with one factor of z̄ar
zbr and they all give an identical contri-

bution)

ǫa1···amǫb1···bm
m
∏

r=1

[Dδarbr − z̄ar
zbr ] = m!Dm−1 , (B17)

where we used (D −∑m
c=1 zcz̄c) = 1. We finally obtain

Km = m!

(

i

2

)m
dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m

Dm+1
. (B18)

To do the integral over CPm we now introduce 2m real

coordinates xj , j = 1, . . . , 2m, defined by zj = x2j−1+ix2j .

Let r2 =
∑2m

j=1 x
2
j . The integral becomes

ˆ

CPm

Km = m!

ˆ

d2mx
1

(1 + r2)m+1

= m! A2m−1

ˆ ∞

0

dr
r2m−1

(1 + r2)m+1

= m! A2m−1
1

2m
= πm , (B19)

where we used spherical coordinates on R2m to do the inte-

gral. Setting F = 2K , we then find that

ˆ

CPm

(

F

2π

)m

= 1 . (B20)

Appendix C: From BIQH to BTI states via dimensional

reduction

In this Appendix we discuss a dimensional reduction pro-

cedure which allows one to generate a BTI state in 2m − 2
dimensions from a BIQH state in 2m − 1 dimensions. The

procedure is carried out at the level of the effective action

Seff [A] and is similar, but not equivalent to, the procedure

used in Ref. 60 to obtain the time-reversal invariant topologi-

cal insulator in four dimensions from an Integer Quantum Hall

state of fermions in five dimensions.

To start, we imagine separately gauging the U(1) symme-

try associated with each species of “boson” bℓ (ℓ = 1, . . . ,m)

in the NLSM description of the BIQH state in 2m− 1 dimen-

sions. That is, we consider an O(2m) NLSM describing a

BIQH state, and we study this state with a U(1)m symmetry

which acts on the bosons as

bℓ → eiξℓbℓ , ℓ = 1, . . . ,m , (C1)

where ξℓ are a set of m independent gauge transformation pa-

rameters. We then couple this system to m U(1) gauge fields

A
(ℓ)
µ .

In this paper we have not calculated the response of the

O(2m) NLSM when this U(1)m subgroup is gauged. How-

ever, from our results in this paper we can make an argu-

ment for what the general form should be. The effective re-

sponse action Seff [A
(1), . . . , A(m)] should have at least two

properties: (i) it should reduce to a CS response with level

N2m−1 = m! for the gauge fieldA if we set A(ℓ) = A ∀ℓ, and

(ii) it should be invariant under any permutation of the labels

ℓ of the different gauge fields. The second property follows

from the fact that the action for theO(2m) NLSM is invariant

under any permutation of the labels ℓ of the bosons bℓ. This

fact is not completely obvious, and so we prove it now.

The O(2m) NLSM with theta term or WZ term is invariant

under the action of the alternating group A2m of even signa-

ture permutations of the labels a = 1, . . . , 2m of the compo-

nents na of the NLSM field n. Now the permutations of the

labels ℓ = 1, . . . ,m of the bosons bℓ consist of two transposi-

tions in the symmetric group S2m. This is because a permuta-

tion which swaps ℓ with ℓ′ must swap n2ℓ−1 with n2ℓ′−1 and

n2ℓ with n2ℓ′ . Since the signature of a permutation σ in the

symmetric group is given by sgn(σ) = (−1)NT , with NT the

number of transpositions in σ, it immediately follows that the

permutations of the boson labels ℓ are contained within the

groupA2m. This proves property (ii).

Using properties (i) and (ii) we can now argue that the re-

sponse action for a gauged U(1)m symmetry must take the

form

Seff [A
(1), . . . , A(m)] =

k

(2π)m−1m!

ˆ

M

(

A(1) ∧ dA(2) ∧ · · · ∧ dA(m)

+ permutations
)

. (C2)

If M has no boundary then we can integrate by parts and write

this simply as

Seff [A
(1), . . . , A(m)] =

k

(2π)m−1

ˆ

M
A(m) ∧ dA(1) ∧ · · · ∧ dA(m−1) ,

(C3)

or we could choose some other ordering of the gauge fields

A(ℓ). We now describe the dimensional reduction procedure

which allows one to derive the electromagnetic response for

the BTI state in 2m− 2 dimensions from this response action

for the BIQH state in 2m − 1 dimensions. For concreteness

we work on flat spacetime with spatial coordinates xj , j =
1, . . . , 2m− 2.

To obtain the BTI state from the higher dimensional BIQH

state we first compactify the space by wrapping the x2m−2

direction into a circle, which turns the space R
2m−2 into the

“cylinder” R2m−3 × S1. We then thread a π flux of the gauge

field A(m) through the hole in the cylinder, and finally shrink

the circumference of the cylinder to zero. This leaves us with



33

a response action for a phase in 2m−2 spacetime dimensions.

Mathematically, this procedure assumes the following config-

uration of gauge fields A(ℓ): (i) A(ℓ) ℓ = 1, . . . ,m− 1, are in-

dependent of x2m−2 and have their last componentA
(ℓ)
µ=2m−2

equal to zero, (ii) the components A
(m)
µ , µ = 0, . . . , 2m− 3,

of themth gauge field are equal to zero, and (iii) the last com-

ponent of A(m) satisfies
´

dx2m−2 A
(m)
2m−2 = π.

Under these assumptions the effective action for the BIQH

phase with gauged U(1)m symmetry reduces as

Seff [A
(1), . . . , A(m)] →

πk

(2π)m−1

ˆ

R2m−3,1

dA(1) ∧ · · · ∧ dA(m−1) .

(C4)

If we now break the remaining U(1)m−1 symmetry of this

phase down to U(1) by settingA(ℓ) = A for ℓ = 1, . . . ,m−1
then we obtain (with F = dA)

Seff [A
(1), . . . , A(m)] → πk

(2π)m−1

ˆ

R2m−3,1

Fm−1 , (C5)

which is a response action of the form of Eq. (2.2) with re-

sponse parameter Θm−1 = π(m − 1)!k. This is exactly the

response action for a BTI phase in 2m− 2 dimensions, so the

dimensional reduction procedure described here does allow

one to obtain the BTI response action from the BIQH response

action in one higher dimension.

The main difference between the dimensional reduction

procedure shown here and the procedure used in Ref. 60 is

that in our procedure we only thread π flux of one flavor ℓ of

gauge field A(ℓ) through hole in the cylinder. On the other

hand, the procedure in Ref. 60 (in which there is only a single

U(1) gauge field A) is equivalent to threading π flux of all

the gauge fields A(ℓ). This second method does not give the

proper quantization of the parameter Θm−1 for the BTI phase

in one lower dimension. The answer turns out to be too large

by a factor of m. The physical reason for the different dimen-

sional reduction procedure needed to go from BIQH to BTI

states can be seen from our alternative calculation in Sec. IV

of the BIQH response. There we showed that threading 2π
flux of the external gauge field A generates a vortex in all m
bosons bℓ, and so it creates m excitations. This explains why

the more familiar dimensional reduction procedure of thread-

ing π flux for A gives an answer which is m times too large.

Appendix D: Dimensional reduction formulas for theta terms in

nonlinear sigma models

In this section we derive a general dimensional reduction

formula for theta terms ofO(D+2) NLSMs in D+1 dimen-

sions. The formula shows how the theta term of the NLSM

can reduce to a theta term for a lower-dimensional NLSM

when evaluated on a “defect configuration” of the NLSM

field. The formula we derive applies to any spacetime dimen-

sion D + 1, and defects of any codimension, with the sim-

plest cases being vortices and hedgehog defects. The physical

content of the dimensional reduction formula can be summa-

rized in the following way: a topological defect of (spatial)

co-dimension (q + 1) in an O(D + 2) NLSM with theta term

can trap an O(D − q + 1) NLSM with theta term in its core.

The theta angle of the lower-dimensional NLSM is related to

that of the original NLSM in a simple way which we calcu-

late below. We use a special case of this formula in the last

subsection of Sec. IV to study vortices in the NLSM descrip-

tion of the BIQH state, but the general result presented in this

Appendix should be very useful for working with these mod-

els. Dimensional reduction of topological terms in NLSMs

was also considered in Appendix C of Ref. 79, but to the best

of our knowledge the general formula presented in this Ap-

pendix has not appeared before in the literature. Finally, we

also remark that the formula presented here can also be used

when WZ terms are present, as the form of the WZ term is

similar to the form of the theta term.

To start, recall the theta term

Sθ[n] =
θ

AD+1

ˆ

RD,1

n∗ωD+1 , (D1)

for a NLSM with field n(t,x) inD+1 spacetime dimensions,

where t represents the time, and x = (x1, . . . , xD) represents

the spatial coordinates. Here ωD+1 is the volume form for

the sphere SD+1 which was introduced in Eq. (3.6). The inte-

gral is over (D+1)-dimensional Minkowski spacetime RD,1.

To describe the defect configurations considered here, we first

decompose the total spacetime as

R
D,1 = R

q+1 × R
D−(q+1),1 , (D2)

and we further decompose the first factor into (q + 1)-
dimensional spherical coordinates as

R
q+1 = [0,∞)× Sq . (D3)

Here q is a positive integer which is going to be related to the

codimension of the defect in the NLSM field.

We introduce coordinates r ∈ [0,∞) and s = (s1, . . . , sq)
to parametrize Rq+1 = [0,∞) × Sq. The precise nature of

the coordinates s for Sq will not be important to us here. We

also use t and y = (y1, . . . , yD−(q+1)) to denote the remain-

ing coordinates on RD−(q+1),1. The defect configuration we

consider takes the form

n(t,x) = {sin(f(r))N(t,y), cos(f(r))m(s)} , (D4)

where N is a (D − q + 1)-component unit vector which de-

pends only on the coordinates (t,y) for RD−(q+1),1, m is a

(q+1)-component unit vector which depends only on the co-

ordinates s for Sq, and where f(r) is a function obeying the

boundary conditions

f(0) =
π

2
(D5)

lim
r→∞

f(r) = 0 . (D6)

Physically, this form of n describes a defect of spatial codi-

mension q + 1 in which the field m takes on a non-trivial



34

configuration on the sphere Sq. The field N then describes

a lower-dimensional NLSM which lives in the core of this

defect, and the core size is controlled by the profile of the

function f(r). The non-triviality of the configuration of m is

captured by the winding number nq of m on Sq,

nq =
1

Aq

ˆ

Sq

m∗ωq . (D7)

After some algebra one can show that the pullbackn∗ωD+1

of the volume form for the original NLSM field n will reduce

on this configuration as

n∗ωD+1 → (−1)(D−q)(q+1)+1[sin(f(r))]D−q [cos(f(r))]qf ′(r)dr ∧m∗ωq ∧N∗ωD−q . (D8)

This formula can be derived from the formula for n∗ωD+1 by

using the fact that wedge products of the differential of any co-

ordinate with itself will vanish. This fact strongly constrains

the terms which survive in n∗ωD+1 once one assumes that n

is in the defect configuration of Eq. (D4). Now we just need

to do the integrals over the radial direction (parameterized by

r) and the sphere Sq to find the reduced theta term form N.

For the radial integral we have

Ir ≡ −
ˆ ∞

0

dr [sin(f(r))]D−q [cos(f(r))]qf ′(r)

=

ˆ

π
2

0

df [sin(f)]D−q[cos(f)]q

=
Γ(D−q+1

2 )Γ( q+1
2 )

2Γ(D2 + 1)
. (D9)

Combining this with Eq. (D7) for the winding of the defect

in the m field, we find that the theta term of Eq. (D1) for n

reduces as

Sθ[n] →

(−1)(D−q)(q+1) θIr
AD+1

ˆ

Sq

m∗ωq

ˆ

RD−(q+1),1

N∗ωD−q

=
θeff
AD−q

ˆ

RD−(q+1),1

N∗ωD−q , (D10)

where the effective theta angle for the lower-dimensional

NLSM is

θeff = (−1)(D−q)(q+1)nq θ , (D11)

and where we used the formula

Γ(D−q+1
2 )Γ( q+1

2 )

2Γ(D2 + 1)

Aq

AD+1
=

1

AD−q

. (D12)

So we see that on this defect configuration the original theta

term for n has reduced to a theta term for the field N which

lives in the core of the defect. In addition, from Eq. (D11)

we see that the theta angle θeff for this lower-dimensional

NLSM is simply related to the original theta angle by a sign

factor (−1)(D−q)(q+1) and by multiplication by the winding

number nq of the defect in m.

Appendix E: Electromagnetic Response of O(2) NLSM in one

spacetime dimension

In this Appendix we derive the electromagnetic response of

the O(2) NLSM with theta term, which represents an analog

of the BIQH state in 1 spacetime dimension. In the last sub-

section of Sec. IV we presented an alternative derivation of

the electromagnetic response of the O(2m) NLSM with theta

term at θ = 2πk in 2m − 1 dimensions, in which we were

able to relate the level N2m−1 of the CS term in the response

for the O(2m) NLSM to the level N1 for the response of the

O(2) NLSM at θ = 2πk. Specifically, we found that the two

levels were related as

N2m−1 = (m!)N1 . (E1)

We now derive the formula

N1 = −k , (E2)

for the O(2) NLSM with θ = 2πk, which we then use to

complete our alternative derivation at the end of Sec. IV of

the formula N2m−1 = −(m!)k for the CS response of the

O(2m) NLSM with θ = 2πk.

We begin the derivation by parameterizing theO(2) field as

n = {cos(ϕ), sin(ϕ)} or as b1 = eiϕ in terms of the boson

b1 = n1 + in2. In terms of the angular variable ϕ the action

for the O(2) NLSM with theta term takes the form

S[n] =

ˆ T

0

dt

{

1

2g
(∂tϕ)

2 +
θ

2π
∂tϕ

}

. (E3)

Here we have made the calculation as concrete as possible by

considering a finite time interval [0, T ), and we assume peri-

odic boundary conditions for the boson b1 in the time direc-

tion. This leaves open the possibility that ϕ can wind around

the time direction, i.e., we can have configurations in which

ϕ(t + T ) = ϕ(t) + 2πn for an integer n. As in the higher-

dimensional cases, we will be interested in the limit g → ∞.

In this one-dimensional case this limit just projects onto the

ground state (or states) of this quantum mechanical system

(in higher dimensions g → ∞ corresponds to the disordered

phase of the model).

The U(1) symmetry which acts on b1 as b1 → eiξb1 then

acts on ϕ as

U(1) : ϕ→ ϕ+ ξ . (E4)
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We would now like to couple ϕ to a U(1) gauge field A =
Atdt. For the boundary conditions we are considering we can

write At in the general form

At = At + δAt , (E5)

where At =
1
T

´ T

0 dt At and
´ T

0 dt δAt = 0. This is equiv-

alent to the statement that the closed form A can be written

as an exact part plus a piece which has a non-vanishing in-

tegral around the non-trivial one-cycle in the time direction,

since we assumed periodic boundary conditions in time. We

can always remove the exact part δAt fromAt by a smallU(1)
gauge transformationϕ→ ϕ+ξ,A→ A+dξ with

´

dξ = 0.

Therefore we will just work with the constant part At in what

follows.

The gaugedO(2) NLSM action is obtained by the standard

minimal coupling procedure,

Sgauged[n, A] =
ˆ T

0

dt

{

1

2g
(∂tϕ−At)

2 +
θ

2π
(∂tϕ−At)

}

, (E6)

however, there is one subtle point here. This action is invariant

under small and largeU(1) gauge transformations, where by a

large U(1) gauge transformation we mean a transformation in

which
´

dξ 6= 0. Now if we only cared about invariance under

small U(1) gauge transformations, we could just as well have

used the action

S′
gauged[n, A] =

ˆ T

0

dt

{

1

2g
(∂tϕ−At)

2 +
θ

2π
∂tϕ

}

,

(E7)

which does not involve minimal coupling inside the theta

term. This form is more relevant in cases in which one is inter-

ested in enforcing certain discrete symmetries at the expense

of large U(1) gauge invariance, as could be the case in the in-

vestigation of global anomalies in discrete symmetries of this

theory at θ = π (compare with the discussion for fermionic

systems in one dimension in Ref. 98). This could be relevant

for studies of the boundary states of SPT phases in two space-

time dimensions. In our case, however, we are interested in

the O(2m) NLSM in 2m− 1 dimensions as a low-energy de-

scription of a bosonic lattice model which can be coupled to a

compact U(1) gauge field, and so we gauge the theory in such

a way as to preserve this large U(1) gauge invariance. With

these remarks in mind, we now proceed with the computation.

From Eq. (E6) the momentum conjugate to ϕ is p =
1
g
(∂tϕ−At) +

θ
2π , and the Hamiltonian is

H =
g

2

(

p− θ

2π

)

+ pAt . (E8)

To quantize, we impose the commutation relations [ϕ, p] = i
(we set ~ = 1 here), and we use the Schrdinger representation

p = −i∂ϕ. The eigenfunctions of p andH are then the Fourier

modes ψn(ϕ) =
1√
2π
einϕ, n ∈ Z. We now restrict ourselves

to the case of θ = 2πk and g → ∞, which is the case for

which we are trying to calculate the electromagnetic response.

Then the ground state is ψk(ϕ) =
1√
2π
eikϕ ≡ 〈ϕ|G.S.〉, and

the partition function (vacuum-to-vacuum transition function)

in this case is

Z[A] = 〈G.S.|e−iHT |G.S.〉 = e−ikTAt , (E9)

or in terms of the original field A = Atdt ,

Z[A] = e−ik
´

T

0
dt At = e−ik

´

A . (E10)

The effective action is then

Seff [A] = −i ln(Z[A]) = −k
ˆ

A , (E11)

from which Eq. (E2) immediately follows.
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