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ABSTRACT 
The GW approximation is a well-known method to obtain the quasiparticle and spectral properties of systems 
ranging from molecules to solids. In practice, GW calculations are often employed with many different 
approximations and truncations. In this work, we describe the implementation of a fully self-consistent GW 
approach based on the solution of the Dyson equation using plane wave basis set. Algorithmic, numerical and 
technical details of the self-consistent GW approach are presented. The fully self-consistent GW calculations are 
performed for GaAs, ZnO and CdS including semicores in the pseudopotentials. No further approximations and 
truncations apart from the truncation on the plane wave basis set are made in our implementation of the GW 
calculation. After adopting a special potential technique, a ~ 100 Ryd energy cutoff can be used without the loss of 
accuracy. We found that the self-consistent GW (sc-GW) significantly overestimates the bulk band gaps, and this 
overestimation is likely due to the underestimation of the macroscopic dielectric constants. On the other hand, the 
sc-GW predicts accurately the d-state positions, mostly likely because the d-state screening does not sensitively 
depend on the macroscopic dielectric constant. Our work indicates the needs to include the high-order vertex term in 
order for the many-body perturbation theory to accurately predict the semiconductor band gaps. It also sheds some 
lights on why, in some cases, the G0W0 bulk calculation is more accurate than the fully self-consistent GW 
calculation, because the initial density functional theory has a better dielectric constant compared to experiments.  
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I. INTRODUCTION 

Density-functional theory (DFT) [1,2] in the Kohn-
Sham (KS) scheme has been widely used to study the 
electronic structure in solid-states physics. In spite of 
its success in describing the ground state properties, 
DFT suffers from a severe band gap problem [3]. 
Thus the KS eigenvalues can’t be used to interpret 
quasiparticle excitations as measured by 
photoemission spectroscopy or optical absorption. In 
the past two decades, the GW approximation [4] 
derived from many-body perturbation theory (MBPT) 
has been widely used to study the quasiparticle 
energy and excitation spectra for real materials. In 
practice, large numbers of procedures employing 
different approximations have been used [5-10].  The 
simplest GW approach is performed non-self-
consistently for the evaluation of the quasiparticle 
self-energy [11,12]. The excitation energies are then 
obtained from the first-order perturbation theory as 
corrections to the DFT single-particle eigen energies. 
For simple s-p bonded materials, the calculated band 
gaps with single-shot approximation (also called as 
G0W0) are considerably improved upon the DFT 
results and show good agreements with experiments 
[11-16]. However, there could be a strong 
dependence of G0W0 results on the initial single-
particle Hamiltonian (e.g., DFT or Hartree-Fock (HF) 
or its hybrid method like HSE). Different initial wave 

functions and eigen energies can yield widely 
different band gaps, e.g., differ by 1 eV for some 
oxides [17]. Furthermore, traditional G0W0 
approximation doesn’t fulfill some microscopic 
conservation laws.  Schindlmayr [18] found that there 
was a genuine violation of particle number 
conservation if the self-energy was not calculated 
self-consistently. Besides, the total energy which can 
be regarded as an explicit function of the Green’s 
function G varies a lot when it is implemented in 
different GW methods without self-consistency [19]. 
For all these reasons, it becomes interesting to try 
self-consistent GW (sc-GW) calculations with the 
hope that many of these problems will be rectified.  

However, there could be drawbacks for the self-
consistent procedure. Not only it is more expensive, 
Holm and von Barth [20] concluded that the self-
consistency for homogeneous electron gas in the GW 
calculation tends to worsen the agreement of the band 
structure to the experimental results (when compared 
to G0W0). Besides, the weight of plasmon satellite 
disappeared in the spectral function due to the self-
consistent calculations. For real and nonmetallic 
systems, Schone and Eguiluz [21] found that GW 
calculations under the shielded-interaction 
approximation and a full updated Green’s function G 
and screened potential W can overestimate the band 
gap of silicon by as much as the DFT underestimates 



it. These conclusions seem to be in conflict with 
recent studies [22-24] on isolated molecule systems. 
They found that the accuracy of sc-GW ionization 
energies are comparable with that of non-self-
consistent G0W0 with DFT starting point. Thus, it is 
interesting to revisit this problem for bulk materials,  
especially using approaches where many of the 
approximations in the truncations are removed.  We 
like to know what are the true effects of GW self-
consistency for periodic systems. 

There are many approaches to achieve self-
consistency in the GW approximation. Many self-
consistent GW calculations employ the noninteracting 
expression [25-28] to describe the Green’s function G 

 
*
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Here ψi(r) is the single-particle eigen wave functions, 
εi is its eigen energy, the +/- sign depends on whether 
εi is above or below the Fermi energy μ. Although, as 
will be discussed below, in true self-consistent GW 
calculations, the Green’s function can no longer be 
described by Eq. (1), in practice, the self-consistency 
in many studies is realized by only changing the 
eigen energy εi and updating the wave function ψi(r) 
while keeping the formulation of Eq. (1). There are 
also other options, e.g., only updating W in the G0W 
method, or only updating G, in the GW0 approach. 
There could be an improved version of Eq.(1), 
replacing the energy dependent denominator by a 
more general term fi(ω), which is called the diagonal 
approximation. Unfortunately, there is no unique way 
to carry out the updating of Eq.(1) and one can 
propose different self-consistent schemes [17]. The 
true Green’s function G should be described by 
solving the Dyson equation self-consistently.  

 
1( ) ( )G i i H iω ω μ ω− = + − − ∑                    (2) 

Here the H is the single-particle Hamiltonian and μ is 
the Fermi energy, and � is the self-energy term. 
Under GW approximation, �=iGW, and the 
corresponding Dyson equation is a variational 
solution of the Klein total energy [29] expressed as a 
functional of the Green’s function G. This is very 
much like the Kohn-Sham equation is the variational 
total energy minimum solution of the DFT energy. 
Furthermore, it can be proved that the quasiparticle 
eigen energy of Eq. (2) is the difference of the Klein 
energies of N+1 and N electron systems [30,31], 
much like the Kohn-Sham eigen energy is the DFT 
total energy difference of the N+1 and N electron 
systems. Besides, according to Baym and Kadanoff 
[32,33] many conservation laws (as momentum, total 
energy, and particle numbers) are preserved 

following Dyson’s equation. The conserving 
character is an important property in transport 
calculations [34].  

In order to satisfy the variational Dyson equation 
(2), the Green’s function G can no longer be 
described by the single-particle expression of Eq. (1). 
Instead, it is a full matrix for a given ω, either 
expanded by the plane wave basis set exp(iqr), or by 
the single-particle eigen state basis set ψi. In contrast, 
Eq. (1) contains only the diagonal term under the 
basis set of ψi. Thus, using Eq. (1) is taking into 
account only the diagonal terms under the basis set ψi. 
There are some previous works for the importance of 
the off-diagonal terms. Fleszar and Hanke [35] 
concluded that the role of the off-diagonal elements 
is negligible. However, Sakuma and coworkers [36] 
reported that the off-diagonal elements of the self-
energy is crucial and have a large influence on the 
quasiparticle band gap of correlated materials. 

The choice of basis set is also an important issue in 
solving the GW problem. A majority of GW 
calculations are carried out using pseudopotentials. 
For some systems, this could be problematic. Ku and 
Eguiluz [37] claimed that pseudopotential-based GW 
schemes carry a built-in error and the preferred 
procedure is to perform all-electron calculations 
based on the full-potential linearized augmented 
plane wave (FP-LAPW) or the linearized muffin-tin 
orbital (LMTO), although this work was later 
questioned by Tiago et.al [38] for its conduction band 
convergence.  Faleev et al. [28] also questioned the 
validity of pseudopotential in the GW calculations 
and showed that G0W0 with pseudopotential can lead 
to systematic errors. This is because the 
pseudopotentials are generated for DFT calculation 
using semilocal exchange correlation functional. In 
GW calculation, the pseudo wave functions can yield 
wrong screened exchange integral. Thus semicore 
will be needed, which will make the valence pseudo 
wave functions to have the right shape, hence the 
correct exchange integral. In the work of Lilienfeld 
and Schultz [39], the effects of semicore were 
discussed for DFT calculations. It shows that the 
inclusion of semicore can significantly change the 
band gap, and making it more close to all-electron 
results. It is now accepted by many groups that the 
inclusion of the semicore is necessary to make the 
pseudopotential-based GW result similar to that of the 
all-electron calculation. As we will show later, our 
pseudopotential results including semi-cores are 
indeed close to the all-electron results for G0W0 
calculations. Another option of basis set is the use of 
atomic orbitals or other localized basis sets (like 
Gaussian basis set) [23,24,34,40,41], which could be 
more efficient for molecular systems. In the current 



study, we will use plane wave pseudopotentials with 
semi-cores.   

One common problem of the GW calculations is 
the lack of numerical convergence caused by finite 
number of unoccupied states. Ideally, the complete 
sets of unoccupied states need to be included to 
expand the Green’s function. In practice, this 
inclusion is often truncated. According to Delaney 
and Godby [42], high energy (8-10 Ryd above Fermi 
energy) eigen states are required to provide accurate 
numerical results. Shih and Louie [43] have 
calculated the quasiparticle band gap of ZnO and 
found that 3000 bulk conduction bands were needed 
to obtain converged GW band gap. However, in many 
GW calculations, only a few hundred conduction 
bands are used, which can result in an un-converged 
band gap as shown for ZnO [10,44,45]. 

In this work, we employ a sc-GW calculation 
without resorting to diagonal-G approximation and 
conduction band truncations. We like to know 
whether: (1) the true Dyson equation results improve 
upon the G0W0 results; (2) how much error it remains; 
and (3) what causes the remaining errors? The full 
solution of Eq. (2) is only made possible with the use 
of large super computers. In this work, the Green’s 
function G(r1,r2,ω) is represented numerically in its 
full matrix form under the plane wave basis set at 
different ω points without the truncation for the 
conduction bands. Three prototype semiconductors: 
GaAs, ZnO and CdS, are studied to elucidate the 
effects of self-consistency for periodic solids. The 
semi-cores are explicitly taken into account in the 
pseudopotential representation. We will introduce the 
numerical methods and techniques to deal with the Γ 
point divergence problem in the evaluation of self-
energy term and dielectric function. The computation 
is done with tens of thousands of processors on one 
of the largest super computers: Titan in Oak Ridge 
Leadership Computing Facility (OLCF). The rest of 
the paper is organized as following. Our fully sc-GW 
approach is presented in Sec. II. In Sec. III, we 
elaborate the numerical methods and technical details 
in implementing our sc-GW approach. Results and 
discussions are then presented in Sec. V, followed by 
the main conclusion in Sec. VI. 
 
II. THE BASIC FORMALISM 

To avoid the singularity in real axis, we follow the 
“space-time” method first used by Roja, Godby, and 
Needs [16], where the Green’s function is solved 
along the imaginary axis iω+μ (to be denoted as 
G(iω)) in the ω complex plane. Here, μ is the electron 
Fermi energy (both ω and μ are real numbers). In our 
previous work for isolated systems [22], the Green’s 
function G(iω) defined through the Dyson equation 
can be expressed in Eq. (2). In a periodic system, the 

Greens function at one k-point can be written down 
as (see the derivations from isolated molecule 
systems to periodic systems in appendix A): 

1( , ) ( ) ( , )G k i i H k k iω ω μ ω− = + − −∑        (3) 
where G, H and Σ are all matrices for a given (k, iω) 
and k is the wave vector in the first Brillouin zone 
(BZ). The G, H and Σ are represented either in real 
space r index or reciprocal space q index. The 
transformations between r and q space for matrix X(k, 
z) (e.g., G and Σ) are: 
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Here Ω is the volume of the periodic unit cell and z 
can be either iω or iτ. 2

, ,
1( ) ( )
2 k l k l k

l
H k V r φ φ= − ∇ + +∑  is the 

non-interactive one electron Hamiltonian, including 
the kinetic energy operator 21

2 k− ∇ , the nonlocal 

pseudopotential projector , ,l k l k
l

φ φ∑  and the single-

particle potential V(r). V(r) is obtained as:
3(( ) ( )atR

rV r v r R d r
r r
ρ ′ ′= − +

′−∑ ∫
） , where νat is the local part 

of the atomic pseudopotential, R is atomic position,  
and ρ is the electron charge density calculated as:

0
( ) ( , , ) |r iG r r i τρ τ +→

= − . During the self-consistent iterations, 
the potential V(r) is recalculated through Pulay-
Kerker potential mixing [46]. Σ is the electron self-
energy that encompasses all exchange-correlation 
effects. Within Hedin’s GW approximation [4], the 
self-energy term is given by the product of Green’s 
function G and the dynamically screened interaction 
W. To avoid the time-consuming convolution in 
frequency domain, the self-energy Σ for each k is 
evaluated in real space and time domain as: 

2

2

1 2 1 2 2 1 2 2( , , , ) ( , , , ) ( , , , ) k
k

r r k i i G r r k k i W r r k i wτ τ τΣ = − ⋅∑     (5) 

Where 
2kw is used to represent a summation weight to 

represent the possible symmetry reduction of the k-
points. The W represents the dynamically screened 
Coulomb potential. The expression of W in reciprocal 
space with frequency dependence reads: 

1
1 2 1 2

1 2

4( , , , ) ( , , , )W q q k i q q k i
q k q k

πω ε ω−=
+ +

     (6) 

where 4π/(q+k)2 is the Fourier transform of the bare 
Coulomb interaction and ε is the dielectric function 
expressed as: 

1 21 2 , 1 2
1 2

4( , , , )= ( , , , )q qq q k i q q k i
q k q k

πε ω δ χ ω−
+ +

     (7) 

Finally, the irreducible polarizability χ is given by 
the product of two Green’s function from different k 
vectors: 

2

2

1 2 1 2 2 2 1 2,( , , , ) ( , , , ) ( , , ) k
k

r r k i i G r r k k i G r r k i wχ τ τ τ= − ⋅ + − ⋅∑  (8) 



All the matrices in above equations are represented 
either in real space (r1,r2,z) or reciprocal space 
(q1,q2,z) (z can be either iω or iτ). The most time-
consuming parts of the sc-GW calculations are the 
Fourier transformation between these two 
representations as well as the inversion of Green’s 
function G and dielectric function ε (Eq. (3) and (6)). 
The GW calculations using the “space-time” method 
on the imaginary iω axis has been performed by Roja, 
Godby, and Needs [16] long time ago. However, only 
the one-shot G0W0 calculations were carried out, 
hence analytical expression for G0(iτ) was available, 
which avoided the need to do the ω space to τ space 
Fourier transform which is particular time consuming. 
Very often, the Matsubara time and frequency mesh 
with an artificial temperature [19] can also be used to 
facilitate the ω integration. Under such 
approximation, the final results are extrapolated from 
a series of artificial temperatures [19,41]. In this 
work, a special integration algorithm was carried out 
without the use of artificial temperature. Discrete 
exponential numerical grid points both in iω and iτ 
are used, with the maximum ω being 3×106 Hartree, 
while the minimum ω interval being 2×10-4 Hartree. 
The details of the numerical Fourier transformation 
between the iτ and iω space can be found in our 
previous work for isolated molecule systems [22]. 
For periodic bulk systems, particular attentions are 
needed for Eqs. (5) and (8) to deal with the Γ point 
divergence problem. In the following, we will 
introduce the numerical methods and techniques to 
deal with these divergence problems. A plane wave 
energy cutoff Ecut is used to select the plane wave 
vectors q1 and q2 in G(q1,q2,k,iω) and Σ(q1,q2,k,iω). 
However, in the expressions of matrices of W, ε and χ, 
the plane wave vectors should be defined by an 
energy cutoff Ecut2=4Ecut. The reason for this is that 
these matrices are proportional to the squares of 
Green’s function (Eq. (8)). In practice, a smaller 
Ecut2=2Ecut can be used to converge the final results, 
much like in a traditional plane wave DFT 
calculations. After using these techniques, our sc-GW 
calculations are well converged with regards to k-
point summation. Eqs. (3)-(8) constitute a close set of 
equations to find the self-consistent solution of the 
Green’s function G. Note, the first iteration of the 
calculation is equivalent to the conventional G0W0 
calculations (in this work, the non-self-consistent 
G0W0 results are calculated using local-density 
approximations (LDA) Kohn-Shame eigen values 
and eigen functions as inputs). 
 
III. IMPLEMENTATION OF THE GW 

METHOD 
A. Evaluation of dielectric function 

In the preceding section, we have mentioned that 
special care is required for the Γ point (k=0) 
divergence problem in the periodic systems. For the 
calculation of dielectric function using Eq. (7), there 
is an obvious singularity if q1=q2=0 (the “head”) or 
q1=0 or q2=0 (the “wings”) for very small k. One 
solution of this problem is to expand the 
polarizability χ(q1,q2,k,iω) as a function of k for the 
“head” and “wings” of the polarizability matrices. 
Hybersen and Louie [47] derived one such 
expressions using the Adler-Wiser formulation 
[48,49] for single-particle expression more than thirty 
years ago. Here we use a similar technique to get the 
“head” and “wings” expansion of polarizability χ for 
general matrix expression of G. For the “head” case, 
the polarizability χ(q1=0,q2=0,k,iτ) at the limit of 
k→0 is expanded as: 

1 2 1 2

, 1 2
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χ τ χ τ
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= = ⋅

( 2)
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         (9) 

Where kα (α=x, y or z) is the α-th component of k 
approaching the Γ point (k=0). Since the first term 
χ(q1=0,q2=0,k=0,iτ) equals zero, the “head” 
expression for χ(q1=0,q2=0,k,iτ) goes to zero as k kα β

when k→0. The second order k kα β  in the “head” 
expansion as a function of k will cancel with the k2 in 
the denominator of Eq. (7) for their magnitudes, 
although the result depends on the direction of the 
vector k (which gives rise to the well-known 
directional singularity of the dielectric constant for 
the low symmetry crystal).  To get the term

, 1 2( 0, 0, =0, )q q k i k kα β α βχ τ= = ⋅( 2)  in Eq. (9), a middle 

step term , 1 2( 0, 0, =0, )q q k i k kα β α βχ τ= = ⋅( 0)  based on Eq. 
(8) is defined as: 
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2
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χ τ

τ τ

= = ⋅

− ⋅ ∇ ∇ − ⋅∑∫
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Here 
2

( )k H rα∇ is the derivation of the single-particle 
Hamiltonian in respect to k2α  (k2 belongs to the 
original k grid in the first BZ). In the calculation, 

2
( )k H rα∇ is written as a matrix to represent the 

nonlocal term. 
In the non-interactive single-particle formalism, 
, 1 2( 0, 0, =0, )q q k iα βχ τ= =( 2) is related to 

, 1 2( 0, 0, =0, )q q k iα βχ τ= =( 0) with an extra eigen energies 
square term in the denominator [47,48]. This extra 
term in the denominator can be obtained by a second-
order integration of τ in the form: 
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Eq. (11) is used to calculate , 1 2( 0, 0, =0, )q q k iα βχ τ= =( 2)

from G when a full matrix form of G is represented. 
Note that, Eq. (11) is only rigorous for the non-
interactive Green’s function. Nevertheless, it should 
capture the main contribution of the k-expansion. 
Furthermore, in the final result (e.g., the self-energy), 
this only affects the dielectric constant at k=0. As we 
use larger and larger k-point grid, the contribution of 
this k=0 point becomes smaller and smaller. Thus, 
our final convergence in regards to the number of k 
points indicates that the approximation at k=0 is fine, 
or at least the error in this approximation does not 
affect the final result.  

After , 1 2( 0, 0, =0, )q q k iα βχ τ= =( 2) is in hand, we can 
get the polarizability χ(q1=0,q2=0,k,iτ) for any k 
points near k→0 using Eq. (9). To get the frequency-
dependent polarizability χ(q1=0,q2=0,k,iω) used in 
Eq. (7), a Fourier transform is carried out to change 
χ(q1=0,q2=0,k,iτ) from iτ to iω space. 

1 2

, 1 2

( 0, 0, , )

( 0, 0, =0, ) i

q q k i

i k k q q k i e dωτ
α β α β

χ ω

χ τ τ−

= =

= − ⋅ = =∫ ( 2)           (12) 

The “wings” case can be dealt with similar fashion, 
where only one derivative is used. The detailed 
expression is given in Appendix B. 

From Eqs. (10) to (12), we find that the 
polarizability χ(q1=0,q2=0,k,iω) at the limit of k→0 
involves contribution from each k2 point. For 
simplicity, we would like to write the frequency-
dependent polarizability χ(q1=0,q2=0,k,iω) in the 
form below: 

2
2

1 2 , 2( 0, 0, , )= ( ) k
k

q q k i k k k wα β α βχ ω χ= = ⋅∑         (13) 

Here , 2( )kα βχ denotes the polarizability contribution 
from each k2 point in Eq. (11). To obtain the 
dielectric function ε(q1,q2,k,iω) in reciprocal space is 
straightforward after taking into account the non-
analyticities of the “head” and “wings” cases using 
formula above. As discussed above, the 

( ), 0,0, ,k iα βε ω  at the limit of k→0 depends on the 

direction ˆ /k k k= . Taking into account the k2 
summation in Eq. (13), for small k, we can write: 
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∑
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Here, k̂α (α=x, y or z) is the α-th Cartesian 
component of the unit vector: /k kα . For materials 
considered in this work, they all have cubic 
symmetry, thus the 3×3 tensor εα,β is an identity 
matric multiplied by a constant. As a result, the 
orientation dependence disappears, and Eq. (14) can 
further be simplified as: 

( )
2

2

, 20,0, , =1 4 ( ) k
k

k i k wα βε ω π χ− ⋅∑            (15) 

Thus, the dielectric constant ε can be directly 
approximated as ε(q1=0,q2=0,k=0,ω) for small k.  
Note, when compared to experiments, the 
macroscopic dielectric constant ε is defined as 1/ε-

1(q1=0,q2=0,k=0,ω) including local field effects (ε-1 
is the inversion of the ε(q1,q2,k=0,ω) matrix). The 
local field effects is essential in predicting the correct 
quasiparticle spectrum [50]. 

The convergence of the dielectric constant ε is 
often related to k-point summation and the number of 
conduction bands used [47,51]. In our approach, we 
use the full matrices without conduction band 
truncation, so the only concern is the k-point BZ 
summation, especially for the “head” and “wing” 
using Eq. (15). The calculated LDA macroscopic 
dielectric constants for GaAs, CdS and ZnO with 
respect to the number of k2 points are illustrated in 
Table I. We can see that the convergence of the LDA 
dielectric constant ε is notoriously slowly. It is also 
clear that the convergence is more difficult for small 
gap semiconductor. For GaAs, even 21×21×21 Γ-
centered grid doesn’t yield fully converged results. 
The main reason for this problem is that the term of 

, 2( =0)kα βχ  (at Γ point) in Eq. (15) is very large, 
hence a large number of k2 points are needed to 
average out the influence of this single Γ point. The 
simplest solution is to use a shifted Monkhorst-Pack 
grid without the Γ point. We found that a shifted 
Monkhorst-Pack grid with 8×8×8 k2 points yields 
converged LDA dielectric constant of 11.86 for GaAs. 
However, it is clear from Eq. (11), this will require to 
define G at these shifted grid points, thus not being 
able to obtain the Γ point band gap. Here we will 
introduce a numerical technique to yield converged 
ε(q1=0,q2=0,k=0,ω) of Eq.(15) without an 
excessively large k2-point grid. We first extend the 
discrete k2 sum in Eq. (15) to a continuous k1-point 
sum (in practice, with a much denser k1-point grid). 
The polarizability contribution , 1( )kα βχ at each k1 
point is interpolated from , ( )jα βχ (j=1,m) of the 
nearest m k2-points of the original k2 grid in the form: 

( ) ( )
1

1/ 1/

, 1 ,
1

( ) = ( ) ( )
mn n

k
j

k f j jα β α βχ χ
=

⋅∑           (16) 



Where
1
( )kf j (j=1,m) is defined as the j-th point 

interpolation weight such that they sum to 1 and the 
exponential factor n=3 is chosen to make the 
resulting , 1( )kα βχ 1/n as linear as possible. The linear 
interpolation coefficient

1
( )kf j are determined from a 

tetrahedron interpolation scheme as illustrated from 
Fig. 1, and obtained by solving the linear equations:  
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   (17) 

 
Figure .1. The schematic diagram of the tetrahedron interpolation 
(also called the linear tetrahedron). 1, 2, 3 and 4 points belong to 
the original k2 grid and k1 point is from the dense grid.  
 
Here dx(j), dy(j) and dz(j) (j=1,2,3,4 or k2) are the 
coordinates of the j-th corner (or k2 point) of the 
tetrahedron. For k1 point falls to the edge, or corner of 
the tetrahedron, multiple tetrahedrons are used, and 
the results are averaged from different tetrahedron 
interpolated results. With the interpolated 
polarizability contribution , 1( )kα βχ in hand, the 
summation of Eq. (15) can be rewritten as a much 
denser grid sum over k1:  

( )
1

1

1 1

, 1

, 1

0,0, , =1 4 ( )

1=1 4 ( )

k
k

k k

k i k w

k
N

α β

α β

ε ω π χ

π χ

− ⋅

− ⋅

∑

∑
             (18) 

Here 
1kN is the total number of the k1 points in the 

dense grid. The resulting dielectric constant εinter 
obtained using Eq. (18) is also presented in Table I. 
We can see that this dielectric constant εinter 
converges much faster than the original formula and 
the convergence for GaAs can be reached by 
17×17×17 k2 grid (the k1 grid used is (126)3). 
Nevertheless, this is still computationally demanding.  
We note that, much of this slow convergence is still 
due to the dramatic change of , 1( )kα βχ near Γ point. A 
possible good approximation is that the shape of 

, 1( )kα βχ near Γ point for a given system might not 
change much, from LDA to GW results, but the 
overall amplitude might changes near that region. To 
capture this feature, we have defined a mask pre-

factor ( ) mask
1 , 1 , 1( ) / ( )LDA k k kα β α βλ χ χ= to describe the 

shape of , 1( )kα βχ . Here , 1( )kα βχ is interpolated from a 
small k2 grid (e.g., the 9×9×9 grid to be used in our 
sc-GW calculations) using Eq. (16), while mask

, 1( )kα βχ is 
interpolated from a dense grid (e.g., the 21×21×21 
grid) from Eq. (16). The k1 grid is still a dense grid, 
e.g., (126)3. To calculate λLDA(k1), both , 1( )kα βχ and 

mask
, 1( )kα βχ are calculated with LDA. Then this fixed 

LDA mask function λLDA(k1) will be used in GW 
calculations in the following formula:  

( )
1 1

, 1 1
10,0, , =1 4 ( ) ( )LDA

k k

k i k k
Nα βε ω π χ λ− ∑        (19) 

Here , 1( )kα βχ are interpolated from the small (e.g., 
9×9×9) k2 grid using Eq. (16) during the sc-GW 
iterations, and λLDA(k1) is fixed throughout the 
iterations. For the LDA calculation, almost by 
definition, different k2 grid will get the same result 
(e.g., all equal to the 21×21×21 grid result) under this 
procedure, as shown in Table I. To test the 
convergence of this procedure for sc-GW calculations, 
we have  calculated dielectric constant with 7×7×7 
grid (εGW =4.96) and 9×9×9 grid (εGW=4.98) for GaAs, 
they only differ by 0.02. To be conservative, we will 
use 9×9×9 k grid in our following sc-GW calculations 
to guarantee a full convergence.  

We like to point out that, all the above discussions 
from Eq. (9) to Eq. (19) are concerning the 
ε(q1=0,q2=0,k2=0,ω) value (also the “wing” values). 
The ε(q1,q2,k2,ω) for all the other k2 points, or 
nonzero q1,q2 for k2=0 are well defined using Eq. (7).  
The small difference between the 7×7×7 grid and 
9×9×9 k grid sc-GW results (including the small 
quasiparticle energy difference of 15 meV) indicates 
the adequacy of using Eq. (11). As the k2-point grid 
getting larger, the relative roles of Eqs. (10) and (11) 
(which are only used to get the k2=0 value of 
ε(q1=0,q2=0,k2=0,ω) ) are getting smaller. Thus, 
even if there were some small errors in Eqs. (10) and 
(11), the final sc-GW quasiparticle energies would 
not be affected, as long as the results are converged 
regarding to the k-point grid.   
 
TABLE I. The LDA macroscopic dielectric constant calculated for 
various k2 grid sets. Nk2 is the number of k2 points in the k2 grid set. 
ε is the original calculated dielectric constant, εinter is the 
interpolated dielectric constant using Eq. (18) and εmask is the final 
fitted dielectric constant using Eq. (19). 

Systems Nk2 ε εinter εmask 

GaAs 7×7×7 22.33 15.69 11.81 

 9×9×9 16.47 13.25 11.81 

 13×13×13 13.18 12.05  



 

 17×17×17 12.67 11.83  

 21×21×21 11.94 11.80  

 23×23×23 11.85   

 25×25×25 11.83   

CdS 7×7×7 8.77 7.55 6.84 

 9×9×9 7.78 7.21 6.84 

 13×13×13 7.03 6.85  

 15×15×15 6.88 6.87  

ZnO 7×7×7 8.64 6.25 4.68 

 9×9×9 6.63 5.66 4.68 

 13×13×13 5.69 5.17  

 15×15×15 5.26 4.71  

 19×19×19 4.67 4.65  

 
B. Evaluating the self-energy 

In the GW approximation, the self-energy Σ is 
obtained from the product of the Green’s function G 
and the screened interaction W sum over many 
different k points as shown in Eq. (5). However, the 
screened interaction W at k=0 is divergent as shown 
in Eq. (6). Thus, a discrete k-point sum including the 
k=0 point in Eq. (5) will also get a divergent result.   
To solve this divergence problem, we use a technique 
similar to that proposed by Gygi and Baldereschi [52] 
for unscreened Fock exchange term calculation. A 
reference term which has the same singularities as the 
right side of Eq. (5) is added and subtracted in the 
formula as below: 
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    (20) 

Note the singularities will be cancel out when k2=0 
for the first two terms. The k2-point summation in the 
last term is replaced by a continuous k1 point 
integration

1
1

1 2 1( , , , ) k
k

W r r k i wτ ⋅∑ . To avoid the divergence 

problem, k1 is defined in a dense grid through the first 
BZ. In the reciprocal space, we have:  
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     (21) 

Here, the same interpolation technique of Eq. (17) is 
used to get ε-1(q1,q2,k1,iω) for an arbitrary k1 from its 
nearest neighbor values on the k2 grid. Note, since ε-

1(q1,q2,k1,iω) should be relatively smooth (compared 

to the 4π/|q1+k1||q2+k1| factor), such interpolation 
should work fine. From Eq. (21), it is clearly that the 
singularities are caused by the bare Coulomb 
potential term 4π/|q1+k1||q2+k1| when q1=q2=0 and 
k1=0. The summation of this point should represents a 
k-space region of dimension Δk1=2π/(aN), here a is 
the lattice constant of the crystal, and N is the grid 
point number along each direction (e.g., for a (400)3 
k1 grid, N is 400). Since the volume is proportional to 
(Δk1)3, and the W is proportional to ε-

1(0,0,0,iω)/(Δk1)2 , thus overall this single k1=0 term 
in Eq. (21) should have a contribution of 

( )1
1.0,0,0,i kβ ε ω−⋅ ⋅ Δ . The β is a geometric factor 

depending on the crystal lattice. As a result, Eq. (21) 
for q1=q2=0 can be rewritten as: 
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Figure .2. The solid line is the convergence of 
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summation for β=1 with respect to the number of N points. The 
continued dashed line is the summation using pre-factor β=0.902. 
    

Note β depends only on the crystal lattice, not on 
the dielectric constant. The β can be obtained by 
fitting the unscreened Coulomb interaction result of 
Eq. (22) for a moderate N (e.g., 100) to the converged 
result using an extremely large N (e.g., 1000) (with 
an arbitrary preset β, e.g., β=1). For the face center 
primary cell lattice used in this study, we found 
β=0.902 can yield a very fast convergence of Eq. (22), 
as shown in Fig. 2. After this β is fixed in Eq. (22), in 
the following, we will use a 1003 k1-point grid to 
carry out the Eqs. (20), (21) and (22). This will give 
us a converged self-energy Σ. 

 
C. Calculating quasiparticle energy 

The Green’s function G is updated by solving Eq. 
(3) after the self-energy Σ is obtained. Note, the 
Hamiltonian ( ) 1, ( ) ( , ) ( , )H k i H k k i i G k iω ω ω μ ω−= + Σ = + −  is 
non-Hermitian. Although strictly speaking, the 
quasiparticle energy should be defined from the 
peaks in the spectral function, or say the poles of 
G(k,iω), in practice, for a post calculation analysis, it 



will be convenient to have a set of eigen states of a 
Hermitian Hamiltonian, and use that to represent the 
quasiparticle states. To do so, we have first 
Hermitized ( ),H k iω  as ( ) ( ) ( )1, = , + ,

2
TH k i H k i H k iω ω ω′ ⎡ ⎤⎣ ⎦ , 

then diagonalized it to get the wave function ψjk(iω), 
where j and k are the band and k-point indices, 
respectively. We found that ψjk(iω) is almost 
independent of ω at least for the occupied states and a 
few conduction band states near the band gap [22].  
As a result, the wave function ψjk(iω) can be well 
approximated by ψjk(0) [which is ψjk(iω=0)]. This 
allows us to define an expectation value of the self-
energy matrix ( ) (0) ( , ) (0jk jk jki k iω ψ ω ψΣ = Σ ） , which 
is shown in Fig. 3 on the imaginary ω axis. It is clear 
that both the real and imaginary parts change 
significantly with iω. Besides, the expectation value 
of the non-Hermitian part (indicated by the imaginary 
part) can be as large as Hermitian part. All these 
mean the true Green’s function is far from the non-
interactive single-particle description of Eq. (1) 
[35,36].  

 
Figure .3. The expectation value ( ) (0) ( , ) (0)jk jk jki k iω ψ ω ψΣ = Σ  of 
GaAs for j=20 state (j=22 is the VBM) at the Γ point on the 
imaginary axis. 
 

To get the corresponding quasiparticle energies 
that can be measured in the experiment, knowledge 
of G and Σ in the real frequency domain is required. 
The corresponding poles can then be obtained with 
the ω solution of 1(0) ( , ) (0 =0jk jkG kψ ω ψ− ） . This 

requires us to get ( ) (0) ( , ) (0jk jk jkkω ψ ω ψΣ = Σ ）on the 
real axis according to the Dyson equation. With 
above calculated ( )jk iωΣ on imaginary axis, ( )jk ωΣ can 
be obtained by analytically extending ( )jk iωΣ to the 
real axis as proposed by Roja, Godby, and Needs [16]. 
We have tested that this procedure is very reliable in 
obtaining ( )jk ωΣ for ω within 1 or 2 Hartrees from 
Fermi energy μ [22]. The quasiparticle energies �jk(ω) 
for each j state and k vector are then determined by 

solving the equation + = (0) Re ( ) (0)jk jk jkω μ ε ω⎡ ⎤+ Σ − Σ⎣ ⎦ , εjk(0) 
is the eigen energy of ( ),H k iω′ when ω equals 0. 

The excitation spectrum is also an important 
quantity that often measured in experiment. The 
spectral function which can be compared with 
experiment for the periodic solids is calculated as: 

[ ]( , ) 1 / Tr Im ( , )A k G kω π ω=                (23) 

Here “Tr” is the trace of the matrix G. Within above 
approximation, the spectral functions can be directly 
obtained as: 

1 1( , ) Im
(0) ( ) (0)j jk jk jk

A k ω
π ω μ ε ω

⎡ ⎤
⎢ ⎥=

⎡ ⎤− − − Σ − Σ⎢ ⎥⎣ ⎦⎣ ⎦
∑    (24) 

In our test of the convergence of the sc-GW 
iterations, the eigen energies εjk(0) of ( ),H k iω′ when 
ω equals 0 are used as marks for the convergence. 
The energy gaps measured by εjk(0) as a function of 
self-consistent iterations are presented in Fig. 4(a). 
We can see that the energy gaps for GaAs, ZnO and 
CdS converge within about 4 to 5 iterations with 
LDA input eigen energies and eigen functions. In our 
previous work for isolated molecule systems [22], we 
have demonstrated that the final quasiparticle 
energies are independent of the initial input eigen 
functions and eigen energies. We found this is also 
true for our bulk system calculations. The self-
consistent loops are also measured with the change of 
dielectric constant ε in Fig. 4(b). On the one hand, it 
confirms the convergence of the self-consistent 
iterations. On the other hand, we found that there is a 
strong correlation between the energy gap and the 
dielectric constant, the energy gap of N+1 iteration 
increases with the decrease of the dielectric constant 
from N iteration. An accurate prediction of the 
quasiparticle band gap requires an accurate prediction 
of the dielectric matrix. 



 
Figure .4. (a) The minimum energy gaps measured by εjk(0) as a 
function of self-consistent iterations. (b) The change of the 
dielectric constant ε with respect to the iteration steps. 
D. The use of pseudopotentials 

In this work, we use the plane wave basis set for 
the implementation of the fully self-consistent GW 
calculations. The norm-conserving pseudopotential 
with semicore electrons is used to give a good 
description of the valence pseudo wave functions. 
The outmost two shells of atomic orbitals are treated 
as valence states for Ga, As, Zn and Cd atoms to 
avoid the errors in the quasiparticle energies as 
shown by Rohlfing and coworker [53]. More 
specifically, for Ga, As, Zn and Cd atoms, their 
corresponding valence electrons in the 
pseudopotentials are: 3s23p63d104s24p1, 
3s23p63d104s24p3, 3s23p63d104s2, and 4s24p64d105s2 
respectively, while the valence electrons for O and S 
are 2s22p4 and 3s23p4 respectively. Since the 
semicore states are highly localized, a large energy 
cutoff Ecut is often required to get well converged 
results, as indicated by LDA calculations. Fig. 5 
shows the dependence of LDA band gaps for CdS, 
GaAs and ZnO on the energy cutoff Ecut. For CdS, 
the band gap can converge with a relatively small Ecut 
(around 80 Ryd). However, a significantly larger Ecut 
(more than 300 Ryd) is needed to get accurate band 
gap with an accuracy better than 0.01 eV for GaAs 
and ZnO. 
 

 
Figure .5. The LDA band gaps (in eV) for (a) CdS, (b) GaAs and 
(c) ZnO as a function of the energy cutoff Ecut. 
 

The increased Ecut can significantly increases the 
dimension of matrices, computational cost, and the 
memory requirement. This is shown for GaAs in 
Table II. Here, Nq is the resulting number of plane 
waves within Ecut for k=0 in our calculations. As a 
result, the matrix for G(q1,q2,k,iω) or Σ(q1,q2,k,iω) at 
each k point and ω point is a (Nq)2 matrix. It can be 
seen in Table II that the dimension of Nq has been 
increased by 20 times due to the inclusion of the 
semicore. For W, ε and χ defined by the energy cutoff 
Ecut2, the dimension of these matrices for each k point 
and ω point is about three times bigger than those of 
G and Σ. All these make the computation extremely 
expensive with a large memory requirement. 
 
TABLE II. The energy cutoff Ecut (Ecut2) (in Ryd) and resulting 
number of plane waves Nq (NqL) in the initial converged LDA 
calculations for GaAs with and without semicores. 
 

Systems Ecut Nq Ecut2 NqL 

GaAs 38 1240 76 3480 

GaAs with 
Semicore 300 26700 600 75000 

 
TABLE III. The comparison of the LDA results for GaAs with 
respect to above two different energy cutoff. Eg is the minimum 
energy gap (eV) and Ed is the average cation d-states binding 
energy (eV) of Ga. Some selected eigen values (eV) relative to the 
valence band maximum (Γ22v) at Γ point are also presented. 

Systems Ecut=300 Ryd Ecut=85 Ryd 



 

Eg 0.132 0.135 

Γ1v(As_3s) -183.43 -191.45 

Γ2v(Ga_3s) -142.65 -146.79 

Γ3v(As_3p) -127.67 -140.38 

Γ6v(Ga_3p) -93.98 -100.69 

Γ12v(As_3d) -35.18 -35.91 

Γ17v(Ga_3d) -14.81 -14.77 

Ed -14.85 -14.82 

 
We like however to reduce this dimension for 

GaAs and ZnO in some degree. The purpose of 
including core level is two folds: one is to make the 
valence electron to have the proper shape, so the 
screened exchange integral will be accurate; the 
second is to include the core level in the calculation 
in case they have any mixing with the valence states. 
We like to reduce the Ecut in some degree (e.g., 
reduce it to 100 Ryd range), but still keep these two 
features intact. As shown in Fig. 5 and Table III, 
when Ecut~100Ryd, the LDA band gap will have a 
small error (e.g., 0.1 eV), meanwhile the core level 
energy will have a slightly larger error (~10 eV out of 
100-200 eV). The exact energy of the core level is a 
lesser concern due to the expected small mixing with 
the valence state. Overall, the plane wave truncation 
can be considered as a small perturbation to the 
Hamiltonian. We can thus add a counter term to 
balance the effects of this perturbation. More 
specifically, we have added a small Gaussian 
function f(r) to the original s, or p or d potentials. The 
Gaussian function f(r) reads as: 

2
( ) /( ) peak cutr r rf r eβ ⎡ ⎤− −⎣ ⎦= ⋅                       (25) 

where r is the radius, rpeak is the position of the peak 
in radial direction, and rcut is the width of the 
Gaussian in units of Bohr. Using pre-selected rpeak 
and rcut, by adjusting the factor of β, the modified 
pseudopotentials can recover the original converged 
LDA results by using a Ecut ~100 Ryd. The 
comparison is given in Table III for GaAs with 
Ecut=85 Ryd. Compared to the 300 Ryd result, the 
band gap difference is less than 0.01 eV, the Ga 3d 
states energy difference is within 0.1 eV, and the 
deep semicore level difference is about 10 eV out of 
~150 eV. Since the direct involvement of the 
semicore level is small, the 10 eV error in its energy 
is likely nonconsequential. The comparison for ZnO 
and the parameters of β, rpeak and rcut used for the 
modified pseudopotentials of GaAs and ZnO are 
given in Appendix C. 

However, as we discussed above, the main purpose 
of including semicore is to correct the Fock exchange 
integral using pseudo wave function. The LDA 
Hamiltonian does not test the exchange integral 

effects of reducing the 300 Ryd cutoff to ~100 Ryd. 
In order to test this, we have carried out one-shot 
(non-self-consistent, much like the G0W0, with LDA 
wave function as the input) HF calculations for GaAs 
and ZnO, compared the resulting band gaps of 300 
Ryd cutoff and the 85/105 Ryd cutoff with the Eq. 
(25) correction term. The results are shown in Table 
IV. The band gap difference between the two cutoff 
schemes is only about 20 meV, mostly comes from 
the exchange integral difference. Consider that, in 
GW method, the exchange integral is screened 
(reduced), roughly by an order of 5, then the band 
gap error introduced by changing the 300 Ryd to 
85/105 Ryd cutoff should be in the order of 4 meV. 
After using the above techniques, a numerically 
accurate self-consistent GW calculation can be 
achieved. 
 
TABLE IV. The one-shot HF band gap Eg in (eV) for ZnO and 
GaAs with respect to the two different Ecut (in Ryd) with Eq. (25) 
correction. In this tests, we used a 3×3×3 k-point mesh. 
 

Atom Ecut (Ryd) Eg (eV) 

ZnO 
105 11.09 

350 11.11 

GaAs 
85 6.68 

300 6.66 

 
E. The computational details 

The fully sc-GW calculation has been applied to 
study the quasiparticle energies of three prototype 
semiconductors: GaAs, CdS and ZnO. We have 
adopted the experimental zinc-blend lattice constants 
for a meaningful comparison with experiment and 
other theoretical results. The lattice constants and 
cutoff energies are listed in Table V, along with the 
resulting number of plane waves Nq and number of 
real space grid points Nr. Nq shown in Table V is the 
number of plane waves for k=0 within Ecut in our 
calculations. The Ecut2 is for the plane wave 
expansion of χ, W, and ε. We note that, in many of 
the previous works [38,54,55], although Ecut used 
could be large, the Ecut2 used were rather small, e.g., 
30 Ryd (much smaller than Ecut). The number of 
plane waves Nq is around 3000, while Nr could be 
about ten times bigger (e.g., ~30000) [A spherical 
Ecut is used to determine the plane wave vectors, 
while Nr is defined by the full FFT grid points].  

The matrix for G(q1,q2,k,iω) at each k point and ω 
point is a 3000×3000 matrix, requiring about 0.2 GB 
of Memory. Typically, we have used 400 ω points 
along the imaginary axis of iω (from –3×106 to 3×106 
Hartree), and 40 τ points (from –200 to 200 Hartree-1) 
The exponential iω and iτ grid points were shown in 
our previous publications [22]. The smallest intervals 
for ω and τ in our calculations are 2×10-4 Hartree and 



0.01 Hartree-1, respectively, while the maximum ωmax 
and τmax are 3×106 Hartree and 200 Hartree-1. The 
grid convergence has been tested to ensure that the 
resulting error in quasiparticle eigen energy is less 
than 0.01 eV. The techniques to carry out the Fourier 
transformation between G(iω) and  G(iτ) were 
described in details in our previous publication [22], 
the accuracy of such numerical Fourier transform is 
shown to be 10-7 Hartree-1. In doing this 
transformation, massive parallelization is used to 
distribute the k points and q2 vectors. The MPI 
communicator is first divided into the number-of- k 
sub-communicators. In each sub-communicator, q2 is 
divided into different processors. Each processor 
group might only have a few q2 points. To further 
decrease the computational cost, the crystal 
symmetry is used. Therefore, the first BZ can be 
represented with a reduced set of k vectors within the 
irreducible BZ (IBZ). The calculations were carried 
out on the Titan supercomputer at OLCF using about 
100,000 CPU processors. It takes about four hours 
for one fully converged sc-GW calculation. 
 
TABLE V. The experimental equilibrium lattice parameter (in Å) 
used in this work. The Ecut (Ecut2) is the plane wave cutoff energy 
(in Ryd) used for the sc-GW calculation. Nq is the resulting number 
of plane waves, while Nr is the total number grid points in real 
space.  
 

Systems 
Lattice 

constant  
Ecut Ecut2 Nq Nr. 

GaAs 5.66 85 170 3735 32768 

ZnO 4.62 105 210 2980 27000 

CdS 5.83 80 160 3479 27000 

 
IV. RESULTS AND DISCUSSIONS  

We first study the quasiparticle energies. The 
calculated LDA, G0W0 (with LDA inputs) and sc-GW 
band gaps for bulk GaAs, ZnO and CdS are tabulated 
in Table VI. When the non-self-consistent G0W0 
calculations are performed, the band gaps for GaAs 
and CdS are 1.29 and 2.10 eV, respectively. These 
values are in relatively good agreement with other 
theoretical results [7,27,56], including the all-electron 
results [7,56]. For ZnO, the values of G0W0 band gap 
are very scattered, ranging from 2.11 to 4.23 eV 
[27,44,56,57], due to different approximations, 
truncations and initial input eigen energies and wave 
functions. In one recent work [43], Shih and Louie 
found that the conventional G0W0 method can yield a 
band gap that is very close to the experimental value 
for wurtzite ZnO, if one uses LDA+U as initial inputs, 
high cutoff energies and enough conduction bands 
(about 3000 empty states). On the one hand, this 
example highlights the importance of high cutoff 

energies and the number of conduction bands to 
reach numerical convergence. On the other hand, it 
also shows that G0W0 quasiparticle energy could be 
highly sensitive to the input DFT eigen energies and 
wave functions (e.g., using LDA instead of LDA+U 
will have a major difference). Some later studies 
[58,59] also discussed the issue of plasmon pole 
approximation used in the work of Shih and Louie 
[43]. For zinc-blend ZnO as listed in Table VI, Hai-
Ping et al reported a 2.31 eV G0W0 band gap based on 
all-electron implementation [56] using LDA eigen 
energies and wave functions as input. Our computed 
G0W0 band gap is 0.2 eV higher than their result. 
However, since only 150 conduction bands are 
included in their GW calculations, this could lead to 
numerically un-converged result. Fig. 6 shows the 
dependence of G0W0 band gap of ZnO on the number 
of conduction bands. The red dash line is the band 
gap calculated using full Green’s function without 
truncation. It shows clearly that the quasiparticle gap 
of ZnO including 500 conduction bands does not 
converge completely, which is in agreement with the 
conclusion made by Shih and Louie [43]. For systems 
with strongly localized states like ZnO, the 
convergence regarding to the number of conduction 
band states can be very slow. As a result, it is crucial 
to use the non-truncated Green’s function in the GW 
calculations. According to Fig. 6, our G0W0 using 150 
conduction bands would yield a 2.2 eV band gap, 
which is quite close to the results in Ref [56]. This 
close agreement of our semicore-pseudopotential 
G0W0 calculation and the all-electron calculation 
(when the same number of conduction bands is used) 
also confirms that the use of our semicore 
pseudopotential is accurate. For all the three systems, 
it can also be noted that although G0W0 band gaps 
considerably improved those at the LDA level, they 
systematically underestimate the experimental values. 
 

 
Figure .6. G0W0 band gap of ZnO as a function of the number of 
conduction bands in evaluating the Green’s function. The red 
dashed line is the full result without any conduction band 
truncation. 



 
TABLE VI. Results of LDA, G0W0 and sc-GW band gaps (in eV) for bulk GaAs, ZnO and CdS. Others’ G0W0 calculations (using the LDA as 
initial input) and experimental value Eexp (in eV) are also provided. εLDA is the dielectric constant used for G0W0  calculation, εGW is the final 
converged dielectric constant and εexp is the experimental high-frequency dielectric constant. Etest (in eV) is the converged GW band gap using 
the fixed experimental dielectric constant (For ZnO, we use the εLDA as the fixed value). Strictly speaking, the ε shown here are actually the 
1/ε-1(q1=0,q2=0,k=0,ω=0). 

   aReference[27]. bReference[7]. cReference[60]. dReference[61] 
eReference[56]. fReference[62]. gReference[63]. hReference[64] 

 

Systems LDA G0W0 Others’ G0W0 sc-GW Eexp εLDA εGW εexp Etest 

GaAs 0.13 1.29 1.30a,1.29b 2.04 1.52c 11.81 4.98 10.89d 1.03 

ZnO 0.61 2.51 2.31e 4.43 3.44f 4.68 1.86  2.37 

CdS 0.82 2.10 2.06a, 2.03e 3.35 2.42g 6.84 2.44 5.20h 2.28 

The band gaps from sc-GW calculations are 
increased compared to G0W0 band gaps and 
significantly overestimate the experimental values as 
can be seen in Table VI. Although similar 
phenomena have been discussed in previous 
literatures [21,27,56], most of such works were under 
approximations more severe than the current work, 
and the previously reported overestimations were not 
as large as we reported here. We also noticed that  
our conclusion is  different from a recent all-electron 
FP-LAPW sc-GW calculations by Hai-Ping et al [56]. 
They emphasized the need of all-electron calculation 
and sc-GW calculation, and in many of their systems 
(including ZnO and CdS), their sc-GW results are 
much closer to the experiment than the G0W0 results. 
As we have shown above, our semicore-
pseudopotential result is rather close to their all-
electron G0W0 results (when the finite number of 
conduction band truncation in their calculation is 
taken into account), thus we believe the all-electron is 
not an issue here. There are several possible reasons 
for causing the differences between their results and 
ours. First is the diagonal approximation used in their 
approach, where the Green’s function G has been 
approximated with a diagonal form similar to Eq. (1) 
(although the frequency dependent denominator has 
been replaced by a general function of fi(ω) during 
the self-consistent iteration), and the ψi(r) basis is not 
updated.  Instead, the G in our method are 
represented in the full matrices form that both the 
diagonal and off-diagonal elements are included in 
the self-consistent calculations. According to 
Shishkin and Kresse [27], the inclusion of off-
diagonal elements has the tendency to open the band 
gaps. Thus, the relatively good agreement for the 
G0W0 result compared to Ref. [56], and the large 
difference for the sc-GW results, might indicate the 
importance of the off-diagonal term in the sc-GW 
calculation. Another possible reason is the finite 
number of conduction bands used in their diagonal 
representation of the G. Only150 conduction bands 
are used  and the energy of the highest eigen state 

above the Fermi level is only 1.2 Ryd. For strongly 
localized materials, these parameters might be far 
from converged as we discussed above [38].  

From Table VI, we can see that, for GaAs, the sc-
GW band gap is more than 30% larger than the 
experimental value, while G0W0 is about 14% smaller 
than the experimental one. It seems that the sc-GW 
results are worse than the G0W0 results. The same can 
be said for ZnO and CdS. This is in contrast to the 
conclusions made based on molecular sc-GW 
calculations [22,65], where the overall quality of the 
sc-GW results is similar to the G0W0 results. To 
analyze the origin for this overestimation, the 
converged macroscopic dielectric constant εGW of the 
sc-GW for GaAs, ZnO and CdS are shown in Table 
VI as 4.98, 1.86 and 2.44 respectively. They  are 
significantly smaller than the experimental values 
[61,64]. Due to the underestimated screening, it is 
natural the GW will give overestimation of the band 
gap. Such sensitivity to the macroscopic dielectric 
constant does not exist in the molecular systems. We 
also noticed that the LDA dielectric constants εLDA 
are quite close to the experimental values. This 
partially explains why the G0W0 can yield a better 
band gap than the sc-GW results. To test this idea 
further, we have carried out the following tests. In 
these tests, we have used the experimental 
macroscopic dielectric constant εexp. Then at every 
iteration step, according to the calculated 
macroscopic dielectric constant  1/ε-

1(q1=0,q2=0,k=0,ω=0), we defined a correction pre-
factor β=εexp/ε-1 (0,0,0,0), and multiplied this pre-
factor β to all the ε-1(q1,q2,k,iω) in the calculation of 
W in Eq. (6). The resulting band gaps Etest are also 
reported in Table VI. We can see that, these test 
results significantly reduce the sc-GW band gaps, 
making them smaller than the experimental values. 
This indicates that the underestimation of the 
dielectric constant plays a determining role for the 
overestimation of the band gap. The fact that the 
resulting band gaps are smaller than experimental 
values is probably because the factor β overestimates 



the dielectric constant at other (q1,q2,k,iω) points 
(since ε(q1=0,q2=0,k=0,ω=0) is  most sensitive to the 
band gap at k=0, while the other (q1,q2,k,iω) is less 
sensitive, hence might need a smaller pre-factor). To 
yield better dielectric constant without fitting, one 
needs to include the higher order vertex terms in the 
Feynman diagram of the many-body perturbation 
theory. 

We note that there are some recent works for the 
effects of lattice screening (electron-phonon coupling) 
to the semiconductor band gap [66-69]. Such lattice 
screening generally reduce the band gap, thus could 
bring our sc-GW results in better agreement with the 
experiment. However, the reported lattice screening 
effects on GaAs [69] is rather small, only 0.06 eV, 
although there are reports of surprisingly large (0.7 
eV) zero temperature lattice screening effects for 
diamond [66,67]. Nevertheless, in general, for 
semiconductor with a band gap smaller than 3 eV and 
for heavy elements, looks like the lattice screening 
effect is less than 0.1eV [67,69], thus should not be 
enough to explain the difference between our sc-GW 
and experimental results. 

Another important aspect is the accurate 
description of the d-state energies. We have 
computed the outmost cation d-state binding energy 
Ed at Γ point, which is estimated as the average of all 
the corresponding d-state energies with respect to the 
valence band maximum (VBM), as presented in 
Table VII. It is clear that Ed predicted by LDA are 
underestimated by at least 2 eV compared to the 
experimental values. The too shallow LDA cation d-
state energies are mainly caused by the well-known 
self-interaction error of d electrons within LDA. As 
expected, G0W0 calculations perform better than LDA 
and place these d-states at deeper binding energy for 
all the systems studied. However, the discrepancy can 
still be very large (around 1-2 eV). There are works 
[43,70] using LDA+U as initial inputs, in which the 
self-interaction is effectively removed, to give a good 
description of the ground states. In our self-consistent 
calculation, the energies of cation d-state are 
significantly improved when compared with 
experiment [71]. Seems like the d-state energy is 
relatively unaffected by the dielectric constant error, 
at least for the error at 1/ε-1(q1=0,q2=0,k=0,ω=0), 
probably this is because the localized d-state is 
mostly screened by finite k and q components of the 
dielectric constant, rather than by 1/ε-

1(q1=0,q2=0,k=0,ω=0).  Since the ε at other k and q 
points depend less sensitively on the band gap at Γ 
point, thus they might have smaller errors.  It is worth 
pointing out that the d-state energy is affected by the 
self-interaction energy, which has been corrected in 
the sc-GW calculation. 
 

TABLE VII. The average semicore d-states binding energies (in 
eV) of GaAs, ZnO and CdS at Γ calculated using LDA, G0W0 and 
sc-GW methods. The experimental value Expt. (in eV) is given for 
comparison. 

aReference[71] 
 

Finally, we reported the spectral functions using 
Eq. (24), and they are shown in Fig. 7 for k=0. The 
GW spectral function shows sharp peaks at the 
quasiparticle energies. Note the peak positions are 
exactly the same as the ones shown in Tables VI and 
VII. As expected, the sharper peaks close to the 
Fermi energy are associated with longer lifetime of 
the corresponding quasiparticle states. In the work of 
Holm and von Barth for homogeneous electron gas 
[20], they observed a transfer of spectral weight from 
the plasmon satellite to the quasiparticle peak in the 
self-consistent GW calculations. This results in a 
weaker plasmon peak and a broader valence band. 
Similar to what they found, the valence band width of 
our sc-GW is slightly wider than that of G0W0 as 
shown in Fig. 7. Besides, we do not see any satellite 
peaks deep in the valence band. Such satellite peaks 
representing the plasmon excitations could be found 
by the cumulant method as a post process procedure 
[72]. 

 
Figure .7. The spectral functions for (a) GaAs, (b) ZnO and (c) 
CdS. The dashed lines are for G0W0 results and the solid line are 
for sc-GW results. The Fermi energy μ for GaAs, ZnO and CdS are 
around 0.5, 6.1 and 1.5 eV, respectively. 
 

Ed LDA G0W0 sc-GW Expt. 

GaAs -14.82 -16.73 -18.32 -(18.7-18.82)a 

ZnO -5.16 -5.97 -7.10 -(7.5-8.81)a 

CdS -7.51 -8.38 -9.67 -(9.2-10.0)a 



V. CONCLUSIONS 
In summary, we have implemented a fully self-

consistent GW approach based on the solution of the 
Dyson equation using plane wave basis set. We use 
this method for a detailed study of the quasiparticle 
energies and spectral properties for bulk GaAs, ZnO 
and CdS using pseudopotentials with semicores. The 
Green’s function is expressed as a full matrix without 
truncation. Algorithmic, numerical and technical 
details of the self-consistent GW approach are 
presented to deal with the non-analyticity and 
convergence issues in a bulk calculation. All these 
systems converge in 4-5 self-consistent iterations. We 
found that the sc-GW significantly overestimates the 
band gap due to the underestimation of the 
macroscopic dielectric constants during the self-
consistent iterations. The results indicate that an 
accurate prediction of the quasiparticle band gap 
requires an accurate prediction of the dielectric 
function, which could be achieved by including the 
vertex correction beyond GW. Our work also sheds 
some light on why the G0W0 with LDA input could 
yield better band gap compared to the sc-GW, since 
LDA often has relatively more accurate dielectric 
constant. We also demonstrated that the number of 
conduction bands and off-diagonal elements are very 
important in the GW calculation. After correcting the 
self-interaction error, sc-GW can yield accurate d-
states energies, which less sensitively depend on the 
dielectric constant at k=0.  
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APPENDIX A: DERIVATION OF GW 
FORMULA IN PERIODIC SYSTEMS 

In this appendix, the derivation of GW formula for 
periodic systems is outlined. The noninteracting 
Green’s function G0 can be explicitly written in terms 

of the single-particle eigen functions ψn(r) and eigen 
values εn as:  

1 2
0 1 2

( ) ( )( , , ) n n

n n n

r rG r r
i

ψ ψω
ω ε δ

∗

=
− ±∑                  ( 26) 

where n is the orbital numbers. According to the 
Bloch's theorem, the noninteracting Green’s function 
G0 in the periodic environment has the form: 
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⋅
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Here, unk(r) is a periodic function with the same 
periodicity as the system and k is wave vector and wk 
is the weighting factor of each k point (wk is omitted 
in below equations for simplicity). For interacting 
systems, it can be proved that the Green’s function G 
in the time space iτ has the similar form: 

1 2( )
1 2 1 2( , , ) ( , , , ) ik r r

k
G r r i G r r k i eτ τ − −=∑            ( 28) 

The basic formalism of our fully self-consistent 
GW approach for isolated molecule system can be 
found in our previous paper [22]. Here we will 
present the derivation of these equations in periodic 
systems. The irreducible polarization χ within RPA is 
given by the product of two Green’s function as:  

1 2 1 2 2 1( , , ) ( , , ) ( , , )r r i iG r r i G r r iχ τ τ τ= − −      ( 29) 
Substituting Eq. (A3) in Eq. (A4), we can get: 
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Using Eq. (A5), the dielectric function ε is calculated 
as: 
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Note, 3 3
R

dr dr
Ω

= ⋅∑∫ ∫ , where Ω is the unit cell and R is 

lattice vector. So 1 2

1 2
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e δ− −∑ = . As a result, the 

dielectric function can be defined as: 
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Unlike the polarization χ, there is no k mix in the 
formula of dielectric function ε, as well as in the 
inverse function ε-1. Using similar way, we can get 



screened Coulomb potential W and the self-energy Σ 
for periodic systems in below forms: 

1
1 2 1 3 3 2( , , , ) ( , ) ( , , , )W r r k i r r k r r k iω υ ε ω−= −         ( 33) 

2

1 2 1 2 2 1 2 2( , , , ) ( , , , ) ( , , , )
k

r r k i i G r r k k i W r r k iτ τ τΣ = −∑    ( 34) 

Finally, after Eqs. (A5-A9) are yielded, the Dyson 
equation for periodic solid is given as: 

1
1 2 1 2 1 2 1 2( , , , ) ( ) ( , ) ( , , ) ( , , , )G r r k i i r r k H r r k r r k iω ω μ δ ω− = + − − − Σ    ( 35)   

In the reciprocal space, it is expressed as: 
1 2

1
1 2 , 1 2 1 2( , , , ) ( ) ( , , ) ( , , , )q qG q q k i i H q q k q q k iω ω μ δ ω− = + − − Σ    (A11) 

 
APPENDIX B: CALCULATION OF 
POLARIZABILITY OF k→0 

In this appendix, details about the special case for 
k→0 are presented. To test the “head” expression of 
Eq. (11) in the main text, the noninteracting Green’s 
function G0 in iτ space is used and its analytical 
expression can be written down as: 
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Here ψnk(r) is the single-particle eigen wave function, 
εnk is its eigen energy and n is the index for the band 
states. Substituting Eq. (B1) into Eq. (8), the single-
particle polarizability χ(r1,r2,k,iτ) in the limit for k→0 
is obtained as (for τ >0): 
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Transforming to reciprocal space, the resulting 
expression for χ(q1,q2,k,iτ) is: 
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Using first order perturbation theory, the wave 
function at (k2+k) can be obtained in terms of those at 
k2 point. The result is: 
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2
( )kk H rα

α∇ is the same as that defined in the main text. 
The “head” expression of χ(q1=0,q2=0,k,iτ) at k=0 
point is given by : 
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After twice derivation of τ, Eq. (B5) is just same as 
the intermediate term  , 1 2( 0, 0, =0, )q q k i k kα β α βχ τ= = ⋅( 0)  
defined in Eq. (10). As a result, the “head” 
expression of χ(q1=0,q2=0,k,iτ) for the special case of 

k→0 expanded using Eq. (9) is correct. Similarly, the 
“wings” of χ(q1=0,q2,k,iτ) used in our approach is: 
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The first order kα  in the “wings” expansion as a 
function of k will cancel with the k in the 
denominator of Eq. (7). 
 
APPENDIX C: POTENTAIL DETAILS 

In this appendix, the comparison for ZnO with 
respect to above two different energy cutoff is given 
in Table I(C) and the parameters of β, rpeak and rcut 
used for the modified pseudopotentials of GaAs and 
ZnO are presented in Table II(C). 
 
TABLE I(C). The comparison of the LDA results for ZnO with 
respect to above two different cutoff energy. Eg is the minimum 
energy gap (eV) and Ed is the average d-states binding energy (eV) 
of Zn. Some selected eigenvalues (eV) relative to the valence band 
maximum (Γ13v) at Γ point are also presented. 
 

Systems Ecut=350 Ryd Ecut=105 Ryd 

Eg 0.613 0.617 

Γ1v(Zn_3s) -122.65 -136.03 

Γ2v(Zn_3p) -77.34 -83.27 

Γ5v(O_2s) -17.34 -17.52 

Γ6v(Zn_3d) -5.71 -5.70 

Ed -5.19 -5.16 

 
TABLE II(C). The parameters of β, rpeak and rcut used for the 
pseudopotentials of GaAs and ZnO. Each row of the Table stands 
for the parameters used in the Gaussian function f(r) added to the 
original s, or p or d potentials of Zn or Ga atoms. 
 

Atom β(Hatree) rpeak (Bohr) rcut (Bohr) 

Zn_vs -0.90 0.49 0.97 

Zn_vp 0 0.06 1.15 

Zn_vd 0 0.06 0.97 

Ga_vs 0 0.47 0.60 

Ga_vp 0.60 0.05 1.18 

Ga_vd -0.36 0.05 1.18 
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