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In this work we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly po-
larized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands,
taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized
light can invert the ordering of this three band model, while leaving the flat-band dispersionless. We find a small
gap is also opened at the quadratic band touching point by 2-photon and higher order processes. By contrast,
linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that de-
pends only on the amplitude and polarization direction of the light, independent of the frequency, and generally
renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light.
We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency
dependence of the optical conductivity for this 3-band model and analyze the various interband contributions
of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction
strength in real systems.

PACS numbers: 73.43.-f, 78.20.Bh, 03.65.Vf

I. INTRODUCTION

The past decade has seen dramatic advances in understand-
ing the topological properties of the band structure of quan-
tum many-particle systems.1–4 When inter-particle interac-
tions are brought into the picture, the phenomenology is even
richer.5–9 Certain features of two-dimensional band structures
are known to have particular stability conditions with respect
to inter-particle interactions.10 For example, Dirac points are
perturbatively stable to interactions, requiring a critical inter-
action strength to open a gap,11–13 which is important for the
low-energy properties of single-layer graphene.14 By contrast,
quadratic band touching points in two dimensions are known
to be perturbatively unstable to interactions,10 and numerous
discussions in the literature of “interaction-driven” topologi-
cal states have appeared (including in more general, higher di-
mensional, contexts).15–31 In addition, flat bands in any spatial
dimension correspond to localized states which generally tend
to have enhanced interaction effects because the energy scale
of interactions, no matter how small, will always dominate the
kinetic energy scale in a flat band.32 One particularly active re-
search topic in this area has been the study of fermionic lattice
models where the lowest band is nearly flat, has a finite Chern
number, and is separated by a gap large compared to the band
width of the lowest band.33–36 If this band is partially filled,
(e.g., 1/3 filled), fractional quantum Hall states may arise in
the lattice model.37–43

Another direction the study of topological phases has
taken in recent years is the non-equilibrium generation of
interesting band structures under the influence of a periodic
drive.44 At the non-interacting level, dramatic changes in the
band structure can occur, including a change from a non-
topological band structure to a topological one.45–56 Two com-
monly discussed physical scenarios for periodically driven
systems include periodic changes in the laser fields that es-
tablish the optical lattice potential for cold atom systems,57,58

and solid state systems that are driven by a monochromatic
laser field.59–62,78–81 When inter-particle interactions are in-

cluded in such Floquet-Bloch systems, energy is typically ab-
sorbed from the periodic drive.63 If the many-particle sys-
tem is closed, it will usually end up at infinite temperature,
unless the system is sufficiently disordered for many-body
localization64–66 or some other non-generic state to occur. If
the system is coupled to a bath, it is possible for a “balance”
to be established where the average energy (over a drive pe-
riod) absorbed by the system from the drive can be released to
the bath and a non-equilibrium steady state established.67–72

Even when such a non-equilibrium steady state is established,
the distribution of particles in their orbitals is generally non-
thermal, and non-generic, i.e., depends on the properties of
the system in the absence of the drive, the drive itself, and
the details of the bath.67–72 In real systems, such experimen-
tal conditions are ideal for potentially realizing novel states of
matter that might be absent from the equilibrium phase dia-
gram of the system.73

In this work, we focus on the features of the under-
lying band structure. To date, much of the theoretical
work on Floquet-Bloch systems has studied two-band mod-
els, because they are the simplest case for which a trivial
band structure can be “reorganized” into a topological band
structure.44,67,68,74–76,78–80 In fact, the physics of “band inver-
sions” much discussed in the literature of time-reversal invari-
ant topological insulators2,3 has strong analogs in Floquet-
Bloch systems. Though, the bulk-boundary correspondence
is much more complicated in the Floquet-Bloch systems than
in the equilibrium systems,46 and transport measurements
on two-dimensional Floquet-Bloch systems with topologi-
cal band structures are also much less straight-forward to
interpret.77,82,83

On a technical level, the Floquet-Bloch theory is often stud-
ied as an expansion about the high-frequency limit.84 It is
therefore not clear a priori that it is sensible for a multi-band
system to be reduced to an effective, low-energy two-band
model about the Fermi energy. Possible resonances between
these low-energy bands, and higher energy bands in a real
system might have a significant impact on the Floquet band
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structures. As a step towards understanding this physics, we
would like to generalize the problem to a multi-band system
including both quadratic band crossings and Dirac points in
the static band structure. These features can be realistically
related to the (LaNiO3)2/(LaAlO3)N heterostructure grown
along the [111] direction.21 For simplicity, here we adopt the
non-interacting tight binding model kagome lattice as an il-
lustrating example. In the kagome lattice, the quadratic band
crossing point is protected by a C6 rotational symmetry and
time-reversal symmetry. The quadratic band crossing point
can be gapped by breaking at least one of the two symmetries
above. Two alternative strategies are provided and carefully
studied: (1) By shining with linear polarized light, the time-
reversal symmetry is preserved while degrading the C6 rota-
tional symmetry to C2. (2) Circularly polarized light breaks
the time-reversal symmetry while keeping the rotational sym-
metry. This gap opening at quadratic band crossing points
can be measured experimentally using the time- and angle-
resolved photoemission spectroscopy.61

We study a two-dimensional three-band fermion model that
also includes a flat band, a quadratic band touching point, and
a Dirac point (all in the absence of the drive) to investigate
how these features are impacted by the drive from normally
incident laser fields of different intensities, frequencies, and
polarizations. We find a rich phenomenology that in some
cases mimics the changes that may be induced by interactions
in equilibrium band structures,10 but also has many unique
features of its own. This opens the possibility that one may be
able to optically engineer topological states, including those
that might have non-trivial inter-particle interactions at their
core.85

Our paper is organized as follows. In Sec. II, we describe
the three-band kagome lattice Hamiltonian we study, and in
Secs.III,IV we discuss the influence of a monochromatic laser
field of different polarizations, intensities, and frequencies on
the Hamiltonian. In Sec.V we obtain an effective low-energy
theory about the quadratic and Dirac band touching points that
describes the opening of gaps in the presence of a laser field
in those systems. In Sec.VI, we compute the finite-frequency
optical conductivity of the model for different laser parame-
ters, and in Sec.VII we summarize the main conclusions of
this work.

II. MODEL HAMILTONIAN AND BAND STRUCTURE

The three-band model we study is based on the nearest
neighbor hopping model, Eq.(1), defined on the kagome lat-
tice, a two-dimensional corner sharing network of triangles
shown in Fig.1(a). The high symmetry points in the first Bril-
louin are indicated in Fig.1(b), with Dirac points at the K and
K′ points, and a quadratic band touching point at the Γ point.

We study the tight-binding Hamiltonian on the kagome lat-
tice,

H = −th
∑
〈ij〉,σ

c†iσcjσ, (1)

where th is the isotropic hopping integral between nearest
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FIG. 1. (Color online) (a) Kagome lattice with nearest neighbor vec-
tors a1,a2 labelled, and the three sites in the unit cell labelled. (b)
First Brillouin zone of the underlying triangular Bravais lattice. In
the nearest-neighbor hopping model, Eq.(1), Dirac points occur at
the K and K′ points, and a quadratic band touching point at the Γ
point. All red (gray) circles are equivalent to K and all open circles
are equivalent to K′.

neighbours, c†iσ (cjσ) creates (annihilate) an electron with spin
σ on site i (j) of the kagome lattice, and 〈ij〉 denotes nearest
neighbors. A related model has also been studied in the con-
text of topological insulators15,86 and Chern insulators.36

Fourier transforming to momentum space, the Hamil-
tonian becomes, H =

∑
k,σ ψ

†
kσHkψkσ with ψkσ =

(akσ, bkσ, ckσ)T ,

Hk = −2th

 0 cos(k · a1) cos(k · a2)
cos(k · a1) 0 cos(k · a3)
cos(k · a2) cos(k · a3) 0

 , (2)

where akσ , bkσ and ckσ defines annihilate operators on the
three basis sites in the triangular unit cell shown in Fig.1(a).
By setting the distance between nearest neighbors to be 1, the
nearest neighbor vectors are a1 = (1, 0), a2 = (1/2,

√
3/2),

and a3 = a2 − a1 = (−1/2,
√

3/2). The translation verctors
are 2a1 and 2a2. The reciprocal-lattice primative vectors can
be chosen as b1 = π(1,−1/

√
3), b2 = π(0, 2/

√
3).

Diagonalizing Eq. (2) gives the following band structure,

E1,2
k = −th[1±

√
4Mk − 3], E3

k = 2th, (3)

with Mk = cos2(k · a1) + cos2(k · a2) + cos2(k · a3). Band
1 (lowest energy band) and 2 (medium energy band) touch at
two inequivalent Dirac points K = ( 2π

3 , 0) and K′(= −K)
at the corners of the hexagonal Brillouin zone (BZ), band 2
(medium energy band) and 3 (highest energy band) touch at
the Γ point, resulting in a quadratic band crossing point. The
band structure in (kx, ky) space is shown in Fig.2a, addition-
ally, a cut along ky = 0 is shown in Fig.3a.

III. PERIODIC DRIVE UNDER A LASER FIELD

When the system is exposed to a normally incident laser
field, the momentum is modified through the minimal cou-
pling rule, k→ k + A(t), with A(t) the in-plane laser vector
potential, and the Hamiltonian becomes time dependent,
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Hk(t) = −2th

 0 cos[(k + A(t)) · a1] cos[(k + A(t)) · a2]
cos[(k + A(t)) · a1] 0 cos[(k + A(t)) · a3]
cos[(k + A(t)) · a2] cos[(k + A(t)) · a3] 0

 . (4)

FIG. 2. (Color online) The Floquet-Bloch band structure of the
kagome lattice embedded in a normally incident polarized light. The
frequency of the pump light is Ω = 6th. (a) The band struc-
ture in equilibrium, without any incident light, given by Eq.(1);
(b) The Floquet-Bloch band structure with circularly polarized light
A0 = 1.0; (c) The Floquet-Bloch band structure with circularly po-
larized light A0 = 3.8, (d) The Floquet-Bloch band structure with
linearly polarized light A0 = 1.0.

In Eq.(4), we set Planck’s constant ~ = 1, the speed of light
c = 1, and the charge of the electron, e = 1, and adopt the
Coulomb gauge by setting the scaler potential φ = 0. We
ignore the tiny effect of magnetic field. The units of energy
are expressed in term of th, and we set th = 1.

Throughout this paper, circularly polarized laser
fields are expressed with the vector potential A(t) =
A0[cos(Ωt),− sin(Ωt)] and linear polarized laser fields are
expressed with A(t) = A0[0, cos(Ωt)], where A0 is the
amplitude and Ω the frequency of the laser.

IV. FLOQUET THEORY

In this paper, we study monochromatic (single frequency)
light, which renders the Hamiltonian time periodic H(t) =
H(t+T ) where T is the period of the drive. Hence, Floquet’s
theory can be used.88 The Floquet eigenfunction for the time
periodic Hamiltonian can be expressed as,

|Ψkα(t)〉 = eiεkαt|φkα(t)〉, (5)
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FIG. 3. (Color online) The Floquet-Bloch band structure of the
kagome lattice embedded in a normally incident polarized light. The
frequency of pump light is Ω = 6th. The color of the lines are the
same as in Fig.2. (a) the band structure in equilibrium at ky = 0.0
(b) The Floquet-Bloch band structure with circularly polarized light
A0 = 1.0 at ky = 0.0 (c) The Floquet-Bloch band structure with cir-
cularly polarized light A0 = 3.8 at ky = 0.0 (d) The Floquet-Bloch
band structure with linearly polarized light A0 = 1.0 at ky = 0.0.

where |φkα(t)〉 = |φkα(t + T )〉 are the Floquet quasimodes
and εkα is the corresponding quasienergy for band α. Substi-
tuting this form of the wavefunction into the time-dependent
Schrödinger equation, and defining the Floquet Hamiltonian
operator asH(t) = H(t)− i∂/∂t, one finds

Hk(t)|φkα(t)〉 = εkα|φkα(t)〉. (6)

Here we restrict the quasienergy to be in the first Floquet zone,
i.e., −Ω/2 < εkα < Ω/2, and label the three bands using
α = 1, 2, 3 by energy in ascending order. (Note that we have
made use of a spin-independent coupling to the laser field so
that all bands are 2-fold degenerate. Henceforth, we suppress
the spin degeneracy.) Solving for the Floquet states in Fourier
space,

|φkα(t)〉 =
∑
m

eimΩt|φ̃mkα〉, (7)
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where m = 0,±1,±2, · · · and |φ̃mkα〉 is a three-component
vector which obeys,∑

m

(Hnm +mΩδnm)|φ̃mkα〉 = εkα|φ̃mkα〉, (8)

with matrix elements of the Floquet Hamiltonian written as,

Hnm(k) =
1

T

∫ T

0

dte−i(n−m)ΩtH(t)

=

 0 Hab
nm(k) Hac

nm(k)
Hab
nm(k) 0 Hbc

nm(k)
Hac
nm(k) Hbc

nm(k) 0

 . (9)

Here m and n are integers ranging from −∞ to ∞. Thus,
the Floquet matrix is an infinite dimensional time-independent
matrix. In this paper, we consider the laser frequency to be
comparable to or larger than the bandwidth of the system, so a
truncation of the components to be in m,n = −2,−1, 0, 1, 2
is a good approximation. We have numerically verified that
including a larger range of m,n has a very small numerical
impact on our results in Figs.2 and 3.

A. Circularly Polarized Light

For circularly polarized light with vector potential A(t) =
A0[cos(Ωt),− sin(Ωt)], the matrix elements of the Floquet-
Bloch Hamiltonian are

Hab
nm = −thei(m−n)π/2 [f(k1, A0) + f(−k1,−A0)] ,

Hac
nm = −thei(m−n)π/6 [f(k2, A0) + f(−k2,−A0)] ,

Hbc
nm = −thei(n−m)π/6 [f(k3, A0) + f(−k3,−A0)] , (10)

where f(ki, x) = Jm−n(x)eik·ai with Jm(x) the order-m
Bessel function of the first kind. Diagonalizing the time in-
dependent Hamiltonian will give one the Floquet-Bloch band
structure. Figure 2(a-c) shows the band structure for circularly
polarized light with amplitudes A0 = 0.0, 1.0, 3.8 and drive
frequency Ω = 6.

The dominant features of the band structure can be un-
derstood by considering the effective Hamiltonian at large
Ω. Starting from T exp[−i

∫ T
0
H(t)dt] = exp[iHeffT ] with

T the time-ordering operator, and taking the high frequency
limit,

Heff =
1

T

∫ T

0

dtH(t) +O(1/Ω). (11)

At leading order in 1/Ω, Heff = J0(A0)H0, which means
that the driven band structure is renormalized by a scale fac-
tor of the zero-th order Bessel function, J0(A0). For small
amplitude, the band structure is scaled by J0(1.0) = 0.7652
as shown in the Fig.2b and Fig.3b. Increasing the ampli-
tude will lead to a negative value of the Bessel function
J0(3.8) = −0.4026, where the bands are scaled |J0(3.8)|
and inverted as shown in Fig.2c and Fig.3c. If one desires a
“low-energy” band that is flat for enhanced interaction effects,

choosing the amplitude A0 optimally may help. (Of course,
one will need to be careful with controlling the occupation of
the bands, which may require “reservoir engineering”.69–71)

We note that the gap opening at the K(K′) points can not
be captured by expanding the effective Hamiltonian to zeroth
order in 1/Ω because the zeroth order terms only constitute a
rescaling of the bands, and therefore the time-reversal symme-
try is preserved. A further expansion to order 1/Ω (to include
the one-photon processes) will break the time reversal sym-
metry and open a gap.60,89 As we will see in the following
sections, the gapped bands will acquire a finite Chern number
and will leave a signature in the finite frequency transverse
optical conductivity, σxy(ω).

B. Linearly Polarized Light

For linearly polarized light with vector potential A(t) =
A0[0, cos(Ωt)] the matrix elements of the Floquet-Bloch
Hamiltonian are,

Hab
nm = −thim−n [δn,m2 cos(k · a1)] ,

Hac
nm = −thim−n

[
f(k2,

√
3A0/2) + f(−k2,−

√
3A0/2)

]
,

Hbc
nm = −thim−n

[
f(k3,

√
3A0/2) + f(−k3,−

√
3A0/2)

]
,

(12)

where f(ki, x) = Jm−n(x)eik·ai with Jm(x) the order-m
Bessel function of the first kind, as before. The band struc-
ture for linearly polarized light is shown in Fig.2d and Fig.3d.
The Dirac points at 1/3 filling undergo a small shift and the
quadratic band crossing point at 2/3 filling splits into two
Dirac points along the x direction, perpendicular to the di-
rection of the electric field of the light. These dominant band
features can again be explained by taking the high frequency
limit, and analyzing how the bands are renormalized by the
Bessel function. Finer structure results from mixing between
different “copies” (indexed by photon number, m or n) of the
Floquet-Bloch states.

We can also consider the case of linearly polarized light
along a general direction in the x-y plane with vector potential
A(t) = A0 cos(Ωt)(cos θ, sin θ). We find that:

1. For θ = π/2 (and symmetry-related directions), the
Dirac points will make a tiny shift and remain gapless,
as discussed above.

2. For θ 6= π/2 (and symmetry-related directions), the
lower two bands will open a gap.

3. The quadratic band crossing point is split into two Dirac
points perpendicular to the polarization direction of the
pump light.

Moreover, since the Hamiltonian matrix elements are real
numbers, the finite-frequency transverse optical Hall conduc-
tance, σxy(ω), must also be zero (see next section), general-
izing the well-known result for the (zero-frequency) Hall con-
ductance that guarantees it is zero if time-reversal symmetry is
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not broken. We also verified this numerically. The band struc-
ture of the kagome lattice model with linear polarized light
(for θ = π/2) is shown in Fig.2d and Fig.3d.

V. LOW ENERGY EFFECTIVE HAMILTONIAN FOR
QUADRATIC BAND CROSSING POINT

From the previous section, we see that the dominant band
structure properties of the Floquet-Bloch bands can be under-
stood by the time averaged Hamiltonian. However, to see how
the quadratic band touching point and Dirac band touching
points respond to the circularly and linearly polarized light, it
is helpful to derive an effective low-energy theory. Because
the Dirac band touching point has been much discussed in the
literature, here we focus on the quadratic band touching point,
which to the best of our knowledge has not been studied in de-
tail before.

The effective Hamiltonian describing the quadratic band
touching point (in the absence of the drive) is given by,

HQBC = −th
(
k2
x − 2 −kxky
−kxky k2

y − 2

)
. (13)

Technical details related to the derivation of the effective
Hamiltonian, Eq.(13), are given in Appendix A. To second
order in kx � 1, ky � 1, and A0 � 1 for this specific model
Hamiltonian, the effective Hamiltonian derived from the Flo-
quet Hamiltonian is consistent with the one obtained by set-
ting k→ k + A(t) in Eq.(13). (Though, this is not generally
true.) By comparing Eq.(13) with the general quadratic band
touching Hamiltonian,10

HQBC(k) = dII + dxσx + dzσz, (14)

one can determine the coefficients, where I is identity ma-
trix, and σx and σz are two real Pauli matrices along x and
z, respectively, and dI = tI(k

2
x + k2

y), dx = 2txkxky , and
dz = tz(k

2
x − k2

y). By comparing Eq.(13) and Eq.(14), we
find tI = tz = −th/2, and tx = th/2, which demonstrates
the preservation of C6 rotational symmetry and the breaking
of particle hole symmetry.10

The time-dependent Hamiltonian HQBC(k, t) is derived
from Eq.(13) by setting k → k + A(t). By expanding the
Hamiltonian to first order in 1/Ω, we arrive at the Floquet-
Magus expansion,84,90

Heff = H0+
∑
n

1

nΩ
([Hn, H−n]

+ [H−n −Hn, H0]) +O(1/Ω2), (15)

where Hn = 1
T

∫ T
0
dtHQBC(t)e−inΩt is the n-th Fourier

component, and can be thought of as a “dressing” of the state
by photons.

A. Linearly Polarized Light

Linear polarized light along a general direction in the plane
can be expressed as A(t) = A0 cos(Ωt)(cos θ, sin θ). When

incorporated into the Hamiltonian, the quadratic band cross-
ing point will split into two Dirac points, as shown in Fig.2(d)
and Fig.3(d). The magnitude of the gap at the Γ point can
be obtained from the low-energy form of the Hamiltonian,
Eq.(13), and is A2

0/2, independent of the frequency Ω and
the polarization direction θ. The Dirac points are situated at
±(−A0 sin θ,A0 cos θ)/

√
2, which depends only on the am-

plitude and polarization direction of light.
One can obtain these results by taking the limit Ω � 6th

and A0 � 1, where the effective Hamiltonian is Heff =
1
T

∫ T
0
dtHQBC(t) = d̄II + d̄xσx + d̄zσz , with d̄I = th(k2

x +

k2
y+A2

0/2)/2, d̄x = th(2kxky+A2
0 sin(2θ)/2), d̄z = th(k2

x−
k2
y +A2

0 cos(2θ)/2)/2. Diagonalizing this 2× 2 Hamiltonian
will give us the two eigenenergies, E± = (−A2

0 − 2k2
x −

2k2
y±
√

[A2
0 − 2(k2

x + k2
y)]2 + 8A2

0(kx cos θ + ky sin θ)2)/4,
which clearly shows the splitting behavior and the gap at the Γ
point. From symmetry considerations, linearly polarized light
preserves the time reversal symmetry, while the C6 rotational
symmetry is broken down to C2, which allows a gap to open
at the Γ point.10

One can contrast this behavior of the quadratic band touch-
ing point with what happens at the Dirac points. Around the
Dirac points at K (K′), one can derive the effective Hamilto-
nian, keeping terms up to quadratic order in momentum (lead-
ing corrections to the pure Dirac dispersion). We find that the
response of Dirac point depends on the polarization direction
of the pump light: For θ = π/2 (and symmetry related direc-
tions), the Dirac points will undergo a small shift and remain
gapless. Away from θ = π/2 (and symmetry related direc-
tions), the lower two bands will open a gap. These results
were earlier highlighted near the end of Sec. IV.

B. Circularly Polarized Light

The effect of circularly polarized light on the quadratic
band touching point is rather different from the case of lin-
early polarized light. Taking the high frequency limit and
performing the time average, the zeroth-order Hamiltonian
Heff = H0 + A0I/2 shows that the band will shift by A0/2
and no gap is opened. Furthermore, if one incorporates the
one-photon absorption and emission terms in the effective
Hamiltonian, its correction at Γ vanishes. Thus the leading
correction to the band structure is of order O(1/Ω2). Only
through the two-photon absorption and emission processes
[n=2 in Eq.(15)] will open a gap proportional to A4

0/Ω at
the quadratic band crossing point. By contrast, the gap at the
Dirac points K and K′ are proportional to A2

0/Ω.

C. Discussion on the low energy effective Hamiltonian

In the equilibrium case (absence of a laser field), the
quadratic band touching point discussed above is protected
by time-reversal symmetry and C6 rotational symmetry. It
is also possible that the quadratic band crossing point is pro-
tected only by rotational symmetry (and has a broken time-
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reversal symmetry) on a two dimensional lattice.97 The fol-
lowing Hamiltonian describes the low-energy theory of such
a point,

H0 = − p2

4m
I− p2c

4m
σz −

s

4m

[
σx(p2

x − p2
y) + 2pxpyσy

]
,

(16)
where the parameters c = cos(2α), s = sin(2α). For general-
ity (beyond our time-reversal invariant kagome lattice model),
we study the effect of circular and linearly polarized light on
the low energy Hamiltonain Eq.(16). Our results for circularly
and linearly polarized light are as follows, (1) For circularized
light with off-resonance frequency, the gap opened at Γ point
is proportional to 2A2

0cos(2α) for A0 � 1, which can be cap-
tured by the Magus expansion to zero-th order. For the special
case of α = π/4, the gap is proportional to A4

0/Ω, which is
stated in Sec.V B. (2) By shining with the linearly polarized
light, we found the gap opened at Γ point is proportional to
A2

0 which is independent of α. Two Dirac points formed at
the same position as in Sec.V A at α = π/4. Away from
α = π/4, linear polarized light will just open the gap at Γ
points and no further Dirac points are generated.

VI. CHERN NUMBER AND OPTICAL HALL
CONDUCTIVITY

In this section, we would like to make contact with possi-
ble future experiments and compute an observable that would
reveal some of the band features mentioned above. Angle
resolved photoemission spectroscopy (ARPES) is a natural
candidate,61,62,91 but only occupied states can be detected with
the method. In the introduction, we have mentioned some
of the inherent challenges in transport measurements on Flo-
quet systems. Here, we would like to address an alterna-
tive property, the finite-frequency transverse optical conduc-
tivity which is related to the Faraday rotation in an optical
experiment,75,92–96 and whose zero frequency limit naturally
reduces to the Chern number (in an equilibrium system).

Within linear response theory, the optical conductivity is
computed from the time averaged Berry curvature over one
period,74

F̄kα =
1

T

∫ T

0

2=[〈∂yφkα(t)|∂xφkα(t)〉], (17)

where α is the band index and= denotes the imaginary part. It
is helpful to compute the Berry curvature in a gauge invariant
form,74 where F̄kα is written as F̄kα =

∑
β,m F

m,αβ
k with

Fm,αβk = i
[
A−mβxαA

m
αyβ −A−mβyαA

m
αxβ

]
, (18)

where the Fourier transformed Berry “vector potential” is74

Amβiα =
1

T

∫ T

0

dte−imΩt〈φkβ(t)| ∂
∂ki

φkα(t)〉. (19)

Details related to the numerical calculation of Fmk are given
in the appendix B.
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FIG. 4. (Color online) The optical Hall conductivity Re[σxy(ω)] as
a function of the frequency of the probe light, in units of e2/h. The
driving laser frequency, laser amplitude and the Chern number (zero
frequency limit of σxy(0)

e2/h
) are (a) Ω = 5, A0 = 0.5, C = −2, (b)

Ω = 5, A0 = 1.5, C = −1, (c) Ω = 10, A0 = 0.5, C = −1, (d)
Ω = 10, A0 = 1.5, C = −1. A disorder broading in Eq. (21) is set
to be δ = Ω/100. For a description of ideal and quench cases, see
text.

For a three-band model, the optical Hall conductance can
be written as a sum of three terms describing the transitions
among the three bands, generalizing the two-band results of
Ref.[74 and 75],

σxy(ω) = σ12
xy(ω) + σ13

xy(ω) + σ23
xy(ω)

=
∑
m=int

[
σm,12
xy (ω) + σm,13

xy (ω) + σm,23
xy (ω)

]
,

(20)

with

σm,αβxy (ω) = − e2

2πh

∫
d2kE2

m,αβF
m,αβ
k

×
ω2 − E2

m,αβ − 2iωδ

[ω2 − E2
m,αβ ]2 + 4ω2δ2

[ρkα − ρkβ ], (21)

where

Em,αβ = Ekβ − Ekα −mΩ. (22)

The terms ρkα − ρkβ in Eq.(21) describe the relative occu-
pations of bands α and β at wave vector k. In our calcula-
tions, we assume that the system is initially (at zero time) in
the ground state of the kagome lattice at 1/3 filling and time
evolve the system according to H(t), which is the Hamilto-
nian Eq.(2) modified by the vector potential A(t) [see Eq.(4)]
that drives the system into a Floquet-Bloch state.

We refer to the “ideal” case as when the lowest Floquet-
Bloch band of the system is fully occupied while the other
two bands are empty (for all time).75 For the quenched case,
the occupation is defined as the overlap between the initial
state (t < 0) and the Floquet quasimode,

ρquench
kα = |〈φkα(0)|Ψin,k〉|2, (23)
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FIG. 5. (Color online) Fm,αβk as a function of (εkβ − εkα−mΩ)/Ω
where band index (α, β) = (1, 2), (1, 3) at (a) Ω = 5, A0 =
0.5, C = −2, (b) Ω = 5, A0 = 1.5, C = −1, (c) Ω = 10, A0 =
0.5, C = −1, (d) Ω = 10, A0 = 1.5, C = −1. Here all the “k”
points in the first Brillouin zone are ploted.

where |Ψin,k〉 is the ground state wave function of the kagome
lattice at 1/3 filling before the laser is switched on at time zero.

Fig.4 shows the optical Hall conductivity as a function of
the frequency of probe light. In the low frequency limit,
the dc Hall conductivity is proportional to the Chern num-
ber, C: σidealxy (ω = 0) = Ce2/h [see Eq.(21)], and is deter-
mined by the

∑
m F

m
k in Eq.(18). Here we used 7 copies

m = −3, · · · , 3 in the Floquet Hamiltonian for calcula-
tions of optical Hall Conductivity. Away from the low fre-
quency limit, the individual Fmk control the behavior. One
can see from Eq.(21) that the peaks in the integrand are around
ω ≈ |εkβ − εkα −mΩ|, while the dominant k are determined
by the peaks in Fmk . The high frequency limit behavior is
σxy(ω) ∝ 1/ω2. To better see these contributions we plot the
Fmk as a function of (|εkβ − εkα − mΩ|)/Ω in Fig.5. The
main structure of the optical Hall conductance is determined
by Fm=0,12

k , while Fm=0,13
k contribute to the fine structure of

it. Thus, the Fmk decay quite rapidly as a function of m. This
implies that the dominant structure of the optical conductivity
in Eq.(21) comes from m = 0, and offers a strategy for easily
computing the dominant features of σxy(ω).

VII. DISCUSSION AND CONCLUSIONS

In this work, we theoretically study the Floquet-Bloch band
structure of a three-band model that includes both Dirac and
quadratic band touching points, as well as a flat band. We
investigated the effects of both circularly and linearly polar-
ized light. We focused on the response of the quadratic band
touching point to the periodic drive. The dominant effect of
circularly polarized light is to open a small gap of orderA4

0/Ω
from two-photon processes, while the dominant effect of the
linearly polarized light is to split the quadratic band touch-
ing point into two Dirac points at a location of (±A0/

√
2, 0),

where the quadratic band touching point was initially at the
Γ point. The splitting is perpendicular to the direction of the

electric field of the linearly polarized light. To better under-
stand these results, we derived a low-energy effective theory
that allows one to understand these features analytically. In
addition, we showed that the dominate modifications of the
band structure, including the “inversion” of the band order,
can be understood from the large Ω limit, even when Ω is as
small as the order of the bandwidth itself.

Finally, we computed the finite-frequency optical conduc-
tivity, σxy(ω), for various scenarios of circularly polarized
light (there is no response from linearly polarized light due
to the preservation of time-reversal symmetry), including an
“ideal case” where the lower of the three Floquet-Bloch bands
is occupied and the higher two are empty, as well as a “quench
case” where the band occupation is computed numerically
from an initial state in which the lowest band of the time-
independent Hamiltonian is occupied, and the higher two are
empty. We analyzed the contributions in both cases to deter-
mine the dominant contributions from resonant transition be-
tween the various bands, including the Floquet-Bloch index,
m. We found that the weights from different m decay very
rapidly with m which suggests a strategy for quickly estimat-
ing the optical conductivity for more general band structures
with more bands. Because of the challenges of probing topo-
logical Floquet-Bloch systems with electrical transport mea-
surements, optical probes of solid-state systems offer an alter-
native.

While our results are based on a closed quantum system, if
a bath (of phonons or magnetic excitations, for example) were
present much of our results would be qualitatively unchanged.
If the bath is at finite temperature, for example, the results in
Fig.4 would be thermally smeared, as discussed in Refs.[74
and 75]. Eventually, the signal will decrease and smoothly
wash out when the temperature is of order the bandwidth of
the equilibrium system.
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Appendix A: Derivation of the effective Hamiltonian near the Γ
point

Starting from the original time dependent Hamiltonian
Hk(t) in Eq.(4), we use a three-steps procedure to obtain
the effective Hamiltonian: Writing the full Floquet Hamilto-
nian in Fourier space and truncating it to m,n = −1, 0, 1,
will give us a 9 × 9 matrix for each k-point. Next, take
the eigenstates V at the Γ point as the new basis states, and
write the Floquet Hamiltonian in the new basis by the rotation
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H
(1)
n,m(k) = V † ·Hn,m(k) · V , where V is given by,

V =
1√
6

√2
√

3 −1√
2 −
√

3 −1√
2 0 2

 . (A1)

At m = n, the transformation above will rotate the leading
order terms to the diagonal components of the matrix. The
new Floquet Hamiltian can be expressed as,

H(1)(k) =

H
(1)
0 − 1Ω H

(1)
−1 0

H
(1)
+1 H0 H

(1)
−1

0 H
(1)
+1 H

(1)
0 + 1Ω

 . (A2)

where 1 denotes a 3 × 3 identity matrix. We have used
H

(1)
n,m(k) = H

(1)
n−m(k), and dropped the two photon terms.

Then we expand each term in H
(1)
n,m(k) to the combined

second order of kx, ky and A0. Higher order terms are
dropped. Taking the Hamiltonian incorporating circularized
polarized light as an example,

H
(1)
0 (k)

th
=

−4 + k2
x + k2

y +A2
0 kxky/

√
2

−k2x+k2y
2
√

2

kxky/
√

2 2− k2
x −

A2
0

2 kxky

(−k2
x + k2

y)/(2
√

2) kxky 2− k2
y −

A2
0

2

 ,

H
(1)
+1 (k)

th
=


A0(kx + iky)

A0(ikx+ky)

2
√

2

−A0(kx−iky)

(2
√

2)
A0(ikx+ky)

(2
√

2)
−A0kx

A0(ikx+ky)
2

−A0(kx−iky)

(2
√

2)

A0(ikx+ky)
2 −iA0ky


=
H

(1)†
−1 (k)

th
.

The second step is to downfold from a 9 × 9 to a 3 × 3
Hamiltonian matrix,

Heff(k) =H
(1)
0 (k) +H

(1)
−1 (k)

1

ε− (H
(1)
0 (k) + 1Ω)

H
(1)
+1 (k)

+H
(1)
+1 (k)

1

ε− (H
(1)
0 (k)− 1Ω)

H
(1)
−1 (k). (A3)

We set ε ≈ ε0 = 2th, which is the quadratic touching point
energy at equilibrium.

The third and final step is to use the downfolding trick again
to derive a 2 × 2 Hamiltonian from the 3 × 3 matrix in the
previous step,

Heff(k) = th

(
2− k2

x −
A2

0

2 kxky

kxky 2− k2
y −

A2
0

2 .

)
. (A4)

Appendix B: The evaluation of Fmk

From Eq.(18),

Fm,αβk = i
[
A−mβxαA

m
αyβ −A−mβyαA

m
αxβ

]
= −2=

(∑
l

〈φ̃lkβ |∂kx φ̃l−mkα 〉
∑
n

〈φ̃nkα|∂ky φ̃n+m
kβ 〉

)
.

(B1)

The two summations can be done separately using,∑
l

〈φ̃lkβ |∂kx |φ̃l−mkα 〉 =
∑
nl

〈φ̃nkβ |(∂kxhn−l−mk )|φ̃lkα〉/(−Emαβ),∑
n

〈φ̃nkα|∂ky |φ̃n+m
kβ 〉 =

∑
nl

〈φ̃lkα|(∂kyhl+m−nk )|φ̃nkβ〉/Emαβ ,

(B2)

where hmk = 1
T

∫ T
0
dteimΩthk(t) and Emα,β = εkβ − (εkα +

mΩ). In this way, Fmk is calculated gauge invariantly,

〈φkβ | [∇hk(t)] |φkα〉
= (i∂t + εkα − εkβ)〈φkβ |∇φkα〉+ [∇εkα]δαβ

=
∑
nl

[(n− l)Ωt+ εkα − εkβ ]〈φ̃nkβ |∇φ̃lkα〉e−i(n−l)Ωt

(B3)

where in the second line the Floquet equation (i∂t −
hk)|φkα(t)〉 = εkα|φkα(t)〉 is used, while in the third line we
set α = β and Fourier expand the Floquet mode |φkα(t)〉 =∑
n e

inΩt|φ̃mkα〉. Multiplying eimΩt in both sides and taking
the integral over one period T = 1/Ω, we arrive at,∑

n

〈φ̃nkβ |∇φ̃n−mkα 〉 =
∑
nl

〈φ̃nkβ |[∇hn−l−mk ]φ̃lkα〉/(−Emαβ)

(B4)
which is the equation shown in Eq. (B2).
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49 B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Phys. Rev. Lett.

108, 056602 (2012).
50 J.-i. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010).
51 J. Cayssol, B. Dora, F. Simon, and R. Moessner, physica status

solidi (RRL) Rapid Research Letters 7, 101 (2013).
52 T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev.

B 84, 235108 (2011).
53 T. Iadecola, D. Campbell, C. Chamon, C.-Y. Hou, R. Jackiw, S.-Y.

Pi, and S. V. Kusminskiy, Phys. Rev. Lett. 110, 176603 (2013).
54 M. Ezawa, Phys. Rev. Lett. 110, 026603 (2013).
55 A. F. Kemper, M. Sentef, B. Moritz, C. C. Kao, Z. X. Shen, J. K.

Freericks, and T. P. Devereaux, Phys. Rev. B 87, 235139 (2013).
56 M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podol-

sky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature 496,
196 (2013), letter.

57 G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature 93, 237 (2014).

58 T. Bilitewski and N. R. Cooper, Phys. Rev. A 91, 063611 (2015).
59 B. M. Fregoso, Y. H. Wang, N. Gedik, and V. Galitski, Phys. Rev.

B 88, 155129 (2013).
60 M. Sentef, M. Claassen, A. Kemper, B. Moritz, T. Oka, J. Freer-

icks, and T. Devereaux, Nature communications 6 (2015).
61 Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Sci-

ence 342, 453 (2013).
62 F. Mahmood, C.-K. Chan, Z. Alpichshev, D. Gardner, Y. Lee, P. A.

Lee, and N. Gedik, Nat Phys 12, 306 (2016), letter.
63 H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105

(2014).
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