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In the presence of strong disorder and weak interactions, closed quantum systems can enter
a many-body localized phase where the system does not conduct, does not equilibrate even for
arbitrarily long times, and robustly violates quantum statistical mechanics. The starting point for
such a many-body localized phase is usually taken to be an Anderson insulator where, in the limit of
vanishing interactions, all degrees of freedom of the system are localized. Here, we instead consider a
model where in the non-interacting limit, some degrees of freedom are localized while others remain
delocalized. Such a system can be viewed as a model for a many-body localized system brought
into contact with a small bath of a comparable number of degrees of freedom. We numerically
and analytically study the effect of interactions on this system and find that generically, the entire
system delocalizes. However, we find certain parameter regimes where results are consistent with
localization of the entire system, an effect recently termed many-body proximity effect.

I. INTRODUCTION

While it has become clear in recent years that the
eigenstate thermalization hypothesis (ETH) [1, 2] pro-
vides the correct picture for the emergence of quantum
statistical mechanics in broad classes of closed quan-
tum systems [3], the phenomenon of many-body local-
ization (MBL) [4–7] has appeared as a scenario where
quantum statistical mechanics is robustly violated. By
now, overwhelming numerical [8–15], analytical [16] and
experimental [17–20] evidence has been amassed that a
many-body localized phase exists in strong disorder and
for finite-strength interactions (for a recent review, see
Ref. 21). The violation of ETH most prominently man-
ifests itself in an area law for the entanglement entropy
in highly excited eigenstates [13]: unique to an MBL sys-
tem, the entanglement entropy of a region scales only
with the size of the boundary of that region in almost
all states of the many-body energy spectrum. Other
key properties of MBL phases include a discrete local
spectrum and vanishing conductivity [5, 6], a logarith-
mic growth of entanglement entropy [9, 11, 22], and a
complete set of local integrals of motion that describe
the entire many-body spectrum [23, 24].

The description of many-body localization generally
assumes a system that, in the limit of vanishing electron-
electron interactions, becomes an Anderson insulator
in which all single-particle states are localized. The
eigenstates of a many-body localized system are con-
nected to the eigenstates of the Anderson insulator by
a finite-depth local unitary transformation [13]. Recent
work [25–27] has raised the question of whether MBL can
also exist in a system where in the non-interacting limit,
a critical single-particle energy, the mobility edge, sepa-
rates localized and delocalized states. In one dimension,

this can be achieved in certain types of quasi-disordered
systems, and it is a generic scenario in higher dimen-
sions. For a particular incommensurate potential, Ref. 25
found three regimes: a many-body localized phase; an
ergodic phase; and an intermediate phase that exhibits
volume-law entanglement scaling but violates eigenstate
thermalization in a more subtle way by having a large
eigenstate-to-eigenstate variance of the expectation value
of local operators even in narrow energy windows. These
regimes are separated by many-body mobility edges, i.e.
critical energy densities separating localized from delocal-
ized states in the many-body spectrum. The existence of
such many-body mobility edges has been suggested based
on both analytical [5, 6] and numerical [14, 15] observa-
tions; however, recent work has raised concerns about the
stability of such a scenario [28].

A closely related question concerns the stability of
many-body localization in open quantum systems, i.e.
when coupled to bath degrees of freedom. Usually a bath
is taken to be very large and the backaction of the sys-
tem onto the bath is neglected. In this case (as well
as in the presence of dissipation [29, 30]), one expects
that the effects of many-body localization will be de-
stroyed, although there is evidence for a crossover into a
regime where some signatures of localization persist [31–
33]. However, one can also consider the case where the
number of degrees of freedom in the system and the bath
is comparable and the backaction may be important. In
this case, the interesting possibility arises that the back-
action of the MBL system may be strong enough to in-
duce localization in the bath [34]. The results of Ref. 25
may be interpreted as evidence for such a scenario.

In this paper, we investigate these questions by nu-
merically and analytically studying a model for spinless
fermions on a ladder, as sketched in Fig. 1. We introduce
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FIG. 1. Schematic illustration of our setup. Here, the disorder
potential only acts on the lower chain of the ladder (α =
0), whereas the fermions in the upper chain are affected by
the disorder only through the interactions. The fermions,
indicated as red dots, hop along each chain, and interact only
through a repulsive density-density interaction on each rung.

an uncorrelated disorder potential on one chain of the
ladder, while keeping the other chain translationally in-
variant, and forbid hopping between the chains such that
in the non-interacting limit, the chains are completely
decoupled. We then introduce a local density-density in-
teraction on each rung. With interactions, two sharply
distinct scenarios appear: in one, the energy transport
through the clean chain is sufficient to trigger delocaliza-
tion of the entire system. In the other scenario, the local-
ized fermions – through the density-density interaction –
act as effective disorder potential for the fermions in the
clean chain, inducing their localization. To distinguish
these two scenarios, we will consider the entanglement
entropy of highly excited eigenstates as well as the time
evolution of the entanglement entropy. We find that in
our model, both scenarios can be realized depending on
the parameters of the system. We will comment on other
possible intermediate scenarios at the end.

Our model is closely related to the model of Ref. 35,
where the disorder potential is absent but the hopping
strength in the two chains is vastly different and inter-
actions between the chains are very strong. This model
was studied in the context of dynamical effects akin to
many-body localization in systems without explicit trans-
lational symmetry breaking in the Hamiltonian [36–38]
(see also [39]), but where the initial conditions break
translational symmetry. It was observed that the time
evolution starting from random product state configu-
rations exhibits slow dynamics at an intermediate time
scale, yet relaxes at the longest time scales, consistent
with with the formation of a “quasi many-body local-
ized” (qMBL) regime. Furthermore, the system shows a
diverging susceptibility towards spin glass ordering upon
introducing disorder. Our results are complementary in
that we consider the case of strong disorder and weak in-
teractions, and focus primarily on eigenstate rather than
dynamical properties. We discuss the relationship be-
tween the models in more detail towards the end of Sec-
tion IV.

It should also be noted that we focus purely on the
one-dimensional case since in higher dimensions, local-
ization of the entire system is very unlikely to occur. In
particular, in three dimensions, there is no possibility of
an interesting backaction of the localized states on the ex-
tended ones at weak interactions since perturbative dis-

order is irrelevant, i.e. the localization length is infinite
up to finite value of V . In two dimensions, disorder is
only marginally relevant, and actually tends to be driven
irrelevant in the presence of interactions [40].

The remainder of this paper is structured as follows:
In Sec. II, we describe the model, our diagnostics and the
numerical approach in more detail. In Sec. III, we discuss
a perturbative analysis of the interchain coupling. In
Sec. IV, we describe our numerical results, and conclude
in Sec. V.

II. MODEL AND NUMERICAL APPROACH

The Hamiltonian for the system is (see Fig. 1)

Ĥ =−
∑
α

tα

L∑
i=1

(
ĉ†α,iĉα,i+1 + h.c.

)
(1)

+

L∑
i=1

win̂d,i + V
L∑
i=1

n̂d,in̂c,i.

Here, c†α,i creates a fermion on the upper, clean (α = c) or

lower, disordered (α = d) layer. The local potential wi,
acting only on the α = d fermions in the lower layer, is
drawn uniformly from the range [−W,W ]. V is a density-
density interaction between the two chains. Each chain
has length L such that the total number of sites in 2L.
Note that the particle number on each chain is separately
conserved, reducing the size of the many-body Hilbert
space. For even L, we choose each chain to be half-filled.

While the model is phrased here in terms of a lad-
der, it is equivalent to a system of two different flavors
of fermions where only one flavor experiences the disor-
der potential. Such a description may be applicable to
experiments on cold atoms which use different types of
atom (non-convertible fermions), or different states of the
same atom. We also note that since hopping between the
chains is forbidden, the model can be mapped to a local
model of hard-core bosons or spins by means of a Jordan-
Wigner transformation. Since it is also possible to apply
the Jordan-Wigner transformation to only one chain of
the ladder, the model is related to spin and charge de-
grees of freedom in a Hubbard chain.

In Eq. (1), we have not included interactions between
fermions on the same chain. We have confirmed numeri-
cally that adding a repulsive nearest-neighbor interaction
between fermions on the order of the interlayer coupling
or weaker on the same chain does not qualitatively af-
fect the results. We have also verified that making the
strength of the inter-chain interaction random does not
affect the results.

We solve for highly excited eigenstates of Eq. (1) in
the middle of the many-body spectrum using the shift-
and-invert method, which solves for low-lying states of

Â =
(
Ĥ − λI

)−1

(2)



3

where λ is a target energy. This approach was first used
in the context of many-body localization in Ref. 15. We
use the implementation of SLEPc [41] & PETSc [42–45],
and rely on its direct LU solver and MUMPS. The LU fac-
torization is used as a direct solver to perform the inver-
sion after shifting. Once the inverse has been computed,
the Lanczos method [46] can be used to target low-lying
states of shift-and-inverted matrix. These states are the
ones closest in energy to the target λ. We average over
250 eigenstates for 500 disorder realizations each for sys-
tem sizes L = 6 and L = 8. For L = 10, we only compute
eigenstates for 50 disorder realizations. Finally, for a few
data points we simulated up to L = 12, where we ob-
tained 150 states each for 100 disorder realizations. We
choose the target energy λ = V L/4, which is close to
the center of the many-body spectrum. For small sys-
tems, we have verified through a full diagonalization of
Ĥ that the states thus obtained are representative of the
“infinite-temperature” ensemble.

A. Eigenstate entanglement

The eigenstate thermalization hypothesis [1–3] sug-
gests that in an eigenstate of a generic quantum system
H at a finite energy density ε above the ground state,
the reduced density matrix ρA for some region A will
be close to a Gibbs state of the same Hamiltonian at
some inverse temperature β(ε), ρA ≈ exp(−βHA) [47].
Among many other things, this implies that the en-
tropy S(ρA) = −Tr ρA log ρA will exhibit a volume law,
S(ρA) = sth(ε)vol(A). In the center of the many-body
energy band, where β → 0, one expects that the entropy
density is close to its maximal value as given by the den-
sity of degrees of freedom.

One of the defining features of many-body localization
is that this volume-law scaling is robustly violated [13].
Indeed, the excited eigenstates of an MBL system exhibit
an area law [48]: the bipartite entanglement entropy be-
tween some region A and the rest of the system is found
to scale only with the area of the boundary separating
the regions. In d dimensions, this leads to the scaling
S ∼ Ld−1, as opposed to the volume law S ∼ Ld that is
expected for generic systems that obey eigenstate ther-
malization. Eigenstate entanglement has subsequently
been used as powerful criterion to identify many-body
localized phases [13–15].

We use eigenstate entanglement as diagnostic of
whether the system described by Eq. (1) delocalizes or
localizes. On a coarse level, distinguishing between a vol-
ume law and an area law allows us to determine whether
the system is localized or not. Beyond this, if we find
that the system exhibits a volume law, we can consider
the entropy density to determine whether all microscopic
degrees of freedom participate or whether some degrees
of freedom remain localized.

Specifically, we consider the entanglement cuts illus-
trated in the top panels of Fig. 2. The cuts correspond

(a)

Sd Sc Sb

(b)

FIG. 2. (a) Different entanglement cuts considered in this
paper. Here, the empty circles denote sites in the disordered
chain, while filled circles denote sites in the clean chain. From
left to right, we denote these entropy cuts as Sd, Sc, Sb. (b)
Schematic behavior of the entanglement entropy. Left panel:
decoupled case (V = 0), where Sb = Sd + Sc. Right panel:
Interacting case (V 6= 0).

to a contiguous block of sites in the clean (disordered)
chain, which we label as Sc (Sd), as well as a cut that
contains both chains, labeled as Sb. In the generic case
where the two chains are coupled, an area law will only
appear in Sb, since for the other cuts the area of the
boundary scales with the volume of the block. How-
ever, in the non-interacting case V = 0 where the two
chains are completely decoupled, the entropy of each of
the chains separately can provide valuable insights.

The bottom panels of Fig. 2 schematically illustrate the
behavior of the various entropy cuts. The lower left panel
shows the case of decoupled, non-interacting chains (V =
0): the delocalized fermions in the clean layer contribute
a volume law, Sc = sthL where sth ≈ log 2 is the thermal
entropy density of a single layer at infinite temperature.
The localized layer, on the other hand, exhibits a volume
law only for blocks smaller than the localization length
ξloc [49] and saturates to a constant beyond that. The
total entropy, Sb = Sd + Sc, thus shows a volume law
with prefactor 2sth for l < ξloc, and crosses over to a
volume law with a reduced prefactor sth for l > ξloc.

In the interacting case, the two scenarios discussed
above are localization and delocalization of the entire
system. These are illustrated in the lower right panel
of Fig. 2: If the system becomes fully localized on some
scale ξ′, the entanglement entropy for the joint system
Sb will exhibit an area law for l > ξ′ (note that while the
figure shows the case ξ′ = ξloc, this need not necessarily
be the case). If, on the other hand, the system fully delo-
calizes, the entropy will show a volume law with prefactor
2sth for all scales. Thus, in either scenario a strong signa-
ture appears in the eigenstate entanglement: the entropy
either becomes constant, or the coefficient of the volume
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law doubles.

III. PERTURBATIVE ANALYSIS OF
INTERCHAIN COUPLING

We expect that the eventual fate of the localization
or thermalization of the ladder rests on the outcome of
a competition between the tendency for the disordered
chain to localize the states on the clean chain and the
ability of the states in the clean chain to act as a ther-
malizing bath for the disordered chain. Before turning
to direct numerical simulations, we consider the limit of
weak interactions, V � td, tc, where we can work pertur-
batively in V near the decoupled chain limit to estimate
which of these effects is more important.

For V = 0, the clean chain has no randomness and
exhibits extended single-particle eigenstates. With V 6=
0, however, if the disordered chain remains localized, the
random distribution of charges 〈n̄d,i〉 in a given eigenstate
produces an effective disorder potential µi ≈ V 〈nd,i〉 in
the clean chain. Due to the one-dimensional nature of the
system, even an infinitesimally weak random potential
will produce localization. In the case of weak interactions
and thus weak disorder, localization occurs via quantum
interference, and we can perturbatively estimate (using
Fermi’s golden rule) the localization length in the clean
chain to be ξV ≈ t2c/(V

2 δn2
d), where δn2

d ≈ ρd(1 − ρd)
and ρd is the mean density of particles in the disordered
chain.

As a technical aside, this treatment amounts to a
Hartree-type approximation of the inter-chain interac-
tion to obtain an effective disorder potential µi = V 〈nd,i〉
for the clean chain. Note that Fock-type exchange self-
energies are zero in this model where particle number in
each chain is separately conserved. Next, we will per-
turbatively incorporate interactions using the Hartree-
dressed Green functions.

In the absence of this tendency towards localization,
energy can propagate along the disordered chain medi-
ated by resonant interactions with states in the clean
chain. We can perturbatively estimate whether such res-
onant interactions can persist in spite of the tendency
towards developing a finite localization length ξV in the
clean chain. The typical level spacing for particle-hole
excitations in the clean chain is:

δ(2) ≈ 1

Λc (νcξV )
2 ≈

V 4

t3c
(3)

where νc ≈ 1/tc and Λc ≈ tc are the single-particle den-
sity of states and bandwidth, respectively. For strong
disorder (W � td), the single-particle states of the dis-
ordered chain are well-localized with characteristic local-
ization length ξd ≈ [log (W/td)]

−1
. In this case, the sim-

plest interchain interaction process is for a particle-hole
excitation of two overlapping localized orbitals in the dis-
ordered chain to excite a particle-hole pair in two orbitals

of the clean chain that reside within distance ξV of those
in the clean chain.

For concreteness let us label a fixed pair of or-
bitals in the disordered chain by a, b, whose wave func-
tions have the schematic form φa,b ≈ 1√

ξd
e−|x−xa,b|/2ξd ,

and similarly denote two orbitals in the other chain
by α and β respectively with wave functions φα,β ≈

1√
ξV
e−|x−xα,β |/2ξV . Then, for |xa − xb| < ξd, and

|xα,β − xa| < ξV the matrix element for the interchain
interaction among these orbitals is roughly:

Γ(a,b);α,β ≈ V
∫
dx φ∗α(x)φβ(x)φ∗a(x)φb(x) (4)

≈ V

ξV
≈ V 3

t2c
(5)

Fixing our attention on a specific pair of orbitals in the
disordered chain, the number of such transitions that
are resonantly connected by matrix element Γ is of or-
der Nres ≈ Γ

δ ≈
tc
V , which is large for weak interactions,

and in fact diverges in the limit of V → 0. This diver-
gence strongly suggests that, for weak interactions, the
tendency for randomness in the disordered chain to lo-
calize states in the clean chain is insufficient to prevent
it from acting as a bath for the disordered chain. The
full system thus thermalizes in this limit on a timescale
set by the magnitude of the matrix element Γ.

To address the fate of thermalization in this ladder
beyond these perturbative considerations, we now turn
to microscopically exact numerical simulations.

IV. NUMERICAL RESULTS

A. Equipotent hopping

We first consider the case of equal hopping strength in
the clean and disordered layer, td = tc = 1. In Fig. 3,
we show the behavior of different entropy cuts in this
case for a system with a total of 2L = 20 sites and
disorder strength W = 4. We first explore the results
in the non-interacting case, V = 0. Here, we observe
a volume law for Sc (left-most panel), while the disor-
dered system exhibits a saturation of the entanglement
entropy Sd for l & 3 (center panel). Note that for V = 0,
Sd(l) = Sd(L − l) (and similarly for Sc), which is not
true for V 6= 0. By identifying the saturation point of
the entropy for Sd, we can read off that the localization
length for W = 4 is ξloc ≈ 3. The right-most panel shows
the joint entropy Sb, which for V = 0 is simply the sum
of the two contributions and is therefore dominated by
the volume law in the clean chain.

As we turn on interactions between the two layers
(V > 0), we observe that the entanglement entropy for
each cut increases dramatically. For the entropy cuts
isolating each chain, this is expected as the boundary
between the two chains begins to contribute to the en-
tanglement entropy. However, we note that in the limit
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Cut Length by Cut Type
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FIG. 3. Entropy for three different cuts for a ladder of
length L = 10 with t0 = tc = 1 and W = 4. The different
cuts are illustrated in the top panels of Fig. 2. Error bars are
comparable to the marker size.
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FIG. 4. Left panel: Entropy Sb at the center of the system as
a function of interlayer coupling V , for different system sizes
and disorder strength W = 4. We observe that the increase
of the entropy due to adding weak interactions sharpens as
the system size increases. Right panel: Entropy Sb(L/2) for
different V as a function of system size. The slope corre-
sponds to the entropy density, which is observed to increase
drastically as interactions are increased, compatible with all
degrees of freedom contributing to the entropy.

of strong enough interactions, the entropies Sd and Sc

become approximately equal, indicating that there is no
distinction between the two chains. Considering the joint
entropy, we find that the entropy at the center of the
system approximately doubles from Sb(L/2) ≈ 2.8 to
Sb(L/2) ≈ 5.8. This is consistent with a volume law
contribution from both chains. The maximum measured
value at the center of the system is close to the upper
bound Sb(L/2) ≈ 6.9; the discrepancy can be attributed
to finite-size corrections. These results are strongly sug-
gestive of delocalization of the entire system for V > 0.

To further investigate this, we consider the cut at the
center of the system, Sb(L/2), for various system sizes
and interaction strengths as shown in Fig. 4. In the left

V by Disorder
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W = 8W = 4W = 2
0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0

0.0

0.1

0.2

0.3

S/
L

FIG. 5. Entropy Sb(L/2) for a center cut of the system for
various disorder strengths W and hopping in the clean chain,
tc. As disorder is increased and the hopping tc reduced, we
observe a crossover from a regime where interactions tend
to increase entropy to a regime where interactions decrease
entropy, i.e. drive the system towards localization.

panel, we have rescaled the entropy by the system size to
convert to an entropy density. We observe that the en-
tanglement increases rapidly as interactions are turned
on for each system size. The increase sharpens as the
system size is increased, indicating that at least in this
parameter regime the entire system delocalizes for in-
finitesimal interaction strength V in the thermodynamic
limit. For small system sizes, the entropy decreases for
very large interactions, but this effect does not appear
to persist to larger system sizes. In the right panel, we
analyze the finite-size dependence of the entropy at the
center of the system, which clearly exhibits a volume-
law scaling. The coefficient of the volume law increases
rapidly as interactions are turned on.

B. Narrow-bandwidth bath

While the results of the previous section confirm that
the system tends to delocalize, as suggested by the con-
siderations in Sec. III, it may still be possible to change
the parameters of the system in such a way as to en-
hance the tendency towards localization. We focus here
on the effect of tuning the hopping strength in the clean
layer, tc. By reducing this hopping strength, we can re-
duce the bandwidth of the delocalized degrees of freedom,
which reduces the amount of energy the bath can absorb.
This regime was previously studied in Ref. 32. Clearly,
in a limit where tc � δE, where δE is the mean level
spacing of many-body energy levels, the system will not
delocalize; however, this requires an exponentially small
bandwidth tc ∼ 2−L. In a more physical regime, where
δE � tc � td and tc �W , one may still expect that the
bath is inefficient at delocalizing the system because its
bandwidth is small compared to the energy mismatch of
nearby fermion states in the disordered system, which is
of order W ; however, higher-order resonances may inval-
idate this simple picture.
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System Size (2L) by tc
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FIG. 6. Maximum entropy Sb for various L and interlayer couplings V , allowing the hopping strength to vary. For very large
interlayer coupling, the system appears to localize at small hopping in the clean chain.

Our numerical results are summarized in Figs. 5 and 6.
In Fig. 5, we show the entropy at the center of the system
as a function of interaction strength V for three different
strength of the disorder and several values of the hopping
in the clean chain tc, while keeping td = 1. For slightly
reduced values of tc, such as tc = 0.5, we find behavior
that is very similar to the case tc = td = 1. However,
for strongly reduced hopping of tc = 0.1 and sufficiently
strong disorder, the entropy does not increase rapidly
– as was seen in the left panel of Fig. 4 – but rather
remains constant, or even decreases in the case of strong
disorder W = 8. This implies that as interactions are
turned on, the system tends towards localization rather
than delocalization.

To explore whether this is a robust effect that persists
to the thermodynamic limit, we examine how this be-
havior depends on the system size over the limited range
available to our exact numerics. In Fig. 6, we show the
entropy at the center of the system versus system sizes,
for an array of hopping strengths tc ∈ [0.1, 0.5] (keeping
td = 1) and disorder strengths W = 2, 4, 8. For weak
disorder (W = 2, top row), we observe that interactions
suppress the entropy for small systems and tc ≤ 0.25,
but for sufficiently large systems the behavior changes

and the entropy of the interacting system exceeds that of
the decoupled chains and the coefficient of the volume be-
comes comparable to that in the case tc = td. The scale
at which this crossover takes place depends on the choice
of W and tc, and appears to shift to larger and larger sys-
tems as W is increased and tc reduced. For example, for
W = 4 and tc = 0.1 (leftmost panel of the middle row)
the crossover scale appears to be slightly larger than the
system sizes available to us. We note that such an up-
turn of the entropy seems at odds with the results put
forward in Ref. 49, which argued that ∂2S(`)/∂`2 ≤ 0,
where S(`) is the entropy of a contiguous block of ` sites
in a system of total size L. However, this result only
holds for `� L, whereas here we have the case ` = L/2
and therefore no clear separation between the two scales
` and L.

Finally, to examine the case of strong disorder (W =
8), small bath bandwidth (tc < 0.2) and strong interac-
tions further, we have performed simulations for up to
L = 12 (i.e. 24 sites); our results are shown in Fig. 7.
Although the entropy increases slightly with system size,
it remains strongly suppressed over the entire range of
system sizes available to our simulations. Nevertheless,
given the finite-size crossover behavior observed away
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System Size (2L) by t
c
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FIG. 7. Maximum entropy Sb for system sizes up to L = 24.
Here, V = 4 and W = 8. Note the drastically different scale
on the vertical axis compared to Fig. 6.

from this limit, we cannot rule out delocalization of the
system on a very long length scale.

C. Time evolution

To obtain further insights into the putative localized
regime at strong disorder and weak bath hopping and to
connect our results to those of Ref. 35, we repeat some of
the numerical experiments performed there in the pres-
ence of weak disorder. To this end, we prepare the sys-
tem in a randomly chosen product state, evolve under
the Hamiltonian (1) (where, following [35], we from here
forward impose periodic boundary conditions), and com-
pute the entropy Sb at the center of the system as a
function of time T . We average the results over different
initial states, and in the case of W > 0 also over 10 differ-
ent disorder realizations. For each case, we smooth the
data by taking the maximum over 6 adjacent time sam-
ples. We note that these results are obtained for much
stronger interaction V and much smaller tc than the re-
sults reported in the previous sections.

Our results are shown in Fig. 8. Here, the parame-
ters for the upper panel match those of Ref. 35, in par-
ticular tc = 0.001, td = 1, and the disorder-free case
W = 0 exactly matches the data presented there. Upon
adding even a very weak disorder potential, the evolu-
tion of the entropy for large time scales – beyond the
equilibration of local degrees of freedom on a scale 1/td –
changes drastically: the slow divergence of the entropy at
very large times that is observed in the quasi-MBL phase,
and associated with a slow relaxation of the system at all
length scales, appears completely suppressed in the case
of a weakly disordered system. Furthermore, the entropy
saturates to a far sub-thermal value for both L = 4 (not
shown) and L = 8 even for the weakest disorder potential
W = 0.01. These results are consistent with the obser-
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FIG. 8. Time evolution of the entanglement entropy Sb(L/2)
for V = 10 and 2L = 16 total sites. The top panel shows data
for tc = 0.001, corresponding to Fig. 2 of Ref. 35, while the
bottom panel shows tc = 0.1 for comparison to Fig. 6.

vation of a many-body localized regime in this limit in
the entanglement entropy of highly excited eigenstates,
and is also consistent with the observation of a divergent
susceptibility to spin glass ordering in Ref. 35.

Increasing the hopping in the clean chain to tc = 0.1
(bottom panel of Fig. 8), we find that a weak disorder
potential suppresses the saturation entropy only slightly,
while a sufficiently strong potential in the disordered
chain is still able to suppress the entropy for both chains.
While a finite critical disorder strength necessary to drive
the system into the MBL phase appears at odds with a
quasi-MBL regime in the clean limit, our numerical ob-
servation may also be due to a large localization length
compared to the available system sizes. In either in-
terpretation, these results are consistent with the obser-
vation of a possible MBL phase in a similar parameter
regime in the entropy of eigenstates, see Fig. 6.
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V. CONCLUSION

We have proposed a system of spinless fermions on a
ladder, where one chain of the ladder is translationally
invariant while the other experiences a disorder potential.
This system can serve as a prototypical example to study
many-body localization effects in a system where in the
limit of vanishing interactions, localized and delocalized
degrees of freedom coexist. Equivalently, the system al-
lows us to study the effect of coupling a small bath to
a many-body localized system. Exploiting the large de-
gree of tunability of the model, we have found that while
in most of the phase diagram the system tends towards
delocalization, a many-body localized regime – and thus
localization of the bath through induced disorder from
the MBL system – may appear in a regime where the
bandwidth of the bath is small compared to the disorder
strength.

In the entanglement of eigenstates, this localization of
the entire system is heralded by a decreasing entangle-
ment entropy as a function of the interaction strength.
Attempting to extrapolate to larger systems, we find a
broad regime of parameters where the trend of suppres-
sion of the entropy by interactions reverses for larger sys-
tem sizes, and the system tends towards delocalization as
the system size is increased. By taking the hopping in
the clean chain very small and the disorder very strong,
we obtain a regime where the entropy remains small for
all system sizes accessible to our numerics; however, we
cannot answer in the affirmative whether we obtain a gen-
uine many-body localized phase of both chains, or rather
a regime where the crossover to delocalization takes place
at an extraordinarily large system scale. Turning to the
time evolution of the entropy starting from random ini-
tial product states, a strong suppression of the saturation
entropy is observed in a similar parameter regime, pro-
viding further support for a many-body localized phase.

Finally, we comment on the intermediate non-ergodic
yet delocalized phase observed in Ref. 25 in a window of

many-body energy densities between a localized regime
at low energies, and a fully ergodic delocalized regime at
high energies. Since the crossover regime in the problem
considered here is parametrically very large, reliably ob-
serving such a regime appears very challenging and has
not been attempted systematically. However, we point
out that tuning into such a regime as a function of en-
ergy is less natural in the model considered here, since in
the single-particle limit localized and delocalized states
coexist at all energies, whereas in the model of Ref. 25
the energy density can be understood as tuning the rel-
ative number of localized and delocalized orbitals in the
non-interacting limit. A more natural parameter to repli-
cate the phase diagram in our model would thus be the
relative filling of the clean and disordered chains. How-
ever, given the small range of system sizes available to
us, changing the average inter-particle distance is likely
to incur larger finite-size corrections.
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