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Abstract 
 

Recently, Tao and Mo developed a new semilocal exchange-correlation density functional. The exchange 

part of this functional is derived from a density matrix expansion corrected to reproduce the fourth-order 

gradient expansion in the slowly-varying-density limit, while the correlation part is based on the TPSS 

correlation functional with a modification for the low-density limit. In the present work, the Tao-Mo 

functional is assessed by computing various properties of solids and jellium surfaces. This includes 22 

lattice constants and bulk moduli, 30 band gaps, 7 cohesive energies, and jellium surface exchange and 

correlation energies for the density parameter rs in the range from 2 to 3 bohrs. Our calculations show that 

the Tao-Mo meta-generalized gradient approximation can yield consistently high accuracy for most 

properties considered here, with mean absolute errors of 0.025 Å for lattice constants, 7.0 GPa for bulk 

moduli, 0.08 eV/atom for cohesive energies, and 35 erg/cm2 for surface exchange-correlation energies. 

The mean absolute error in band gaps is larger than that of TPSS, but slightly smaller than the errors of 

LSDA, PBE, and revTPSS. However, band gaps are still underestimated, particularly for large-gap 

semiconductors, compared to the HSE06 nonlocal screened hybrid functional.        

    

 

PACS numbers: 71.15.Mb, 71.15.Ap, 61.50.Ah, 62.20.Dc 
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1. Introduction 

       The Kohn-Sham density functional theory 1 is the most widely used method for electronic structure 

calculations of molecules and solids. In this theory, only the exchange-correlation energy component that 

accounts for all many-body effects must be approximated as a functional of the electron density. 

Therefore, development of accurate and widely applicable exchange-correlation energy functionals has 

been a primary goal of this theory.   

Although many exact properties of the exchange-correlation functional have been discovered, the 

exact functional itself remains unknown. Approximations can be constructed by assuming some 

functional form that contains many parameters under the guidance of some basic properties such as 

uniform coordinate scaling, spin scaling, negativity of the energy density, uniform-gas limit, and slowly-

varying gradient expansion. The parameters introduced, or part of them, can be determined by a fit to 

experiment or highly accurate theoretical reference values for selected properties and systems. Such 

functionals are called empirical or semiempirical. Density functionals can also be developed by imposing 

exact or nearly exact constraints, so that all introduced parameters can be fixed by the imposed constraints. 

Approximate functionals of this type are called nonempirical. Nonempirical functionals may not be as 

accurate as empirical functionals for certain properties or sets of properties, but they provide a more 

balanced description of physically different systems such as molecules, solids, and surfaces, because 

parameters determined by universal constraints are more easily transferable from one system to another 

than those determined through empirical fitting. This has been demonstrated by the universally good 

performance of the nonempirical Perdew-Burke-Ernzerhof 2 (PBE) generalized-gradient approximation 

(GGA) and Tao-Perdew-Staroverov-Scuseria 3 (TPSS) meta-GGA. On the other hand, empirical 

functionals can be highly accurate for subsets of systems and properties, pushing semilocal DFT to the 

accuracy limit for a particular functional form. For example, the M06L functional developed by Zhao and 

Truhlar 4 contains 38 fitting parameters, but shows high accuracy in quantum chemistry. However, it is 
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relatively less accurate in condensed-matter physics (e.g., the error of M06-L in lattice constants is greater 

than those of PBE and TPSS 5).  

Physically, the exchange-correlation energy arises from the interaction between an electron and the 

exchange-correlation hole surrounding the electron. The exchange-correlation hole associated with a 

given semilocal functional is generally unknown, but it can be constructed by the reverse-engineering 

approach. By construction, the hole is constrained to reproduce the exchange-correlation energy of the 

corresponding energy functional. There are many forms of the associated hole that can satisfy this and 

other constraints. 6–8 Therefore, additional approximations have to be introduced in the construction of the 

hole. 

In the development of semilocal DFT, an appealing approach is to approximate the exchange-

correlation hole directly, from which the energy functional can be obtained. 2,9 Recently, Tao and Mo  10 

developed a meta-generalized gradient approximation (meta-GGA) for the exchange-correlation energy. 

In this work, we assess the performance of the Tao-Mo (TM) meta-GGA on lattice constants, bulk moduli, 

band gaps, cohesive energies of solids, and surface exchange and correlation energies of jellium. Our 

numerical tests show that this density functional can achieve high accuracy for a variety of solids and 

surfaces.    

 

2. Computational Method 

      The TM functional is a meta-GGA of the form 10   

      ( ) ( )3 unif
xc xc xc, , , , , , , ,E n n d r n n n F n n n n τ τ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓= ∇ ∇⎡ ⎤⎣ ⎦ ∫ ε                                                 (1) 

where ( ) ( ) ( )n n n↑ ↓= +r r r  is the total electron density, ( )unif
xc ,n n↑ ↓ε  is the exchange-correlation 

energy per electron of a uniform electron gas, xcF  is the enhancement factor, and 

21( ) ( )
2 iiσ στ φ= ∇∑r r is the Kohn-Sham kinetic energy density of σ -spin electrons.  
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   For a spin-unpolarized density, the exchange part of the TM meta-GGA enhancement 

factor consists of two parts: one is derived from a density-matrix expansion (DME) 11 and the 

other is a slowly-varying-density correction (SC), 

       DME SC
x x x(1 )F wF w F= + − .                                                                                                       (2) 

The DME part is given by 

      DME 2
x 2 4

1 7 5951 (2 1)
9 54

F p
f f

λ⎧ ⎫= + + −⎨ ⎬
⎩ ⎭

 

                 
2

2 unif
unif

1 1 13
2 72

n
n

τ λ λ τ τ
τ

⎧ ⎫⎡ ⎤⎛ ⎞∇⎪ ⎪⎛ ⎞⎢ ⎥− − − + ⎜ − − ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
,                                                     (3) 

where unif 23 /10Fk nτ =  is the kinetic energy density of a uniform electron gas, 

2 2( / 2 )Fp s n k n= = ∇ , 2 1/3(3 )Fk nπ=  is the Fermi wave vector, 
1/1021 10(70 / 27)f y yβ⎡ ⎤= + +⎣ ⎦ , 

2(2 1)y pλ= − , with 0.6866λ = , and 79.873β = . In the slowly-varying-density limit, the first 

term on the right-hand side of Eq. (3) reduces to 1, while the second term vanishes. Therefore, 

the DME recovers the correct uniform-gas limit, but the gradient expansion coefficients are not 

correct. The required slowly-varying-density correction SC
xF  is given by 

1/10
SC 2

x
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F p p q
⎧ ⎫⎡ ⎤⎛ ⎞= + + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
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τ τ

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞− − + ⋅⎨ ⎬⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭
% ,                                                                         (4) 

where 23 / 2 9 / 20 /12Fq k n pτ= − −%  and 2 / 8W n nτ = ∇  is the von Weizsäcker kinetic energy 

density. In the slowly-varying limit, SC
xF  reduces to the exact fourth-order gradient expansion,6  

while the DME part vanishes as O( 6n∇ ). The weight is given by 
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⎡ ⎤+⎣ ⎦

.                                                                                                        (5) 

       For one-electron densities, 1w = , while in the uniform-gas limit, 0w = . In the slowly-

varying-density limit, our enhancement factor of Eq. (2) correctly reduces to SC
xF . 

The correlation part of the TM meta-GGA functional takes the same form as TPSS 

correlation [Eqs. (11) and (12) of Ref.  3], but replaces ( ),C ζ ξ  with a simpler form 

      ( )
( ) ( ){ }

2 4

44/3 4/32

0.1 0.32,
1 1 1 2

C ζ ζζ ξ
ξ ζ ζ− −

+=
⎡ ⎤+ + + −⎣ ⎦

,                                                                   (6)                          

where ( ) /n n nζ ↑ ↓= −  is the relative spin polarization and / 2 Fkξ ζ= ∇ . This modification is 

motivated by the fact that, in the low-density limit, correlation shows exchange-like scaling 

behavior, while in the high-density limit, correlation scales to a constant, indicating the 

significance of correlation in the low-density limit. 13 (Modification of the TPSS correlation 

energy functional is equivalent to modification of the TPSS correlation hole, because the latter 

can be reverse-engineered from the former. 6–8)  

 

3. Results and Discussion 

3.1 Lattice Constants 

The equilibrium lattice constant of a solid is a basic quantity on which all other properties depend. 

Accurate prediction of this quantity is critical to the design of materials and devices. 14–16 Our test set of 

22 bulk crystals includes main-group metals Li, K, Al, semiconductors diamond, Si, β-SiC, Ge, BP, AlP, 

AlAs, GaN, GaP, GaAs, ionic crystals NaCl, NaF, LiCl, LiF, MgO, MgS, and transition metals Cu, Pd, 

Ag. Calculations on these solids were performed using a locally modified version 10 of the Gaussian 
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program 17 with periodic boundary conditions (PBC). 18 Summarized in Table I are the basis sets used in 

the calculation of the 22 bulk solids. Gaussian-type basis set developed for atoms and molecules often 

contain diffuse functions. When applying Gaussian-type basis sets to solid systems, such diffuse 

functions should be removed for computational efficiency. For smooth convergence and reliability of 

results, dense k-point meshes were used: 22×22×22 to 20×40×40 for main-group metals, 10×10×10 to 

12×12×12 for semiconductors, 10×10×10 to 14×14×14 for ionic crystals, and 8×16×16 to 10×18×18 for 

transition metals.  

Table I: The Gaussian-type basis sets adopted for the atoms of the 22 bulk solids. The Strukturbericht 
symbols in parentheses denote the types of crystal structures: face-centered cubic (A1), body-centered 
cubic (A2), diamond (A4), rock salt (B1), and zinc blende (B3). The “Cartesian” configuration includes 
six d functions. The ‘‘pure’’ configuration includes five d functions.  

Solid Basis set d functions 
Li (A2) 4s,3p,1d 19 pure 
K (A2) 6s,4p,1d 20  Cartesian 
Al (A1) 6s,3p,1d 21  Cartesian 
C (A4) 6-31G*  Cartesian 
Si (A4) 6-31G*  Cartesian 
SiC (B3) Si: 6-31G* C: 6-31G* Cartesian 
Ge (A4) ECP-4s,3p,2d 22  pure 
BP (B3) B: 4s,3p,1d 22 P: 6s,5p,1d 22 pure 
AlP (B3) Al: 6s,3p,1d 21 P: 6-311G* pure 
AlAs (B3) Al: 6s,3p,1d 21 As: 6-311G* pure 
GaN (B3) Ga: 6s,5p,2d 23 N: 6-311G* pure 
GaP (B3) Ga: 6s,5p,2d 23 P: 6-311G* pure 
GaAs (B3) Ga: 6s,5p,2d 23  As: 6-311G* pure 
NaCl (B1) Na: 6s,4p,1d 24 Cl: 6-311G* pure 
NaF (B1) Na: 6s,4p,1d 24 F: 6-311G* pure 
LiCl (B1) Li: 4s,3p,1d 24 Cl: 6-311G* pure 
LiF (B1) Li: 4s,3p,1d 24 F: 6-311G* pure 
MgO (B1) Mg: 4s,3p,1d 25 O: 4s,3p,1d 25 pure 
MgS (B1) Mg: 4s,3p,1d 25 S: 6-311G* pure 
Cu (A1) 6s,5p,2d 26  pure 
Pd (A1) ECP 27-4s,4p,2d 28  pure 
Ag (A1) ECP 27-4s,4p,2d 29  pure 
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Listed in Table II are the equilibrium lattice constants of the 22 solids calculated with TM and other 

DFT methods. Figure 1 compares the errors of LSDA, PBE, TPSS, PBEsol, revTPSS, and TM for lattice 

constants of these solids. The TM functional has a mean error (ME) of 0.019 Å and is the second most 

balanced functional between underestimation and overestimation. The greatest reductions of error by TM 

relative to TPSS were achieved for K, NaF, and NaCl. Among the 22 solids, the TM functional has the 

highest accuracy in predicting the lattice constants of main-group metals Li and Al, semiconductors GaP 

and GaAs, and transition metals Cu and Ag. Overall, TM is one of the most accurate functionals for 

lattice constants, with a mean absolute error (MAE) of 0.025 Å which is the smallest among all semilocal 

functionals listed, and on par with the MAE of PBEsol. (The SCAN functional 5 also yields very accurate 

lattice constants.) The MAE of the TM functional is larger than those of the nonlocal HSE06 (MAE = 

0.013 Å) and optB86b-vdW (MAE = 0.017 Å) functionals. These nonlocal functionals outperform all the 

listed semilocal density functionals, but at a higher computational cost. 

 
3.2 Bulk Moduli 

Bulk modulus is related to the curvature of the total energy as a function of unit cell volume at the 

equilibrium geometry. This quantity can be calculated from various EOS models. 30–32 Bulk modulus 

presents a great challenge to DFT, in particular for transition metals. 33 

In the present work, to obtain the zero-temperature equilibrium lattice constant and bulk modulus 

for each crystal, calculations of the total energy were first performed on no less than 10 static lattices. 

The unit cells of such lattices have volumes ranging from -5% to +5% of the equilibrium cell volume. In 

order to make direct comparison with other functionals, in this work, we generate the equilibrium unit 

cell volume and bulk modulus by fitting energy versus unit cell volume to the stabilized jellium equation 

of state (SJEOS) 30,31 

       3 2( ) a b cx d
x x x

ε = + + +  ,                                                                                                                    (7) 
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Table II: Equilibrium (0 K) lattice constants (Å) of 22 solids calculated with various functionals. The ME 
and MAE are in reference to experimental lattice constants. The LSDA, PBE, TPSS, PBEsol, and 
revTPSS values for Ge, BP, AlP, AlAs, GaN, GaP, and MgS are from Ref.  34. The other LSDA, PBE, 
and TPSS values are from Ref.  24, PBEsol from Ref.  35. The revTPSS results are taken from Ref.  36 
except for potassium which is from Ref.  34. The HSE06 values are from Ref.  37. The optB86b-vdW 
value for BP is from Ref.  38. All other values of optB86b-vdW are from Ref.  39. The experimental data 
(in parentheses) and ZPE-corrected values (preceding the parentheses) for lattice constants are from 
Ref.  40. The TM values are calculated self-consistently. The smallest and largest MAEs for semilocal 
functionals are in bold blue and red, respectively. 
 

Solids Expt. LSDA PBE PBEsol TPSS revTPSS TM HSE06 optB86b-vdW
Li 3.451 (3.477) 3.383 3.453 3.453 3.475 3.425 3.445 3.460 3.452
K 5.212 (5.225) 5.093 5.308 5.232 5.362 5.325 5.265  5.202 
Al 4.019 (4.032) 4.008 4.063 4.038 4.035 4.005 4.024 4.022 4.036 
C 3.544 (3.567) 3.544 3.583 3.562 3.583 3.559 3.564 3.549 3.572 
Si 5.415 (5.430) 5.426 5.490 5.442 5.477 5.437 5.443 5.435 5.447 
SiC 4.340 (4.358) 4.351 4.401 4.381 4.392 4.358 4.374 4.347 4.369 
Ge 5.639 (5.652) 5.624 5.764 5.679 5.723 5.680 5.671 5.682 5.725 
BP 4.520 (4.538) 4.491 4.548 4.520 4.544 4.529 4.534 4.519 4.545 
AlP 5.445 (5.460) 5.433 5.504 5.468 5.492 5.482 5.487 5.472  
AlAs 5.646 (5.658) 5.631 5.728 5.676 5.702 5.682 5.691 5.687  
GaN 4.520 (4.531) 4.457 4.549 4.499 4.532 4.518 4.492 4.494  
GaP 5.435 (5.448) 5.392 5.506 5.439 5.488 5.460 5.437 5.462  
GaAs 5.637 (5.648) 5.592 5.726 5.687 5.702 5.673 5.641 5.687 5.717 
NaCl 5.565 (5.595) 5.471 5.698 5.611 5.696 5.671 5.618 5.659 5.627 
NaF 4.576 (4.609) 4.505 4.700 4.633 4.706 4.674 4.626 4.650 4.658 
LiCl 5.072 (5.106) 4.968 5.148 5.072 5.113 5.087 5.089 5.115 5.103 
LiF 3.960 (4.010) 3.904 4.062 4.002 4.026 4.011 3.995 4.018 4.037 
MgO 4.186 (4.207) 4.156 4.242 4.229 4.224 4.233 4.209 4.210 4.230 
MgS 5.182 (5.202) 5.127 5.228 5.184 5.228 5.222 5.198   
Cu 3.596 (3.603) 3.530 3.636 3.578 3.593 3.548 3.587 3.638 3.605 
Pd 3.913 (3.916) 3.851 3.950 3.888 3.917 3.876 3.900 3.921 3.909 
Ag 4.062 (4.069) 3.997 4.130 4.045 4.076 4.050 4.052 4.142 4.101 
ME  -0.046 0.067 0.017 0.052 0.026 0.019 0.031 0.037 
  (-0.064) (0.049) (-0.001) (0.034) (0.007) (0.000) (0.034) (0.039) 
MAE  0.048 0.067 0.025 0.053 0.039 0.025 0.013 0.017 

 (0.064) (0.051) (0.019) (0.035) (0.029) (0.017) (0.024) (0.024) 
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Figure 1 Performance of various density functionals for lattice constants of 22 solids. The references used 
are ZPE-corrected experimental values at 0 K. All values are from Table II. 

 
 
where ε  is the energy of the lattice cell, and x  is the volume. The equilibrium lattice volume 0v  and 

bulk modulus 0B  were obtained by solving 

       0 0 1
9 ( 3)
2

a B v B= − ,                                                                                                                             (8) 

0 0 1
9 (10 3 )
2

b B v B= − ,                                                                                                                        (9) 

0 0 1
9 (11 3 )
2

c B v B= − − .                                                                                                                    (10)

Listed in Table III are the equilibrium bulk moduli of the 22 solids calculated with TM and other 

functionals. Figure 2 shows deviations of the LSDA, PBE, TPSS, PBEsol, TM, HSE06, and optB86b-

vdW bulk moduli from the experimental data for these solids. The TM functional is less accurate than 

PBEsol and nonlocal functionals HSE06 and optB86b-vdW, but outperforms all-purpose functionals 
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Table III: Equilibrium bulk moduli (GPa) of the 22 solids calculated at 0 K. The LSDA, PBE, and TPSS 
values are from Ref.  24. The PBEsol values are from Ref.  41. For BP, AlP, AlAs, GaN, GaP, and MgS, 
the LSDA and PBE values are from Ref.  42 and the PBEsol values are from Ref.  43. The HSE06 values 
are from Ref.  43. The optB86b-vdW value for BP is from Ref.  38. All other values of optB86b-vdW are 
from Ref.  39. The experimental values of bulk moduli for the 22 solids are from the following 
references: Li, 44 K, 45 Al, 46 C 47, Si, 48 SiC, 49 Ge, 48 BP, 50 AlP, 51 AlAs, 51 GaN, 52 GaP, 51 GaAs, 48 NaCl, 53 
NaF, 53 LiCl, 53 LiF, 54 MgO, 55 MgS, 56 Cu, 57 Pd, 58 and Ag. 59 The smallest and largest MAEs for 
semilocal functionals are in bold blue and red, respectively.  

Solids Expt. LSDA PBE TPSS PBEsol TM HSE06 optB86b-vdW
Li 13 14.7 13.7 13.2 13.8 13.7 13.4 
K 3.7 4.6 3.8 3.6 3.7 4.0  3.79 
Al 79.4 82.5 76.8 85.2 82.6 88.6  77.0 
C 443 458 426 421 450.0 442.4 468.2 431 
Si 99.2 95.6 89 91.9 94.2 97.1 99.6 91.2 
SiC 225 225 209 213 218.0 220.0 233.3 215 
Ge 75.8 75.9 63.0 66.4 68.1 72.5 73.5 61.5 
BP 173 176 162  173.4 171.5 178.4 163.3 
AlP 86 89.9 82.6  90.5 89.3 94.3  
AlAs 82 75.5 67.0  78.7 75.2 81.9  
GaN 190 204 173  182.8 207.1 193.0  
GaP 88 90.6 77.0  85.9 89.2 88.8  
GaAs 75.6 81.3 68.1 70.1 69.1 78.6 72.2 63.6 
NaCl 26.6 32.5 23.9 23 25.8 26.9 25.9 26.2 
NaF 51.4 63.3 47.7 44 48.6 52.5 54.5 47.5 
LiCl 35.4 42 32.9 34.3 35.2 36.2 34.5 34.3 
LiF 69.8 87.5 65.9 67.2 73.1 74.4 76.4 70.2 
MgO 165 183 162 169 157.0 174.5 172.9 156 
MgS 78.9 84.0 74.4  60.9 79.8 62.2  
Cu 142 192 153 173 166.0 180.2  149 
Pd 195 240 180 203 205.0 210.7  187 
Ag 109 153 107 129 119.0 138.4  104 
ME  11.1 -6.8 -0.1 -0.2 5.3 2.8 -5.2 
MAE  12.0 7.8 8.8 6.0 7.0 5.8 6.1 
MARE  13.0 7.5 8.1 5.8 6.5 5.0 5.6 

 

TPSS, PBE, as well as LSDA. Compared to lattice constants, the advantage of the two nonlocal 

functionals HSE06 and optB86b-vdW over the listed semilocal functionals has decreased significantly in 

the case of bulk moduli, suggesting relative insignificance of nonlocality for the curvature of the 
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potential energy curve. Nevertheless, nonlocality is still helpful in predicting bulk moduli, as can be seen 

from the error reduction from PBE to PBE-based range-separation functional HSE06. 

  

  

Figure 2 Performance of various density functionals for bulk moduli of 22 solids at 0 K. All values are 
from Table III. 

 

3.3 Semiconductor Band Gaps  

        The electronic band gap is a key property of a semiconductor necessary for understanding its 

electrical, optical, photovoltaic, and photocatalytic properties. 60,61 We have assessed performance of the 

TM functional on 30 semiconductors. The TM results are listed in Table IV, along with other calculated 

values from the literature. All calculated band gaps reported in this work were obtained as the difference 

between the valence band maximum and conduction band minimum. From Table IV, we see that, like 

other density functionals, the TM functional tends to underestimate band gaps. The MAE of the TM 

functional is 0.87 eV, which is larger than that of TPSS (MAE = 0.79 eV) but 6~20% smaller than those 

of LSDA, PBE, PBEsol, and revTPSS. Compared to the nonlocal functional HSE06, the errors of  
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Table IV: Band gaps (in eV) of 30 semiconductors. The LSDA, PBE, PBEsol, TPSS, and revTPSS 
values are from Ref.  62. The HSE06 values are from Ref.  63. The experimental values are from Ref.  22. 
The smallest and largest MAEs for semilocal functionals are in bold blue and red, respectively.  

Solid Expt. LSDA PBE PBEsol TPSS revTPSS TM HSE06 
C 5.48 4.22 4.24 4.03 4.29 4.05 4.12 5.43 
Si 1.17 0.62 0.72 0.53 0.80 0.63 0.56 1.21 
Ge 0.74 0.00 0.13 0.00 0.32 0.14 0.35 0.80 
SiC 2.42 1.42 1.46 1.27 1.42 1.23 1.24 2.32 
BP 2.40 1.36 1.40 1.24 1.45 1.28 1.27 2.13 
BAs 1.46 1.19 1.25 1.10 1.27 1.13 1.10 1.88 
AlP 2.51 1.64 1.78 1.56 1.86 1.72 1.10 2.42 
AlAs 2.23 1.43 1.55 1.37 1.66 1.57 1.47 2.13 
AlSb 1.68 1.34 1.44 1.22 1.58 1.40 1.28 1.82 
GaN 3.50 2.18 2.22 1.85 2.15 1.71 1.71 3.48 
β-GaN 3.30 1.84 1.86 1.70 1.79 1.53 2.06 3.08 
GaP 2.35 1.63 1.80 1.62 1.89 1.77 1.64 2.39 
GaAs 1.52 0.04 0.36 0.42 0.60 0.73 0.68 1.11 
GaSb 0.73 0.00 0.19 0.06 0.39 0.31 0.51 0.90 
InN 0.69 0.00 0.00 0.00 0.00 0.01 0.00 0.72 
InP 1.42 0.74 0.99 0.83 1.19 1.00 1.19 1.77 
InAs 0.41 0.00 0.00 0.00 0.08 0.00 0.19 0.57 
InSb 0.23 0.00 0.00 0.00 0.00 0.00 0.14 0.47 
ZnS 3.66 2.02 2.30 2.22 2.53 2.42 2.40 3.44 
ZnSe 2.70 1.05 1.37 1.26 1.62 1.58 1.61 2.38 
ZnTe 2.38 1.11 1.39 1.29 1.65 1.60 1.70 2.34 
CdS 2.55 0.97 1.26 1.08 1.47 1.31 1.33 2.21 
CdSe 1.90 0.31 0.63 0.45 0.85 0.77 1.33 1.48 
CdTe 1.92 0.54 0.81 0.67 1.05 0.98 1.10 1.64 
MgS 5.40 3.37 3.65 3.34 3.91 2.68 3.76 4.67 
MgSe 2.47 1.74 1.90 1.70 2.21 2.03 1.97 2.69 
MgTe 3.60 2.41 2.65 2.58 3.07 3.08 2.98 3.54 
BaS 3.88 2.13 2.40 2.15 2.56 2.48 2.34 3.19 
BaSe 3.58 1.84 2.05 1.83 2.18 2.17 2.03 2.74 
BaTe 3.08 1.48 1.66 1.38 1.77 1.69 1.61 2.21 
ME  -1.09 -0.93 -1.09 -0.79 -0.95 -0.89 -0.14 
MAE  1.09 0.93 1.09 0.79 0.95 0.89 0.26 

 

semilocal functionals are too large, suggesting the significance of nonlocality 8 in band gap calculations. 
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        A noteworthy feature of the TM functional is its greater ability to distinguish small-gap 

semiconductors from metals. Among the 30 semiconductors, InN is the only material which is 

qualitatively incorrectly predicted by the TM functional to have a zero band gap, while other semilocal 

density functionals predicts zero band gaps for multiple semiconductors: LSDA (5 semiconductors), PBE 

(3 semiconductors), PBEsol (4 semiconductors), TPSS (2 semiconductors), and revTPSS (2 

semiconductors). The numerical values of the band gaps predicted by the TM functionals for such small-

gap semiconductors are the most accurate among all semilocal functionals listed.  

 

3.4 Cohesive Energies  

       Cohesive energy is the difference between the total electronic energy of a solid and the constituent 

neutral atoms. It is the condensed-matter analog of molecular atomization energy and a measure of the 

interatomic bond strength. To compute the cohesive energy for each of the 7 solids, the total energy of a 

unit cell was first divided by the number of atoms in the cell to get the total energy per atom. This energy 

per atom was then corrected by adding the phonon ZPE to account for the zero-point motion. The 

phonon ZPE per atom can be estimated from 30 

           ZPE
9
8 B Dkε = Θ ,                                                                                                                             (11)  

where Bk  is the Boltzmann constant and DΘ  is the Debye temperature of the solid. In the present work, 

we adopted the following Debye temperatures: C 2230K, 64 Si 645K, 64 SiC 1232K, 65 NaCl 321K, 64 NaF 

492K, 64 LiCl 422K, 64 and LiF 732K. 64 The ZPE-corrected energy per atom was then subtracted from the 

spin-unrestricted ground-state energy of isolated atoms to obtain the cohesive energy. Among the 6 

atoms (C, Si, Na, Li, Cl, F) comprising the 7 solids, the atoms Li and Na involve diffuse functions in 

their molecular basis sets. These diffuse basis functions were excluded from the calculations of lattice 

constants and bulk moduli of Li- and Na-containing ionic solids, but used for calculating the ground-state  
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Table V: Cohesive energies (eV/atom) of 7 solids. The LSDA, PBE, and TPSS values are from Ref.  24, 
PBEsol from Ref.  41, revTPSS from Ref.  66, HSE06 from Ref.  37, and optB86b-vdW from Ref.  39. 
The TM values are calculated self-consistently and corrected for zero-point vibrations. The smallest and 
largest MAEs for semilocal functionals are in bold blue and red, respectively.  

 
Solid Expt. LSDA PBE TPSS PBEsol revTPSS TM HSE06 optB86b-vdW
C 7.37 8.83 7.62 7.12 8.05 7.31 7.48 7.43 7.66
Si 4.62 5.26 4.50 4.36 4.87 4.50 4.61 4.52 4.81 
SiC 6.37 7.25 6.25 6.02 6.75 6.26 6.29 6.28 6.55 
NaCl 3.31 3.58 3.16 3.18 3.20 3.14 3.19 3.06 3.29 
NaF 3.93 4.50 3.96 3.87 3.99 3.74 3.88 3.67 3.95 
LiCl 3.55 3.88 3.41 3.41 3.49 3.39 3.42 3.33 3.56 
LiF 4.40 5.02 4.42 4.32 4.49 4.23 4.34 4.18 4.43 
ME  0.68 -0.03 -0.18 0.18 -0.14 -0.05 -0.16 0.10 
MAE  0.68 0.12 0.18 0.23 0.14 0.08 0.17 0.11 
MARE  13.4 2.5 3.7 4.2 3.4 1.9 4.3 1.9 

 

 

    

Figure 3 Performance of various density functionals for cohesive energies of 7 solids. All values are from 
Table V. 
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energies of the isolated Li and Na atoms (i.e., the full molecular basis set 6-311G* was employed for the 

isolated Li and Na atoms). Applying different basis sets to the solid and the corresponding isolated atoms 

provides reasonable cohesive energies for ionic solids, because cations are compact and their electrons 

are less likely to appear in the far regions described by diffuse functions, therefore decreasing the need of 

diffuse functions in the solid-state calculation. Listed in Table V are the cohesive energies of 7 solids. 

Figure 3 compares the performance of the LSDA, PBE, TPSS, PBEsol, revTPSS, TM, HSE06, and 

optB86b-vdW functionals for cohesive energies of these 7 solids. Overall, TM has an MAE of only 0.08 

eV/atom, with an error reduction of over 50% from that of the meta-GGA TPSS. The TM functional is 

also significantly more accurate than the other semilocal functionals revTPSS, PBE, PBEsol, and LSDA. 

This is in sharp contrast with atomization energies of molecular systems, 10 for which TM is less accurate 

than TPSS for the 148 G2 molecules and moderately more accurate than TPSS for the AE6 test set. The 

TM functional can even provide better description of cohesive energies than the nonlocal functionals 

HSE06 and optB86b-vdW. 

 

3.5 Surface Exchange and Correlation Energies  

       Jellium, a homogeneous electron gas with a positive uniform background charge, is a realistic model 

of simple metals. The electron density of jellium is uniform within the bulk, while near the surface it 

varies rapidly and decays exponentially in vacuum. The surface energy σ is defined as the energy per unit 

area needed to cut the bulk jellium into two infinitely separate parts. The exchange-correlation 

contribution to the surface energy can be calculated as 

       xc xc xc( )[ ( ) ( )] .n z z dzσ
∞

−∞
= − −∞∫ ε ε                                                                                               (12) 
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From this equation, we can see that, in order to have an accurate description of the surface energy, a 

density functional must be correct for slowly varying densities. This is true even for real solids, 67 because 

the typical valence electron density of solids is slowly varying.   

        Several ab initio calculations of the jellium surface energy are available in the literature, including 

the random-phase approximation (RPA) 68 and quantum Monte Carlo (QMC) 69. These calculations agree 

well with each other and with time-dependent DFT. 68 Since QMC values have some uncertainty, we 

compare all DFT values to the RPA calculation in the high-density regime from rs = 2 bohrs to rs = 3 

bohrs, in which the RPA is reliable. The results displayed in Table VI show that the surface exchange 

energy from the TM exchange functional is in excellent agreement with the exact values, 70 better than the 

LSDA, PBE, and TPSS values. Specifically, the TM functional has an MAE of only 10 erg/cm2, an 

overwhelming 80~96% decrease of error compared with LSDA, PBE, and TPSS. This excellent 

performance of the TM functional largely benefits from the recovery of the correct fourth-order gradient 

expansion in the slowly varying limit. As a result, TM yields much better surface exchange-correlation 

energy than LSDA, PBE, and TPSS. 

 

Table VI: Jellium surface exchange energies σx and surface exchange-correlation energies σxc (in 
erg/cm2). The reference values are taken from the RPA calculation.70 The LSDA, PBE, and TPSS values 
are taken from Ref.  24. The smallest and largest MAEs are in bold blue and red, respectively. 

Exchange Exchange-correlation 
rs (bohr) LSDA PBE TPSS TM RPA LSDA PBE TPSS TM RPA
2.00 3037 2438 2553 2641 2624 3354 3265 3380 3515 3467
2.07 2674 2127 2231 2312 2296 2961 2881 2985 3109 3064
2.30 1809 1395 1469 1531 1521 2019 1962 2035 2132 2098
2.66 1051 770 817 860 854 1188 1152 1198 1267 1240
3.00 669 468 497 528 526 764 743 772 823 801
ME  284 -125 -51 10 -77 -133 -60 35 
MAE 284 125 51 10 77 133 60 35 

 

 



 

 

 

17

4. CONCLUSIONS 

  In summary, we have evaluated the performance of the TM meta-GGA on solids and solid surfaces 

for a number of properties including lattice constants, bulk moduli, band gaps, cohesive energies, and 

jellium surface exchange-correlation energies. Our calculations show that this functional is consistently 

accurate for the properties considered. In particular, the TM functional is the most accurate semilocal 

density functional among those considered for both the lattice constants and cohesive energies, indicating 

its great potential utility in computational studies of the structure and energetics of solids. The TM 

functional also achieves excellent accuracy for jellium surface exchange-correlation energies. However, 

like all other semilocal functionals, the TM functional tends to underestimate band gaps, because it misses 

the functional derivative discontinuity 71 required for accurate band gap prediction. Nevertheless, the TM 

functional demonstrates very strong capability of distinguishing small-gap semiconductors from metals, 

as it predicts a zero band gap for only one of the 30 test semiconductors, which is the best result among 

all semilocal functionals considered.   

  The performance of the TM functional greatly benefits from (i) recovery of the correct slowly-

varying gradient expansion, the paradigm of condensed-matter physics, and (ii) slow increase of the 

enhancement factor with density gradient. The first property is very important for surface energy 

calculations, while the second is helpful in capturing the van der Waals interactions, 72–79 as demonstrated 

by the excellent performance of the TM functional for lattice constants (Table II) and cohesive energies 

(Table V). Recently, we have also assessed  80 the TM functional on diverse molecular properties and 

found that it has a similarly good accuracy for atoms and molecules as for solids. The balanced 

description of finite and extended systems by the TM functional makes it an attractive tool for studying 

new materials whose properties are yet unknown.               
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