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Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates.
The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The spectrum of
the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the
single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is
the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-
body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets
of low bond-dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and
the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible
combinations of these sets of matrices.

The interacting analogue of the Anderson insulator1,2 is
many-body localization as first suggested by a diagrammatic
calculation3,4. Significant recent interest has gone to under-
standing whether many-body localized (MBL) phases exist as
well as determining their properties5–18. Many-body localized
phases are believed to have a number of unusual properties in-
cluding: (a) perfect zero conductivity at finite temperature, (b)
failure to thermalize, and (c) a large number of local constants
of motion and corresponding conserved quantities. For MBL
systems with a thermally-driven (or more precisely energy-
density-driven) transitions these features persist all the way to
the critical energy density.

The MBL phase transition is unique in that the phase tran-
sition is dynamical and, therefore, not simply a feature of
the ground state wave-function or finite temperature density
matrix. Instead, the MBL phase transition is believed to be
caused by a qualitative change in the finite energy density
eigenstates of the Hamiltonian. In fact, there have been signif-
icant previous work showing that eigenstates of MBL phases
are special. These eigenstates have poisson statistics12 and in-
dividual eigenstates obey area laws (13,19–21. As a corollary
they can be represented by matrix product states6,22; by finite
dimensional MPO applied to a product state in the physical
basis; by a finite depth quantum circuits13; or by an RG pro-
cedure which truncates at finite flow time20,21,23.

Like MBL eigenstates, the many-body eigenstates in an An-
derson insulator have atypical properties. In addition, though,
they have a very simple form: a product state over localized
single-particle eigenstates. Importantly, this means that for an
L-site lattice, L single particle localized orbitals is sufficient
knowledge to generate every many-body eigenstate. From this
simple form, many of the properties of Anderson insulators
can be understood. This leads us to a simple question: Do the
many-body eigenstates of a MBL phase also share a simple
and concise form?

The primary result of this letter is to show that the matrix
product states which represent MBL eigenstates have a sim-
ple uniform structure over the whole spectrum. To manifest
this structure, we describe Anderson insulators and then show
a natural generalization of the Anderson insulator case for the
MBL case. Consider the specific example of one dimensional
disordered spin-1/2 chains. In the non-interacting case, we
can work in the basis of single particle eigenfunctions. More-

over, since all eigenfunctions are localized we can assign each
eigenfunction to a lattice site i. Hence, each state of the many-
body spectrum corresponds to a product state in which we as-
sign each site of the lattice either {ψi = 0, φi = 1} if the corre-
sponding single particle state is empty or {ψi = 1, φi = 0} if it
is occupied

ΨAnderson =
∏

i

(ψi|ei〉 + φi|gi〉). (1)

A natural extension of these product states to the interacting
but localized regime is obtained by replacing the the localized
single particle orbitals ei and gi by tensors of finite bond di-
mension Eσi

i, jk and Gσi
i, jk, where the indices j and k are dummy

indices that are summed over when contracting the tensors.
The index σi corresponds to the local spin state on site i,
which we will choose to be defined in the original Fock basis.
While these tensor states can encode some short distance en-
tanglement, just like product states, they cannot encode long
distance entanglement. We give evidence that in the MBL
phase all eigenstates can be compactly represented in the from

ΨMBL =
∏

i

(ψiE
σi
i + φiG

σi
i )|σi〉. (2)

Hence, the MBL ground state corresponds to the Matrix Prod-
uct State (i.e. DMRG wave function)

ΨMBL,000. . . =
∑
jkl...

Gσ1
1, jG

σ2
2, jkG

σ1
3,kl . . . |σ1σ2σ3 . . . 〉. (3)

Swapping Gσi
i, jk for Eσi

i, jk creates a local excitation of the sys-
tem.

ΨMBL,010. . . =
∑
jkl...

Gσ1
1, jE

σ2
2, jkG

σ1
3,kl . . . |σ1σ2σ3 . . . 〉. (4)

The full many-body spectrum can be obtained by composing
all combinations of Gσi

i, jk’s and Eσi
i, jk’s on all sites, thus map-

ping product states onto matrix product states. We show that
these matrices can be directly identified from the Matrix Prod-
uct Operator (MPO) derived from the unitary transformation
that diagonalizes the Hamiltonian of our MBL system. Re-
markably, we find strong numerical evidence that inside the
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FIG. 1. Diagram of (a) a matrix product state |ψ〉, (b) a matrix prod-
uct operator U, and (c) the operator product U†σ̂+

i U. The boxes
correspond to tensors and lines to tensor indices. Lines connecting
two boxes are indices to be contracted while dangling lines are exter-
nal indices. The matrix product state |ψ〉 “eats” the external indices
|σ1σ2σ3 . . . 〉 (these are the configurations of our spin-1/2 chain) and
“spits” out a complex number – the amplitude of that configuration.
Similarly, the matrix product operator “eats” two sets of external in-
dices – the “ket” set & the “bra” set – and “spits” out the value of the
corresponding matrix element.

MBL phases this MPO is efficiently representable: the typi-
cal bond dimension of the tensors Gσi

i, jk and Eσi
i, jk saturates at a

finite value even as the system size increases.
An introduction to Matrix Product States and Operators –

Here we review the essential aspects of MPS/MPO (for a more
in-depth review see, e.g., Ref. 24). A convenient way to depict
matrix product states and operators is shown in Fig. 1. For the
case of spin-1/2 chains, the external indices can take on two
values σi, χi ∈ {| ↑〉i, | ↓〉i}. On the other hand the internal
indices can span the range {1, . . . ,Di}, where Di is the “bond
dimension” for the bond between site i and i + 1. The value of
Di is a tuning parameter that controls how much entanglement
can be carried by the internal index linking neighboring sites.
To describe eigenstates of strongly disordered systems we al-
low each internal bond to have a different bond dimension as
dictated by the disorder realization.

To summarize, an MPS for an L-site chain is parametrized
by 2L matrices – two matrices per site M↑i,kiki+1

and M↓i,kiki+1
.

Analogously, an MPO contains four matrices for each site i:
O↑↑i,kiki+1

, O↑↓i,kiki+1
, O↓↑i,kiki+1

, and O↓↓i,kiki+1
.

A unitary operator U, which diagonalizes a Hamiltonian,
maps the eigenstates of the Hamiltonian to the product states
(i.e. bit strings of length L). Consider the action of the MPO
representing U on the MPS representing the product state |p〉.
The MPS has D = 1, thus the resulting MPS, U |p〉, simply
selects two of the four MPO matrices per site. Hence, all the
eigenstates of the Hamiltonian are encoded by matrix product
states generated from all combinations of the matrices O↓σi

i

and O↑σi
i . We then choose Gi and Ei to be O↓σi

i or O↑σi
i depend-

ing on whether the product state which maps to the ground
state has ↓ or ↑ on site i. Notice that all eigenstates of the sys-
tem are represented by 4L matrices (those that make up the
MPO). The key question that we address is whether the MPO
which represents the unitary operator can be represented by
matrices with a fixed bond dimension that is independent of
the system length L.

Small bond dimension MPO – The strategy that we employ
for testing whether MPOs can efficiently describe the unitary
transformation that takes product states to eigenstates consists
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FIG. 2. Saturation of the Bond Dimension D of the Matrix Product
Operator representing the unitary that diagonalizes the Hamiltonian
as a function of the Chain Length for a number of values of disorder
strength. D was measured on the middle bond. Points represent
numerical data (from 200 disorder realizations) and the solid lines
are fits (see text). The change of regime – saturating D vs. growing
D – corresponds to the transition from the localized to the delocalized
phase. Inset: Length ξ as a function of disorder strength, computed
using (1) the decay of couplings in the effective Hamiltonian Heff

and (2) the saturation of D [to match (1) and (2) we scaled ξHeff
→

8.7 ∗ ξHeff
]. Dashed line indicates maximum chain length (L = 12).

of three steps: (1) we construct the exact unitary transfor-
mation using exact diagonalization, (2) we identify a corre-
spondence between the exact eigenstates and product states
which maximally preserves locality, and (3) we compress the
transformation into a matrix product operator. We test this
approach on a spin 1/2 chain with the Hamiltonian

H =
∑
〈i, j〉

S i · S j +
∑

i

hiS z
i (5)

where hi is a random field chosen from a distribution hi ∈

[−∆,∆]. The location of the MBL transition in H, as a func-
tion of ∆, is still not fully established12,25. The current best
lower bound is at ∆ & 425. In our strategy, there is a clear
notion of optimality: the procedure that produces an MPO
with the smallest bond dimension. This hinges on correctly
identifying the spatial position of the excitations in each exact
eigenstate and matching these locations to the corresponding
product state. Finding the optimal matching is a numerically
challenging task and hence we use a heuristic procedure. The
bond dimensions we obtain are therefore an upper bound to
the best MPO bond dimensions.

To find the matching between the list of eigenvectors |e〉
and product states |p〉 we use the intuition that each eigen-
states of the strongly localized interacting system should have
a considerable overlap with its parent state – an eigenstate of
the non-interacting system3. In our case, the non-interacting
system corresponds to Hamiltonian (5) without the Heisen-
berg coupling, hence the parent states are the product states.
For the case of weak interactions (large ∆) this heuristic gives
a one-to-one and onto mapping f (|e〉) = |p〉 between eigen-
states and product states. However, generically, the heuristic
can map multiple eigenstates to the same product state – a sit-
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uation that requires further resolution.
For the generic case we construct the table M(|e〉, |p〉) =

|〈e|p〉|2 of overlaps between eigenstates and product states. A
one-to-one and onto mapping f (|e〉) = |p〉 is defined by se-
lecting one entry from each row of M(|e〉, |p〉) with the con-
straint that each column also has only one selection. To get
the best total overlap between eigenstates and product states
our goal becomes to maximize the sum of the selected entries∑

e M(|e〉, f (|e〉)). This maximization can be re-written as a
graph problem where product states and excited states repre-
sent nodes on two halves of a bipartite graph and their overlap
is a weighted edge between them. Our objective function then
reduces to finding the maximum weighted bipartite matching
in this graph. This problem is solved in O(n3) by the the Hun-
garian algorithm26.

Having performed the bipartite matching, we re-order the
columns of U so that the eigenstates appear in the same order
as the product states (which are represented by the rows of U).
Next, we perform a gauge fixing step – the eigenvectors that
we found have a random sign that we correct by flipping the
sign of each eigenvector such that all of the diagonal elements
of U are positive. Having encoded ‘locality’ into U, we com-
press it into an MPO following the standard prescription24.

The accuracy of our MPO is controlled by smallest singu-
lar values kept during the compression. In the MBL phase,
we find only few singular values above the cut-off and hence
the resulting MPO has a small bond dimension; while in the
ergodic, there are many more singular values above the cut-off

and hence the bond dimension of the resulting MPO is large.
Numerical Results – The main result of our manuscript is

depicted in Fig. 2. In this figure, we plot the bond dimension
D of the MPO representing the unitary that diagonalizes the
Hamiltonian (5) as a function of system size L for various dis-
order strengths ∆27. We have averaged the log4[D] over 200
disorder realizations. As we are averaging the logarithm of
the bond dimension, rare regions do not have a disproportion-
ate affect on the average. From the figure, we observe that for
systems with weak disorder (∆ . 3) the logarithm of the bond
dimension grows linearly with system size, while for those
with strong disorder (∆ & 7.5) the bond dimension has satu-
rated by the time the chain length has reached L = 12. For
disorder strengths 3 . ∆ . 7.5 we do not have access to long
enough chains to make a qualitative statement.

We can, however, quantify the saturation effect by fit-
ting the D vs. L curves with a generic saturation function:
log4[D(L)] = a tanh(L/ξ) where a and ξ are the fitting pa-
rameters. In the inset of Fig. 2 we plot the saturation length
scale ξ as a function of the bond dimension. We observe that
for systems with ∆ & 5 the saturation length-scale is indeed
shorter than the system size. As the disorder becomes weaker,
ξ quickly surpasses the system size (at which point we can no
longer accurately measure it), indicating the end of the MBL
phase. It is important to note that the supremum over the bond
dimensions of all eigenstates is a lower bound on the bond di-
mension of U. Therefore it is not surprising that the lengths
scales and bond dimensions we find are longer than those ob-
tained for typical eigenstates13.

An alternative way to compute ξ is using the effective

Hamiltonian of reference10. In the product basis, the Hamil-
tonian (5) acquires the form

Heff =
∑

i

Jiσ
z
i +
∑
i, j

Ji, jσ
z
iσ

z
j +
∑
i, j,k

Ji, j,kσ
z
iσ

z
jσ

z
k + . . . . (6)

We generate Heff by solving Ax = b for x where x =

{1, h1, h2, ..., J12, J13, ....} and A is the matrix that relates this
set of couplings to the exact eigenvalues via the l-bit config-
urations. In the MBL phase all couplings Ji, j, Ji, j,k, . . . must
decay as a function of the separation |i− j|. We use this fact to
our advantage to extract ξ from the decay of Ji, j. We find that,
up to a fixed rescaling by the factor 8.7, the two definitions of
ξ seem to match [see Inset Fig 2].

To summarize, our main result is that for systems in the
MBL phase the full spectrum of eigenvectors can be described
using an MPO of low bond dimensions. This observation dic-
tates the structure of the many-body eigenstates. The MPO
representation quantifies the notion of localized excitations
and therefore dictates such properties as lack of thermaliza-
tion, entanglement, emergent integrability, etc.

To understand the nature of the break down of the MPO
representation, we look at the distribution of bond dimensions
at fixed disorder strength Fig. 3(a). In the strongly localized
matter, we find that the distribution of bond dimensions tends
to be strongly peaked around D = 1 (the minimum possi-
ble value for D). As the disorder strength decreases, we ob-
serve that (1) the peak in the distributions is starting to shift
to small but finite values of D associated with a growing lo-
calization length, and (2) the emergence of a power law tail in
the distributions [see Fig. 3(b)]. This power law tail signifies
the onset of Griffiths physics: the system contains exponen-
tially rare regions of the delocalized phase that give an expo-
nentially strong contribution to the bond dimension. Griffiths
physics have been seen in similar quantities such as the en-
tanglement of individual eigenstates by ref.11,13,15. As the dis-
order strength decreases the Griffith regions become less rare.
At the transition point we see a drastic change in the distribu-
tion of D as it becomes extremely broad. Similar broadening
has been observed in entanglement entropies of single eigen-
states15. On the delocalized side of the transition the distri-
bution again becomes sharply peaked, but this time around a
system size dependent value. The broadening of the distribu-
tion at the transition point indicates that the mechanism that
drives the delocalization transition is the formation of reso-
nances between the rare regions.

Discussion – The fact that the unitary that diagonalizes the
Hamiltonian can be compressed into an MPO of small bond
dimension has direct consequences for the properties of the
MBL phase. We begin by noting that the typical entanglement
entropy of any of the eigenstates is finite as it is limited by
log[D] which contradicts ETH. Within our framework we can
rule out thermalization without appealing to ETH. Consider a
local operator such as Uσ+

i U†. Note this is the l-bit raising
operator10 in the MPO language. The application of the MPO
composed from UU† and the MPO composed from Uσ+

i U†

differ only on a single site [see Fig. 1(c)]. As the matrix on
this site has a bond dimension which doesn’t grow with sys-
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FIG. 3. The Probability Distribution Function (PDF) of the bond dimension across the center bond of the spin chain. (a) PDF for 12-site
chains at various disorder strengths. For weak disorder, ∆ = 1, the PDF is clustered around the maximal allowed value D = 46 = 4096. Near
the many-body localization-delocalization transition, ∆ = 3, the PDF becomes spread over a wide range of bond dimensions. In the localized
phase, the PDF becomes clustered around the D = 4ξ with a power law tail extending to larger bond dimensions. (b) PDF for chains of various
length and disorder strengths, power laws can be observed for ∆ & 3.

tem size, it will connect single eigenstates to a sub-extensive
number of eigenstates all of which must have similar matrices
far from the operator application (similar arguments that uti-
lize the locality of the unitary as opposed to the G/E structure
of the eigenstates have been presented in Refs. 10 and 13).
This fact tells us that (1) there is no thermalization as a lo-
cal kick to the system remains local; (2) there is no electrical
conductivity as an excitation injected into the system at site i
remains put for very long times; and (3) there is no level re-
pulsion as excitations from spatially distant operators σ+

i and
σ+

j have no overlap.

The MPO language lets us explicitly write the emergent lo-
cal constants of motion. A constant of motion is a hermitian
operator which commutes with the Hamiltonian. Consider op-
erators of the form

ρproduct = I1 ⊗ . . . Ik−1 ⊗ σ
z
k ⊗ Ik+1 . . . In =

∑
p

αp|p〉〈p| (7)

where |p〉 is a product state over all the sites. Applying the
MPO U to this operator gives us UρproductU† =

∑
i αi|ei〉〈ei|

where |ei〉 are eigenstates of the many-body system. Operators
of this form commute with the Hamiltonian and consequently
are constants of motion. Mirroring our previous argument,
as UρproductU† differ from UU† by a single matrix they have
an exponential weak effect on distant parts of the system and
hence the constants of motion we’ve written down are local.

Finally we remark that the application of MPOs as a vari-
ational basis for diagonalizing many-body localized Hamilto-
nians has not escaped our notice. There has been considerable
work on using MPS as a variational basis for individual eigen-
states28–32 and the extension to MPOs is natural. Indeed, our
numerics indicates that in the localized phase we can repre-
sent the entire spectrum of eigenstates of the Hamiltonian in
a compact form using an MPO of low bond dimension. Due
to the compact nature of the MPO representation it should be

possible to diagonalize the Hamiltonian of rather large sys-
tems, significantly beyond the limits of exact diagonalization.
The Griffiths effects will control the success of this endeavor.
Specifically, each disorder realization will have rare regions
of lower than typical disorder that will require an exponen-
tially large bond dimension. The probability to find a rare
region of length l in a chain of length L scales as L exp(−l/ξ).
Therefore, with probability 1 a chain will contain a rare re-
gion that requires D ∝ Lξ, which is a much softer constraint
than the typical exponential scaling for exact diagonalization.
We point out that having the complete spectrum will allow
for efficient evaluation of finite energy density and dynamical
properties of these systems. In fact, during the refereeing pro-
cess of this paper two groups have made progress on the this
program of variationally optimizing MPOs33,34.

In this work, we have focused on elucidating a structure
for the entire spectrum of eigenstates that is analogous to the
structure that is seen in Anderson localization. We have ad-
ditionally seen that the structure of these eigenstate gives us a
way to understand the properties of the MBL phase. Although
we have focused here primarily on one-dimensional system,
there is every reason to believe that the natural generalization
where PEPS replace MPS will hold for higher dimensions.
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Note added: during the preparation of this manuscript we
became aware of a complementary work Ref.35.
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9 M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 111,

127201 (2013).
10 D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B 90,

174202 (2014).
11 K. Agarwal, S. Gopalakrishnan, M. Knap, M. Mueller, and

E. Demler, Phys. Rev. Lett. 114, 160401 (2015).
12 A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
13 B. Bauer and C. Nayak, J. Stat. Mech. 2013, P09005 (2013).
14 S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev. B

87, 134202 (2013).
15 J. A. Kjall, J. H. Bardarson, and F. Pollmann, Phys. Rev. Lett.

113, 107204 (2014).
16 J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev. Lett.

109, 017202 (2012).
17 R. Vasseur, S. Parameswaran, and J. Moore, Phys. Rev. B 91,

140202 (2015).
18 Y. Bar Lev, G. Cohen, and D. R. Reichman, Phys. Rev. Lett. 114,

100601 (2015).
19 B. Swingle, arXiv:1307.0507 (2013).
20 R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204 (2013).

21 R. Vosk and E. Altman, Phys. Rev. Lett. 112, 217204 (2014).
22 M. Friesdorf, A. H. Werner, W. Brown, V. B. Scholz, and J. Eisert,

Phys. Rev. Lett. 114, 170505 (2015).
23 D. Pekker, G. Refael, E. Altman, E. Demler, and V. Oganesyan,

Phys. Rev. X 4, 011052 (2014).
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