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We present a computationally efficient approach to perform large-scale all-electron density func-
tional theory calculations by enriching the classical finite element basis with compactly supported
atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham
(KS) problem for single atoms. We term these numerical basis functions as enrichment functions,
and the resultant basis as the enriched finite element basis. The compact support for the enrich-
ment functions is obtained by using smooth cutoff functions, which enhances the conditioning and
maintains the locality of the enriched finite element basis. The integrals involved in the evaluation
of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed
using an adaptive quadrature grid that is constructed based on the characteristics of enrichment
functions. Further, we propose an efficient scheme to invert the overlap matrix by using a block-wise
matrix inversion in conjunction with special reduced-order quadrature rules, which is required to
transform the discrete Kohn-Sham problem to a standard eigenvalue problem. Finally, we solve the
resulting standard eigenvalue problem, in each self-consistent field iteration, by using a Chebyshev
polynomial based filtering technique to compute the relevant eigenspectrum. We demonstrate the
accuracy, efficiency and parallel scalability of the proposed method on semiconducting and heavy-
metallic systems of various sizes, with the largest system containing 8694 electrons. We obtain
accuracies in the ground-state energies that are ∼ 1 mHa with reference ground-state energies em-
ploying classical finite element as well as gaussian basis sets. Using the proposed formulation based
on enriched finite element basis, for accuracies commensurate with chemical accuracy, we observe a
staggering 50−300 fold reduction in the overall computational time when compared to classical finite
element basis. Further, we find a significant outperformance by the enriched finite element basis
when compared to the gaussian basis for the modest system sizes where we obtained convergence
with gaussian basis. We also observe good parallel scalability of the numerical implementation up to
384 processors for a representative benchmark system comprising of 280-atom silicon nano-cluster.

I. INTRODUCTION

Kohn-Sham Density Functional Theory (DFT), enjoy-
ing the distinction of the most widely used electronic
structure method for over four decades, has immensely
contributed to our understanding of a wide range of ma-
terials properties. It relies on the Hohenberg-Kohn the-
orem1 and the Kohn-Sham anstaz 2 to reduce the many-
body Schrödinger equation to an effective single elec-
tron problem, thereby, making predictions on materi-
als properties computationally tractable. On the other
hand, the pseudopotential approximation3–6 has played
an important role in electronic structure method devel-
opment, which reduces the electronic structure calcula-
tion to the evaluation of smooth pseudo-wavefunctions
corresponding to the valence electrons of a Hamiltonian
constructed from a smooth effective external potential,
namely the pseudopotential. The construction of a pseu-
dopotential, which is non-unique, entails matching the
pseudo-wavefunctions to the corresponding all-electron
wavefunctions outside the user defined atomic core. In
the past few decades, pseudopotentials have seen a rapid
evolution from norm-conserving potentials7–10 to ultra-
soft potentials11 to the state-of-the-art projector aug-
mented wave (PAW)12 method and have proven to be
successful in predicting bulk, mechanical, electrical, mag-
netic, and chemical properties for a wide range of mate-
rials.

However, despite their success, pseudopotentials are
often sensitive to the choice of core size used in their con-
struction and tend to oversimplify the treatment of core
electrons as chemically inert for various systems and ex-
ternal conditions. For example, in systems under high
pressure where the core and valence wavefunctions show
increasing overlap with pressure, pseudopotentials tend
to underpredict their phase transition pressures13–15; in
systems at high temperature, where the contribution of
core electrons to various thermodynamic potentials is
non-negligible, pseudopotentials provide an inaccurate
description of the equation of state16; in transition met-
als, where the penultimate d and f orbitals are not tightly
bound, non-inclusion of these orbitals as valence elec-
trons oftentimes lead to inaccurate bulk property predic-
tion. More pronounced inaccuracies and sensitivity to
core sizes are observed in prediction of ionization poten-
tials17, magnetizatibility18, spectroscopic properties19,20

of heavier atoms wherein scalar relativistic pseudopoten-
tials are widely employed, and in prediction of band-gap
and excited state properties21. Thus, all-electron calcu-
lations are necessary for an accurate and more reliable
description of such systems and conditions.
The earliest and the most commonly employed method

for all-electron calculations involves the use of atomic-
orbital-type basis sets22–30, wherein atom-specific basis,
either analytic or numerical, are used with only a few
basis functions per atom. However, owing to the incom-
pleteness of the basis, systematic convergence for all ma-
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terials systems remains a concern. Moreover, in many
numerical implementations, their applicability is largely
limited to isolated systems and are not easily amenable
to arbitrary boundary conditions. Furthermore, the non-
locality of the basis substantially limits parallel scalabil-
ity of their numerical implementations. Among the fam-
ily of complete basis sets, the plane-wave basis, owing to
the straightforward evaluation of the Coulomb interac-
tions in Fourier space and the exponential convergence
afforded by the basis, has been the most popular choice
for pseudopotential calculations. However, its applicabil-
ity to all-electron calculations is greatly hindered by its
lack of adaptive spatial resolution, as any computation-
ally efficient basis for all-electron calculations warrants
finer resolution closer to nuclei, where the wavefunctions
are rapidly oscillating, and coarser resolution elsewhere.
This shortcoming has been, to a large extent, alleviated
through the use of various augmentation schemes such
as Augmented Plane-wave (APW)31,32, Linearized Aug-
mented Plane-wave (LAPW)33–35 and APW+lo36–38. All
these methods involve the description of the wavefunc-
tions in terms of products of radial functions and spheri-
cal harmonics inside muffin-tins (MTs) surrounding each
atom, and in terms of plane-waves in the interstitial re-
gions between atoms. Although these schemes attain
adaptive spatial resolution, the basis functions within the
MTs depend on the choice of trial energy parameters,
typically based on atomic energies, for each azimuthal
(l) quantum number. Owing to the lack of one-to-one
correspondence between the Kohn-Sham eigenvalues and
the trial energy parameters, the quality of the basis is
sensitive to the choice trial energy parameters, especially
in systems where the chosen l quantum number based
trial energies fail to describe all states with the same
l-character, and in systems where the occupied bands
show substantial deviation from their atomic counter-
parts38. Additionally, certain notable disadvantages of
plane-waves such as their restriction to periodic bound-
ary conditions, the highly non-local communication as-
sociated with Fast Fourier Transform (FFT), also persist
in these augmentation schemes.

Blöchl, in his PAW formulation12, generalized the
notion of APW/LAPW and the pseudopotential ap-
proach to construct the all-electron orbitals through

a linear transformation, T̂ , of the smoothly varying
pseudo orbitals, thus providing a balance between ac-
curacy and computational efficiency. However, typically,
PAW is implemented within the frozen-core approxima-
tion, wherein, although the oscillatory behavior of the va-
lence orbitals near the atomic centers is retrieved through

T̂ acting on the pseudo valence orbitals, the core states
are treated as frozen and do not feature within the self-
consistent field iteration. One can, in principle, relax
the core states within the PAW framework, however,
this involves achieving simultaneous self-consistency in
core states, valence partial waves and the effective po-
tential, which can severely affect the computational effi-
ciency otherwise afforded by frozen-core approximation.

Marsman et. al39 presented a computationally efficient
extension of PAW beyond the frozen-core approxima-
tion, wherein, first, the core states are updated self-
consistently within a fixed valence charge density and
a spherical approximation for the one-center potential.
Subsequently, new valence partial waves are evaluated.
However, as noted in that work, the spherical approxi-
mation of the one-center potential used in the core-state
relaxation poses limitations in terms of accounting for
core polarization effects and core-core interactions from
neighboring atoms; capturing changes in valence-core in-
teractions outside the augmentation spheres; preserving
orthogonality of the valence partial waves with the core
states under situations where the core charge density
spills outside the augmentation spheres. Additionally,
the construction of the valence all-electron and pseudo

partial waves that feed into T̂ , while using the actual
one-center potential (crystal potential) in their construc-
tion, involves the use of trial energy parameters (analo-
gous to APW/LAPW), thereby introducing sensitivity to
the choice of these trial energies. Therefore, to account
for these notable limitations, it is desirable to treat the
core electrons on equal footing with the valence electrons
while at the same time minimize the huge computational
expense incurred by such explicit treatment of core elec-
trons.

The limitations of plane-waves have, in the past two
decades, led to the development of various real-space
techniques for DFT calculations, of which the Finite Dif-
ference (FD) method40,41 remains the most prominent.
The FD method can handle arbitrary boundary condi-
tions, and exhibit improved parallel scalability in com-
parison to plane-wave basis. However, the FD method
fails to retain the variational convergence of plane-waves.
Moreover, a lack of basis in the FD method makes an ac-
curate treatment of singular potentials difficult, thereby,
limiting its utility for all-electron calculations. Finite el-
ement basis42,43, on the other hand, being a local piece-
wise polynomial basis, retains the variational property
of the plane-waves, and, in addition, has other desir-
able features such as locality of the basis that affords
good parallel scalability, being easily amenable to adap-
tive spatial resolution, and the ease of handling arbitrary
boundary conditions. While most studies employing the
finite element basis in DFT calculations44–53 have shown
its usefulness in pseudopotential calculations, some of
the works44,53–57 have also demonstrated its promise for
all-electron calculations. In particular, the work of Mo-
tamarri et. al53 has combined the use of higher-order
spectral finite elements along with Chebyshev polynomial
based filtering technique to develop an efficient scheme
for the computation of the occupied eigenstates. As de-
tailed in the work, the aforementioned method outper-
forms the plane-wave basis in pseudopotential calcula-
tions for the benchmark systems considered. However,
in the context of all-electron calculations, it remains an
order of magnitude slower in comparison to the gaus-
sian basis. This relatively unsatisfactory performance of
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the finite element basis in all-electron calculations was
attributed to the requirement of large number of basis
functions (O(105) per atom, even for light atoms) as well
as the high polynomial degree required in the Chebyshev
filter (O(103)) to accurately compute the occupied eigen-
states. To elaborate, one requires a highly refined finite
element mesh closer to the atomic cores in order to cap-
ture the sharp variations in the electronic wavefunctions
and the singularity of the nuclear potential. This refine-
ment, in turn, leads to an increase in the spectral width
of the discrete Kohn-Sham Hamiltonian, thereby, requir-
ing a very high polynomial degree Chebsyhev filter to
compute the occupied eigenstates. This need for a high
polynomial degree Chebyshev filter in all-electron cal-
culations also negatively effects the computational com-
plexity realized through reduced order scaling methods.
As detailed in a recent work57, which combines Cheby-
shev filtered subspace projection with localization and
Fermi-operator expansion, while pseudopotential calcula-
tions exhibited linear scaling for materials systems with a
band-gap and subquadratic scaling for materials systems
without a band gap, the overall scaling for all-electron
calculations was close to quadratic even for materials
with a band-gap.

In order to alleviate the aforementioned limitations of
finite element basis in all-electron calculations, we pro-
pose employing a mixed basis comprising of finite element
basis functions and compactly supported atomic-orbital-
type basis functions. In particular, the atomic-orbital-
type functions capture the essential features of the elec-
tronic fields near the nuclei, thereby, mitigating the need
for high mesh refinement around atoms, while the finite
element basis functions capture the smooth parts of the
wavefunction away from the nuclei and also extend com-
pleteness to the basis. In this work, we formalize this
idea of a mixed basis to develop, what we refer to as,
the enriched finite element basis. The enriched finite el-
ement basis is generated by augmenting the piecewise
continuous Lagrange polynomials in finite element basis,
henceforth described as the classical finite element basis,
with compactly supported atom-centered numerical ba-
sis functions that are obtained from the solutions of the
Kohn-Sham problem (Kohn-Sham orbitals and electro-
static potentials) for single atoms. We term these atom-
centered numerical basis functions as enrichment func-
tions. We note that the proposed enriched finite element
basis differs from other augmentation schemes in plane-
waves like APW, LAPW, and APW+lo in the following
ways: (i) unlike the plane-wave augmentation schemes,
the enriched finite element basis does not partition the
space into muffin tins (MTs) and interstitials, thereby
eliminating the need of any matching or smoothness con-
straint for the augmenting basis functions; (ii) as opposed
to the plane-wave augmentation schemes, the enrichment
functions of our proposed method do not have any trial
energy parameter dependence; and (iii) unlike the plane-
wave augmentation scheme, wherein the basis functions
inside the MTs needs to be computed for every mate-

rials system separately, the enrichment functions, being
atomic solutions to the electronic fields, are independent
of the materials system and are computed a priori.

The key ideas in the proposed method involve: (i)
pre-computing the enrichment functions by solving ra-
dial Kohn-Sham equations and employing smooth cutoff
functions to ensure the locality as well as control the
conditioning of the enriched finite element basis; (ii) em-
ploying a divide and conquer strategy to construct an
adaptive quadrature grid based on the nature of enrich-
ment functions, so as to accurately and efficiently eval-
uate the integrals involving enrichment functions; (iii)
implementing an efficient scheme to evaluate the inverse
of the overlap matrix corresponding to the enriched fi-
nite element basis by using block-wise matrix inversion
in conjunction with Gauss-Lobatto-Legendre reduced or-
der quadrature rules; and (iv) in each self-consistent field
iteration, using a Chebyshev polynomial based filter to
compute the space spanned by the occupied eigenstates,
and solving the Kohn-Sham eigenvalue problem by pro-
jecting the problem onto this Chebyshev-filtered space.
We have implemented the proposed method in a paral-
lel computing framework using the Message Passing In-
terface (MPI) to enable large-scale all-electron calcula-
tions. To begin with, we demonstrate optimal conver-
gence rates of the ground-state energies with respect to
enriched finite element basis. Further, we investigate the
accuracy and performance of the proposed method on
benchmark semi-conducting (silicon nano-clusters) and
heavy-metallic (gold nano-clusters) systems of various
sizes, with the largest system containing 8694 electrons.
The proposed formulation using the enriched finite ele-
ment basis obtains close to 1mHa accuracy in per-atom
ground-state energies of the benchmark systems when
compared to the reference ground-state energies obtained
from classical finite element basis or gaussian basis cal-
culations. Furthermore, the proposed method achieves a
staggering 50− 300 fold speedup relative to the classical
finite element basis, and a significant speedup relative to
the gaussian basis even for modest sized systems. Lastly,
we observe good parallel efficiency of our implementation
up to 384 processors for a silicon nano-cluster containing
3920 electrons discretized using ∼ 4 million basis func-
tions.

The rest of the paper is structured as follows. In Sec-
tion II we recall the real-space formulation of the Kohn-
Sham DFT problem. Subsequently, we briefly introduce
the classical finite element discretization in the context of
Kohn-Sham DFT problem in Section III. Section IV de-
tails the proposed enriched finite element discretization
for the Kohn-Sham eigenvalue problem, and section V
discusses the key ideas based on Chebyshev polynomial
filtering employed in the self-consistent field iteration
(SCF) solution procedure. Section VI presents the con-
vergence, accuracy, performance and parallel scalability
of the enriched finite element basis. Finally, we summa-
rize the findings from the present work and outline the
future scope in Section VII.
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II. REAL-SPACE DFT FORMULATION

We recall that the ground-state properties of a materi-
als system in the Kohn-Sham DFT framework are com-
puted by solving the non-linear Kohn-Sham eigenvalue
problem2, given by

(
−
1

2
∇2 + Veff(ρ,R)

)
ψi = ǫiψi, i = 1, 2, ... , (1)

where ǫi and ψi denote the eigevalues and the corre-
sponding eigenfunctions of the Kohn-Sham Hamiltonian,
respectively, ρ is the electron charge density of the non-
interacting system, R = {R1,R2, . . . ,RNa} is the col-
lective representation for all nuclear positions in the sys-
tem, and Veff(ρ,R) is the effective single-electron Kohn-
Sham potential. In the present work, we limit our dis-
cussion to a non-periodic setting and spin-independent
Hamiltonian. However, we note that all the ideas dis-
cussed subsequently can be generalized, in a straightfor-
ward manner, to periodic48 or semi-periodic systems and
spin-dependent Hamiltonians58.

The effective single-electron potential, Veff(ρ,R), in
Eq. 1 is given by

Veff(ρ,R) = Vxc(ρ) + VH(ρ) + Vext(x,R) . (2)

Here, Vxc(ρ) = δExc

δρ
is the exchange-correlation po-

tential and is defined as the variational derivative of
the exchange-correlation energy, Exc, with respect to ρ.
Physically, Vxc(ρ) is the mean-field potential that mod-
els the many-body interactions between electrons. In the
present work, we have used the local density approx-
imation (LDA)58 for the exchange-correlation, specifi-
cally, the Ceperley-Alder59 form. The Hartree potential,
VH(ρ), and the external potential, Vext(x,R), in Eq. 2 are
the classical electrostatic potentials corresponding to the
electron charge density and nuclear charges, respectively,
and are given by

VH(ρ) =

∫
ρ(x′)

|x− x′|
dx′ , (3)

Vext(x,R) = −

Na∑

I=1

ZI

|x−RI |
, (4)

where ZI denotes the atomic number of the Ith nucleus
in the system.

We note that both the electrostatic potentials—
Hartree (VH) and external potential (Vext)—are extended
in real space. However, noting that the 1

|r| kernel in

these extended interactions is the Green’s function of the
Laplace operator, one can reformulate their evaluation as
solutions of the Poisson problems, given by

−
1

4π
∇2VH(x) = ρ(x) , (5a)

−
1

4π
∇2Vext(x,R) = b(x,R) . (5b)

In the above Eq. 5b, we define b(x,R) =

−
∑Na
I ZI δ̃(x,RI), where δ̃(x,RI) is a Dirac dis-

tribution centered at RI . We refer to previous works on
finite element based DFT calculations46,48,50,53,60 for a
comprehensive treatment of the local reformulation of
electrostatic potentials into Poisson problems.

The electron charge density, the central quantity of
interest in DFT, is given in terms of the eigenfunctions
in Eq. 1 as:

ρ(x) = 2
∑

i

f(ǫi, µ)|ψi(x)|
2 , (6)

where f(ǫ, µ) is the orbital occupancy function and µ
is the Fermi energy. Typically, in DFT calculations the
orbital occupancy function f is chosen as the Fermi-Dirac
distribution61,62, given by

f(ǫ, µ) =
1

1 + exp( ǫ−µ
kBT

)
, (7)

where kB denotes the Boltzman constant and T is the
temperature used for smearing the orbital occupancy
function. The Fermi energy, µ, is evaluated from the
constraint on the total number of electrons (Ne) in the
system, given by

∫
ρ(x) dx = 2

∑

i

f(ǫi, µ) = Ne . (8)

The choice of a Fermi-Dirac distribution is made over a
Heavyside function to avoid charge sloshing, wherein sys-
tems with degenerate energy levels at Fermi energy can
exhibit large spatial deviation in electron charge density
with SCF iterations on the account of different degener-
ate orbitals being occupied at different SCF iterations.

Finally, upon solving Eqs. 1, 6 and 8 self-consistently,
the ground-state energy of the materials system is com-
puted as

Etot = Eband+Exc−

∫
Vxc(ρ)ρ dx−

1

2

∫
ρVH(ρ) dx+EZZ ,

(9)
where Eband is the band energy, given by

Eband = 2
∑

i

f(ǫi, µ)ǫi , (10)

and EZZ is the nuclear-nuclear repulsion, given by

EZZ =
1

2

Na∑

I,J=1
I 6=J

ZIZJ

|RI −RJ |
. (11)
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III. CLASSICAL FINITE ELEMENT METHOD

In this section, we briefly discuss the discretization of
the Kohn-Sham eigenvalue problem using the classical fi-
nite element basis. In particular, we comment on the use-
fulness of higher-order spectral finite elements, employed
in this work, which in conjunction with the reduced order
Gauss-Lobatto-Legendre (GLL) quadrature rule enables
an efficient inversion of the overlap matrix of the classical
finite element basis functions.

A. Classical finite element discretization

In the finite element method, the spatial domain of
interest is discretized into subdomains called finite ele-
ments using a finite element mesh. The finite element
basis is constructed from piecewise polynomial functions
that have a compact support on the finite elements, thus
rendering locality to these basis functions. We note that
there is an abundance of choice in terms of the form and
order of the polynomial functions that can be used in con-
structing the finite element basis, and we refer to43,63 for
a comprehensive discourse on the subject. Henceforth,
we refer to the standard notion of finite element basis
as the classical finite element basis in order to differen-
tiate from the proposed enriched finite element basis in
section IV, and refer to the corresponding discrete for-
mulation as the classical finite element discretization.
Let Xh denote the finite element subspace of dimen-

sion nh constructed from a finite element mesh with a
characteristic mesh-size h. Let ψhi and φh denote the
classical finite element discretized fields corresponding to
the Kohn-Sham orbitals and the electrostatic potential
(generically representing both Hartree and external po-
tential), respectively, that are expressed as

ψhi (x) =

nh∑

j=1

NC
j (x)ψCi,j i = 1, 2, . . . , (12a)

φh(x) =

nh∑

j=1

NC
j (x)φCj . (12b)

The superscript C, in the above expressions and else-
where in the article, is used to indicate the discretization
based on classical finite element basis. Here NC

j : 1 ≤
j ≤ nh denote the classical finite element basis functions
spanning Xh, and ψ

C
i,j and φCj are the coefficients corre-

sponding to j-th basis function (NC
j ) in the expansion of

the i-th Kohn-Sham orbital and electrostatic potential,
respectively.
Using the classical finite element discretization in

Eq. 12a, the Kohn-Sham eigenvalue problem in Eq. 1
reduces to the following discrete form,

H
CΨCi = ǫCi M

CΨCi , (13)

where HC denotes the discrete Kohn-Sham Hamiltonian,
M

C denotes the overlap matrix of the classical finite
element basis, ǫCi denotes the i-th discrete Kohn-Sham
eigenvalue, and ΨCi denotes the corresponding eigenvec-
tor containing the expansion coefficients ψCi,j . For a non-
periodic problem defined on a domain Ω with homoge-
neous Dirichlet boundary conditions, the discrete Hamil-
tonian matrix HC

jk is given by

HC
jk =

1

2

∫

Ω

∇NC
j (x).∇NC

k (x) dx +

∫

Ω

V heff(x,R)NC
j (x)NC

k (x) dx .

(14)

Although the above expression is for a non-periodic prob-
lem, it can be easily extended to a periodic problem
on a unit cell using the Bloch theorem48. We note
that owing to the non-orthogonality of the classical fi-
nite element basis, the overlap matrix M

C , defined by
MC
jk =

∫
Ω
NC
j (x)NC

k (x) dx, is not an identity matrix,
thereby, resulting in a generalized eigenvalue problem.
However, utilizing the symmetric positive definiteness,
and hence the invertibility of MC , we can transform the
generalized eigenvalue problem in Eq. 13 to a standard
eigenvalue problem, given by

(MC)
−1

H
CΨCi = ǫCi Ψ

C
i . (15)

We remark that this transformation of the generalized
eigenvalue problem to a standard eigenvalue problem is
essential for the use of Chebyshev polynomial based ac-
celeration technique to compute the occupied eigenspace
(to be discussed in the Section V). Further, we note
that this transformation to a standard eigenvalue prob-
lem relies on computationally efficient methods for com-

puting (MC)
−1

, which forms the basis for our use of spec-
tral finite elements along with Gauss-Lobatto-Legendre
quadrature rule, as will be discussed in Section III B.
Turning to the Poisson problems in Eq. 5, and using

the discretization in Eq. 12b, we obtain the following
system of linear equations,

A
CΦC = b

C , (16)

where A
C represents the Laplace operator discretized in

the classical finite element basis that is given by

ACjk =
1

4π

∫

Ω

∇NC
j (x).∇NC

k (x) dx , (17)

ΦC is the electrostatic potential vector containing the
expansion coefficients φCj , and b

C , the forcing vector, is
given by

bCi =

∫

Ω

g(x)NC
i (x) dx , (18)

where g(x) = ρ(x) or g(x) = b(x,R) for the Hartree and
external potential, respectively.
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B. Spectral finite elements

As opposed to conventional classical finite element ba-
sis, which is typically constructed from a tensor product
of Lagrange polynomials interpolated through equidis-
tant nodal points in an element, spectral finite ele-
ment basis employ a distribution of nodes obtained from
the roots of the derivative of Legendre polynomials or
the Chebyshev polynomials64. In the present work, we
employ the Gauss-Lobatto-Legendre node distribution,
where the nodes are located at the roots of the deriva-
tive of the Legendre polynomial and the boundary points.
The resulting spectral finite element basis has been shown
to provide better conditioning with increasing polynomial
degree64 and has been effective for electronic structure
calculations using higher-order finite element discretiza-
tion53,60. However, the major advantage of this spectral
finite element basis is realized when it is used in con-
junction with Gauss-Lobatto-Legendre (GLL) quadra-
ture rule65 for evaluation of the integrals arising in the
overlap matrix, wherein the quadrature points are co-
incident with the nodal points in the spectral finite el-
ement. Such a combination renders the overlap matrix
M

C in the discrete Kohn-Sham eigenvalue problem diag-
onal, thereby making the transformation of the general-
ized eigenvalue problem in Eq. 13 to the standard eigen-
value problem in Eq. 15 to be trivial. We note that while
an n point rule in the conventional Gauss quadrature rule
integrates polynomials exactly up to degree 2n − 1, an
n point GLL quadrature rule integrates polynomials ex-
actly only up to degree 2n−3. Thus, we employ the GLL
quadrature rule only in the construction ofMC , while the
more accurate Gauss quadrature rule is used for all other
integrals featuring in the Kohn-Sham eigenvalue problem
as well as the Poisson problems for the electrostatic po-
tentials. We refer to Motamarri et. al53 for a discussion
on the accuracy and sufficiency of GLL quadrature in
the evaluation of overlap matrix M

C . Since we employ
spectral finite elements all throughout the present work,
any reference to classical finite elements, henceforth, cor-
responds to spectral finite elements.

IV. ENRICHED FINITE ELEMENT METHOD

In this section, we first discuss the proposed enriched
finite element discretization for the Kohn-Sham eigen-
value problem. Then, we present various numerical and
algorithmic strategies for efficient use of the enriched fi-
nite element basis.

A. Enriched finite element discretization

In enriched finite element discretization we augment
the classical finite element basis by appending additional
atom-centered basis functions called enrichment func-
tions. We write the enriched finite element discretization

for the Kohn-Sham orbitals, ψhi , and the electrostatic
potentials (both Hartree and external potential), φh, as
follows:

ψhi (x) =

nh∑

j=1

NC
j (x)ψCi,j

︸ ︷︷ ︸
Classical

+

Na∑

I=1

nI∑

k=1

N
E,ψ
k,I (x,RI)ψ

E
i,k,I

︸ ︷︷ ︸
Enriched

,

(19a)

φh(x) =

nh∑

j=1

NC
j (x)φCj

︸ ︷︷ ︸
Classical

+

Na∑

I=1

N
E,φ
I (x,RI)φ

E
I

︸ ︷︷ ︸
Enriched

. (19b)

In the above expressions, the superscripts C and E are
used to distinguish between classical and enriched com-
ponents, respectively. As with the classical finite element
discretization, NC

j denotes the j-th classical finite ele-

ment basis, and ψCi,j and φ
C
j are the expansion coefficients

corresponding to NC
j for the i-th Kohn-Sham orbital and

the electrostatic potential, respectively. In addition, we

have the enrichment functions NE,ψ
k,I and N

E,φ
I for the

Kohn-Sham orbitals and the electrostatic potentials, re-
spectively, each centered on atom I located at RI . ψ

E
i,k,I

denotes the expansion coefficient correspoding to NE,ψ
k,I

for the i-th Kohn-Sham orbital, and φEI denotes the ex-

pansion coefficient corresponding to N
E,φ
I for the elec-

trostatic potential. The enrichment functions, NE,ψ
k,I and

N
E,φ
I , are the atom-centered numerical solutions to the

Kohn-Sham orbitals and electrostatic potentials, respec-
tively, for the atom type (chemical element) at RI . The
index I runs over all the atoms, Na, in the materials
system, and the index k in Eq. 19a runs over the num-
ber of atomic Kohn-Sham orbitals, nI , we would want to
include for the atom I. Typically, we include all the oc-
cupied and a few lowest unoccupied atomic orbitals for a
given atom I. We note that although we have represented
the enrichment functions for both Hartree and external
potential as NE,φ

I , they differ based on the electrostatic
potential that is being discretized.

We now discuss the procedure to generate the enrich-
ment functions. As aforementioned, the enrichment func-
tions are chosen as the solutions to the Kohn-Sham or-
bitals and electrostatic potentials for any given single
atom. Under the assumption of equal fractional occu-
pancy for degenrate orbitals, the charge density for a
single atom is radially symmetric, which in turn, results
in radially symmetric Vxc(ρ) and VH(ρ). Thus, rewriting
the Eqs. 1 and 5 in spherical coordinates and using sep-
aration of variables, we obtain the following radial equa-
tions for any single atom with the atom type denoted by
a superscript S:

−
1

4π

1

r2
d

dr

(
r2
d

dr

)
φS(r) = gS(r) , (20a)
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[
−
1

2

1

r2
d

dr

(
r2
d

dr

)
+
l(l + 1)

r2
+V Seff(r)

]
RSnl(r) = ǫSnlR

S
nl(r) ,

(20b)

ρS(r) = 2
∑

n

∑

l

2l + 1

4π
f(ǫSnl, µ

S)
(
RSnl(r)

)2
. (20c)

In Eq. 20a, φS(r) denotes either the Hartree or the ex-
ternal potential; gS(r) denotes the charge density ρS(r)

or the nuclear charge bS(r) = ZS δ̃(0) with Zs denot-
ing the atomic number, depending on whether φS(r)
represents the Hartree or the external potential, respec-
tively. In Eq. 20b, RSnl(r) represents the radial part of the
Kohn-Sham orbital corresponding to the principal quan-
tum number n and azimuthal quantum number l. Equa-
tions in 20 are solved self-consistently until convergence
in ρS(r) is achieved. We note that these radial equations
can be solved inexpensively using a 1D classical finite el-
ement mesh comprising of, typically, 1000 − 5000 basis
functions. Moreover, the radial atomic solutions can be
pre-computed for all atom types spanning the periodic
table and stored for later use in constructing the enrich-
ment functions.

Having evaluated the radial part RSnl(r), the full Kohn-
Sham orbital is obtained by multiplying it with spherical
harmonics as follows

ψSnlm(r, β, γ) = RSnl(r)Ylm(β, γ) , (21)

where Ylm(β, γ) denotes the real form of spherical har-
monics for the pair of azimuthal quantum number l and
magnetic quantum number m, and β and γ represent
the polar and azimuthal angles, respectively. Using the
above atomic solutions, we write the orbital enrichment

function NE,ψ
k,I centered at atom I of atom type S as

N
E,ψ
k,I (x,RI) = ψSnlm(|x−RI |, βRI

, γRI
) , (22)

where the index k represents a specific choice of n, l and
m, and βRI

and γRI
are the polar and azimuthal an-

gles, respectively, for the point x with RI as the origin.
Similarly, we define the electrostatic enrichment function

N
E,φ
I (x) centered at atom I of atom type S as

N
E,φ
I (x,RI) = φS(|x−RI |) . (23)

Henceforth in the paper, to make our notation of the
enrichment functions more succinct, we combine the in-
dices k and I into a single index denoted by α for the
orbital enrichment functions and their coefficients, and
drop the argument RI in the enrichment functions. Fur-

thermore, we define nψE = Na × nI to denote the total
number of enrichment functions in the materials system
used for discretization of any Kohn-Sham orbital ψi.

Discretizing the Kohn-Sham eigenvalue problem in
the enriched finite element basis, we obtain a standard
eigenvalue equation analogous to its classical counterpart

(Eq. 15), and is given by

(ME)
−1

H
EΨEi = ǫEi Ψ

E
i , (24)

where H
E and M

E are the discrete Kohn-Sham Hamil-
tonian matrix and overlap matrix in the enriched finite
element basis, ǫEi denotes the i-th discrete Kohn-Sham
eigenvalue and ΨEi denotes the corresponding eigenvec-
tor containing the expansion coefficients ψCi,j and ψEi,α
(defined in Eq. 19a). Both H

E and M
E matrices have a

2× 2 block structure, given by

H
E =




H
cc (Hec)

T

H
ec

H
ee


 (25)

M
E =




M
cc (Mec)

T

M
ec

M
ee


 (26)

where H
cc and M

cc are the classical-classical blocks
which comprise of matrix elements involving only the
classical finite element basis functions and are same as the
H
C and M

C matrices appearing in Eq. 13, respectively;
H

ec and M
ec are the enriched-classical blocks containing

the cross-term matrix elements involving both classical
finite element basis functions and enrichment functions;
and H

ee and M
ee are the enriched-enriched blocks com-

prising of matrix elements involving only the enrichment
functions. Each of these blocks are given by

Hcc
jk =

1

2

∫

Ω

∇NC
j (x).∇NC

k (x) dx +

∫

Ω

V heff(x,R)NC
j (x)NC

k (x) dx ,

(27a)

Hec
αj =

1

2

∫

Ω

∇NE,ψ
α (x).∇NC

j (x) dx +

∫

Ω

V heff(x,R)NE,ψ
α (x)NC

j (x) dx ,

(27b)

Hee
αβ =

1

2

∫

Ω

∇NE,ψ
α (x).∇NE,ψ

β (x) dx +

∫

Ω

V heff(x,R)NE,ψ
α (x)NE,ψ

β (x) dx ;

(27c)

M cc
jk =

∫

Ω

NC
j (x)NC

k (x) dx , (28a)
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M ec
αj =

∫

Ω

NE,ψ
α (x)NC

j (x) dx , (28b)

M ee
αβ =

∫

Ω

NE,ψ
α (x)NE,ψ

β (x) dx , (28c)

where j, k = 1, 2, . . . , nh and α, β = 1, 2, . . . , nψE .

Discretizing the Poisson problems (Eq. 5) in the en-
riched finite element basis, we obtain a system of linear
equations analogous to its classical counterpart (Eq. 16),
and is given by

A
EΦE = b

E , (29)

where A
E represents the discrete Laplace operator in

the enriched finite element basis, and ΦE is the electro-
static potential vector containing the expansion coeffi-
cients φCj and φEI (defined in Eq. 19b). Similar to H

E

and M
E, the matrix A

E also assumes a 2×2 block struc-
ture containing classical-classical, enriched-classical and
enriched-enriched blocks, given by

A
E =




A
cc (Aec)

T

A
ec

A
ee


 (30)

with the individual blocks defined as

Accjk =

∫

Ω

∇NC
j (x).∇NC

k (x) dx , (31a)

AecIj =

∫

Ω

∇NE,φ
I (x).∇NC

j (x) dx , (31b)

AeeIJ =

∫

Ω

∇NE,φ
I (x).∇NE,φ

J (x) dx , (31c)

where j, k = 1, 2, . . . , nh; and I, J = 1, 2, . . . , Na.

The forcing vector bE , is also analogous to its classical
counterpart, and is defined as the composite vector

b
E =




b
c

b
e


 (32)

where b
c is the classical part of bE and is same as b

C

(defined in Eq. 18). be is the enrichment part of bE and
is given by

beI =

∫

Ω

g(x)NE,φ
I (x) dx , (33)

where g(x) = ρ(x) or g(x) = b(x,R) for the Hartree and

external potential, respectively, and I = 1, 2, . . . , Na.
The key idea behind augmenting the classical finite el-

ement basis with these enrichment functions is that in a
multi-atom materials system, the enrichment functions,
being solutions to single atom Kohn-Sham orbitals and
electrostatic potentials, can effectively capture the sharp
variations in the orbitals and the electrostatic potentials
close to an atom, thereby eliminating the need for a
refined classical finite element mesh close to an atom.
Loosely speaking, the role of the classical finite element
basis is now to capture the deviation of an electronic
field in a materials system from that of superposition
of atomic solutions for the same field. Since these de-
viations are much smoother in nature compared to the
actual field, we can use a coarse classical finite element
mesh to accurately approximate them. As will be dis-
cussed in Section V, the use of a coarse classical finite
element mesh results in two-fold advantage: (i) a reduc-
tion in the total degrees of freedom, and (ii) a reduction
in the polynomial degree of the Chebyshev filter required
to compute the occupied Kohn-Sham eigenspace.

B. Conditioning of the enriched finite element basis

The enrichment functions, being solutions to the Kohn-
Sham orbitals and electrostatic potentials for a single
atom, have smooth tails away from their atomic cores.
These smooth tails can cause linear dependency between
the enrichment functions and the classical finite element
basis, thereby resulting in an ill-conditioned basis. We
avoid such ill-conditioning by multiplying the enrichment
functions with a smooth radial cutoff function, which
generates a compact support for each enrichment func-
tion. In the present work, we employ the smooth cutoff
function given by

h(r̃) =
u(r̃)

u(r̃) + u(1− r̃)
, (34)

where u(r̃) is defined as

u(r̃) =

{
e−

1

r̃ r̃ > 0

0 r̃ ≤ 0

and r̃ = 1 − t(r−r0)
r0

is a linear transformation of the

variable r, which offers h(r̃) the following properties





h(r̃) = 1 0 ≤ r < r0

0 ≤ h(r̃) < 1 r0 < r ≤ r0 +
r0
t

h(r̃) = 0 r > r0 +
r0
t
.

We multiply the radial part of each enrichment function,

NE,ψ
α (x) or NE,φ

I , with h(r̃) to smoothly truncate them
to zero. In the above expression, the parameter r0 is
called the cutoff radius, beyond which the truncation
begins, and t controls the width of the transition. In
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FIG. 1: Schematic of truncated atomic orbital (radial
part).

the present work, we employ different values of r0 for
different enrichment functions. In particular, for an or-
bital enrichment function, the value of r0 is chosen to
be the farthest turning point (extremum) in the radial
part of the corresponding atomic orbital. One excep-
tion to this rule is the monotonically decreasing 1s radial
function, R10(r), for which the r0 is chosen such that

|
∫ r0
0 (h(r̃)R10(r))

2
dr−1| < 10−6, i.e., the density arising

out of the truncated R10(r) must integrate to within 10−6

of unity. The maximum of the set of r0’s corresponding
to orbital enrichment functions of a given atom is selected
as the cutoff radius for the electrostatic enrichment func-
tions of the atom. We use t ∈ [0.5, 1] to avoid sharp
truncation of the enrichment functions, which may oth-
erwise require a very high density of quadrature points in
the transition region in order to accurately compute any
integrals involving the gradients of these truncated en-
richment functions. Figure 1 presents a schematic of the
radial part of the truncated atomic orbital. Henceforth,

enrichment functions, NE,ψ
α (x) or NE,φ

I (x), are assumed
to be truncated with the aforementioned smooth cutoff
function. We remark that, in addition to improving the
conditioning of the basis, the truncation renders locality
to the enrichment functions, which in turn renders spar-
sity to the discrete Hamiltonian, Laplacian and overlap
matrices.

We note that several prior efforts have been made
towards the generation of compactly supported (finite-
range) atom-centered orbitals by employing different
forms of confining potentials in the atomic Kohn-Sham
equation, ranging from hard-wall potential66 to polyno-
mial67,68 to smooth exponential potential69. Other ef-
forts70,71 were made to variationally optimize the param-
eters in the confining potential to strike a good balance
between the locality and accuracy of the resultant basis.
In our view all these approaches can be adapted as an
alternative to our approach of using smooth cutoff func-
tion.

C. Adaptive quadrature rule

We note that sharp gradients in regions close to atomic
centers and cusps at atomic centers are characteristics of
enrichment functions. Therefore, in order to accurately
compute any integral involving an enrichment function,
we need a high quadrature density near the atomic cen-
ters, while a lower quadrature density may suffice in re-
gions farther away from atomic centers. To this end, we
employ an adaptive refinement of the quadrature grid on
each finite element based on the characteristics of the
enrichment functions. Specifically, we follow a divide
and conquer strategy proposed in previous efforts72–74,
and outline here the main idea and specifics of our im-
plementation for hexahedral finite elements employed in
this work. For any given finite element, we begin by as-
signing it to be the parent element Ωp. Further, we con-
sider a trial function f(x), an n-point Gauss quadrature

rule, the 8 child elements ({Ωci})
8
i=1 that are obtained by

sub-dividing Ωp, a fixed tolerance τ , and an empty list
labelled points. Next, we evaluate Ip =

∫
Ωp f(x) dx and

Ici =
∫
Ωc
i

f(x) dx for i = 1, 2, . . . , 8, using their respective

n-point Gauss quadrature rules. If the base condition,
|Ip −

∑8
i=1 I

c
i | < τ , is satisfied, we append the Gauss

quadrature points and weights of the parent element to
the list points and terminate the algorithm. Otherwise,
we treat each of the child elements as a parent element,
and recursively sub-divide them until the base condition
is satisfied. Whenever the base condition is satisfied, the
Gauss quadrature points and weights corresponding to
the parent element at the current recursion level are ap-
pended to the list points. Finally, the list points rep-
resents the quadrature points and weights for the given
element. We repeat this process for each element present
in the finite element mesh. Typically, instead of using
a single trial function f(x), we use nt such trial func-
tions, {fν(x)}

nt
ν=1, which requires nt base conditions cor-

responding to each fν(x) to be satisfied.

In the present work, we choose the following four trial
functions to build the adaptive quadrature rule:

f1(x) =

Na∑

I=1

(
N
E,φ
I (x)

)2
, (35a)

f2(x) =

Na∑

I=1

|∇
(
N
E,φ
I (x))|

2
, (35b)

f3(x) =

n
ψ

E∑

α=1

(
NE,ψ
α (x)

)2
, (35c)

f4(x) =

n
ψ

E∑

α=1

|∇
(
Nψ
α (x))|

2
. (35d)
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Although we have labeled just two trial functions,
f1(x) and f2(x), defined by the electrostatic enrich-
ment functions, these correspond to four trial functions—
two each for enrichment functions corresponding to the
Hartree potential and the external potential. We re-
mark that the aforementioned adaptive quadrature con-
struction is performed only on the finite elements which
are within the compact support of the enrichment func-
tions. Since only a small fraction of the total elements are
within the compact support of any enrichment function,
the adaptive quadrature construction is computationally
inexpensive. Further, once constructed, the adaptive
quadrature list remains fixed for a given finite element
mesh, and only needs to be updated if the finite element
mesh changes during the course of the calculation.

We now turn towards determining an economical
choice for the tolerance parameter, τ , as a loose tolerance
may result in an inadequate quadrature grid whereas
an extremely tight tolerance will be computationally in-
efficient. In the present work, we employ the follow-
ing heuristic to choose τ . For each atom type S of
atomic number ZS in the materials system, we obtain
the atomic ground-state charge density, ρS(r), its corre-
sponding Hartree potential, φSH(r), and the atomic ex-
ternal potential, φSext(r), by solving the the radial Kohn-
Sham equations in Eqs. 20. Next, we evaluate the fol-

lowing two integrals ES,1D1 = 1
2

∫
4πr2ρS(r)φSH(r) dr and

E
S,1D
2 =

∫
4πr2ρS(r)φSext(r) dr, which correspond to the

electrostatic interaction energies. We then construct a
coarse 3D finite element mesh with atom S at the origin.
In order to determine a judicious choice for τS corre-
sponding to atom type S, we set its initial value as τS =
0.1 and enter an iterative loop. For the current iterate of

τS , we evaluate the 3D counterparts of ES,1D1 and ES,1D2 ,

namely, ES,3D1 and ES,3D2 , respectively, using the afore-
mentioned adaptive quadrature rule. If the convergence

criteria, |ES,1D1 − E
S,3D
1 | < γ and |ES,1D2 − E

S,3D
2 | < γ,

are satisfied for a pre-determined γ, we terminate the
loop with the current value of τS . Else, the loop is re-
peated with τS set to half of its current value, until the
above convergence criteria are met. We use the mini-
mum of all such τS corresponding to the various atom
types in the materials system as our τ for construction
of the adaptive quadrature grid for the materials sys-
tem calculation. In all our calculations, we have used
γ = 0.1mHa so as to ensure that the quadrature errors
are an order lower than the desired discretization error
(∼ 1mHa) that we are aiming in the ground-state energy
per atom. We note that the above procedure to deter-
mine τ , is independent of the choice of 3D finite element
mesh. Moreover, the τS for each S can be precomputed
and stored for later use.

D. Inverse of overlap matrix

We now discuss a computationally efficient way of eval-
uating the inverse of the overlap matrix, ME, defined in
Eq. 26, which is vital to the transformation of the gen-
eralized Kohn-Sham eigenvalue problem to a standard
eigenvalue problem, and the subsequent use of Chebyshev
polynomial based acceleration technique to compute the
occupied eigenstates as will be discussed in Section V.
We make use of the block-wise matrix inversion theo-
rem75 (also known as Banachiewicz inversion formula),

to obtain the following 2×2 block structure for (ME)
−1

,

(ME)
−1

=




(Mcc)−1+L
T
S
−1

L −L
T
S
−1

-S−1
L S

−1




(36)

where L = M
ec(Mcc)

−1
, and S = M

ee −

M
ec(Mcc)

−1
(Mec)

T
. Assuming that the enriched finite

element basis is not ill-conditioned, we note that the over-
lap matrix M

E is positive definite, and, hence invertible.
Further, Mcc being the overlap matrix of the classical fi-
nite element basis functions, is also positive definite, and
hence invertible. Subsequently, the positive definiteness,
and hence invertibility, of S can be ascertained by not-
ing that it is the Schur complement75 of Mcc in M

E .

We note that the above expression for (ME)
−1

contains

two matrix inverses, (Mcc)
−1

and S
−1. As mentioned

in Section III B, the matrix M
cc is rendered diagonal

through the use of spectral finite elements along with
Gauss-Lobatto-Legendre quadrature rule, which makes
the evaluation of (Mcc)

−1
trivial. Regarding the evalua-

tion of S−1, we note that S is a small matrix of the size

of nψE × n
ψ
E , where n

ψ
E is typically of the same order as

the number of electrons in the system. Thus, S can be
easily inverted through the use of direct solvers.

Further, we note that although the overlap matrix is
sparse, its inverse is a dense matrix. However, the con-
stituent matrices present in the 2 × 2 block structure of

(ME)
−1

are either sparse or much smaller in size com-

pared to (ME)
−1

itself. To elaborate, we note that L

is of the size nψE × nh, and is hence much smaller than

the size (nh+n
ψ
E)× (nh+n

ψ
E) of (M

E)
−1

. Furthermore,
L, owing to the locality of the enrichment functions, is

sparse. As noted earlier, S−1 is a small nψE × n
ψ
E ma-

trix and (Mcc)
−1

, being diagonal, is sparse. Since we

are only interested in the action of matrix (ME)
−1

on
a vector (as will be discussed in Section V), we perform
the matrix-vector product using the constituent matrices

without ever explicitly constructing the (ME)
−1

matrix.
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This matrix-free evaluation of any matrix-vector product
presents a significant advantage for the above inversion
technique over the Newton-Schultz76–78 and Taylor ex-
pansion79 based methods, wherein the construction of the

(ME)
−1

matrix is explicit and hence have huge memory

requirements owing to the dense structure of (ME)
−1

.

Finally, we briefly compare the proposed enriched finite
element method with the other existing methods which
in a similar spirit seek to augment the classical finite
element basis with other basis functions that efficiently
capture the known physics in regions of interest. One
such approach is that of partition-of-unity finite element
method (PUFEM)80,81, wherein a typical discretization
can be defined as82,83

ψh(x) =

nh∑

j=1

NC
j (x)ψCj +

nE∑

α

nPU∑

k=1

NPU
k (x)NE

α (x)ψEα,k ,

(37)
where NC

j (x) are the classical finite element basis func-

tions, and NPU
k (x) is a subset of the classical finite el-

ement basis functions used to modulate the enrichment
functions, NE,ψ

α (x), thus providing a larger set of aug-
menting functions. Although PUFEM preserves the lo-
cality of the basis to be commensurate with conventional
finite element basis, the effect of multiplying enrichment
functions with a set of classical finite element basis func-
tions results in smoother augmenting basis functions,
thereby making it more prone to ill-conditioning (due
to linear dependency of augmenting basis functions with
classical finite element basis functions). A more serious
limitation of PUFEM stems from the significant increase
in the number of augmenting basis functions, which, in
turn, significantly increases the size of the M

ee block of
the overlap matrix M

E , thereby making the evaluation

of the S
−1 in (ME)

−1
computationally prohibitive.

Another such approach is that of gaussian finite ele-
ment mixed basis84, wherein a given choice of gaussian
basis is used to the augment the classical finite element
basis instead of atomic solutions to the Kohn-Sham prob-
lem, as used in the present work. We note that com-
pared to the gaussian basis the atomic solutions provide
a more natural choice for augmenting functions and also
provide for better control over the conditioning of the
basis through the use of smooth cutoff functions on the
radial part of the atomic orbitals. Further, in the work
on gaussian finite element mixed basis84, the Kohn-Sham
problem was solved as a generalized eigenvalue problem
using preconditioned conjugate-gradient method85 which
is, in general, less efficient compared to the Chebyshev
filtering method used in the present work, discussed sub-
sequently.

V. SELF-CONSISTENT FIELD ITERATION

AND CHEBYSHEV FILTERING

We begin this section with a brief outline of the well-
known Kohn-Sham self-consistent field iteration (SCF)
used to solve the nonlinear Kohn-Sham eigenvalue prob-
lem. This involves starting with an input guess for
the charge density, ρin, which is used to construct
the effective potential, Veff(ρin,R). Having constructed
Veff(ρin,R), the Kohn-Sham eigenvalue problem is solved
to obtain the eigenpairs (ǫi,ψi), which are in turn used
to compute the output charge density, ρout. If the dif-
ference between ρout and ρin, in an appropriately chosen
norm, is below a certain tolerance, then the charge den-
sity is deemed to have converged and ρout denotes the
ground-state charge density. Otherwise, ρin is updated
through a choice of mixing scheme86–89 involving ρin and
ρout from the current as well as those from previous it-
erations, and the iteration continues until convergence in
charge density is achieved.

The most computationally expensive step in every it-
erate of the SCF procedure is the solution of the dis-
crete Kohn-Sham eigenvalue problem. Typically, one
can use Krylov-subspace based methods such as Jacobi-
Davidson90 or Krylov-Schur91 to evaluate the lowest
few eigenpairs corresponding to the occupied eigenstates.
However, benchmark studies presented in a recent work53

have shown these Krylov-subspace based methods to
be about ten-fold slower in comparison to the Cheby-
shev filtering technique92 to compute the occupied eigen-
states. Based on this relative merit, we have employed
the Chebyshev filtering technique to compute the rele-
vant eigenspectrum of the Kohn-Sham Hamiltonian.

The key idea involved in the Chebyshev filtering
approach is to progressively improve the subspace V
spanned by the eigenvectors of the previous SCF itera-
tion through polynomial based power iteration to eventu-
ally compute the occupied eigenspectrum upon attaining
self-consistency. It relies on two important properties of
a Chebyshev polynomial pm(x) of degree m to magnify
the relevant (occupied) spectrum of the discrete Kohn-
Sham Hamiltonian: (i) pm(x) grows rapidly outside the
interval [−1, 1], and (ii) |pm(x)| ≤ 1 for x ∈ [−1, 1]. For
the sake of notational simplicity, we denote the discrete

Kohn-Sham Hamiltonian by H̃, which in the classical

finite element basis is (MC)
−1

H
C and in the enriched

finite element basis is (ME)
−1

H
E . The filtering tech-

nique proceeds by first mapping the unoccupied eigen-

spectrum of H̃ to [−1, 1] through the affine transforma-
tion t(x) = 2x−a−b

b−a , where a and b denote the upper
bounds of the occupied and unoccupied eigenspectrum

of H̃, respectively. The upper bound of the unoccu-
pied spectrum, b, is obtained inexpensively through a

few Arnoldi iterations on H̃. The upper bound of the oc-
cupied spectrum, a, is obtained as the highest Rayleigh

quotient of H̃ in the subspace V of the previous SCF
iteration. We denote the resultant transformed matrix



12

as H̄. We then apply the m-degree Chebyshev polyno-

mial filter pm(H̄) on V to obtain Ṽ = pm(H̄)V . Owing to
the rapid growth property of Chebyshev polynomials out-
side [−1, 1], the aforementioned filtering of V amplifies,
for each vector in V , the components along the eigen-
vectors corresponding to occupied states and damps the
components along the eigenvectors corresponding to un-
occupied states. The action of the Chebyshev filter on V
can be achieved in an efficient manner by utilizing the
recursive construction of the Chebyshev polynomial93:
pk+1(x) = 2xpk(x) − pk−1(x). Next, we orthonormalize
the Chebyshev-filtered vectors to obtain the orthonor-

mal set of vectors Q spanning Ṽ , and perform a Galerkin

projection of H̃ onto Ṽ to obtain the following reduced
generalized eigenvalue problem,

QTHQΨi = ǫiQ
T
MQΨi , (38)

where {H, M, ǫi} represent {H
C , MC , ǫCi } or {H

E, ME,
ǫEi } corresponding to the classical or enriched finite ele-
ment discretization, respectively. We can now solve the
above generalized eigenvalue problem, whose dimension
is commensurate with the number of electrons in the sys-
tem, using direct solvers to obtain the eigenvalues ǫi and
their corresponding projected eigenvectors Ψi. We subse-
quently rotate the projected eigenvectors to the original
space to obtain the eigenvectors QΨi, which along with
the eigenvalues ǫi are used to evaluate the charge density.

Finally, the subspace V is updated to Ṽ for the next SCF
iteration.

We remark that in order to gain computational effi-
ciency, we exploit the elemental structure in H

E (or HC)

and (ME)
−1

(or (MC)
−1

) to perform the matrix-vector

products involved in the evaluation of Ṽ = pm(H̄)V .
To elaborate, we consider the case of enriched finite el-
ement and note that all the blocks in the 2 × 2 block
structure of H

E and all the constituent matrices (ex-

cept (Mcc)
−1

and S
−1) can be constructed, owing to the

locality of the basis, by assembling contributions from
individual elements. However, since we are interested
only in the action of these matrices on vectors, we per-
form the matrix-vector products by first evaluating ele-
mental matrix-vector products and then assembling the
resultant elemental vector, without explicitly assembling
any global matrix. We also note that, the dimension of
the subspace V , denoted by N , is chosen to be greater
than the number of occupied orbitals so as to avoid nu-
merical instabilities for systems with small band-gaps
or degenerate energy levels close to the Fermi energy,
and also to avoid missing out any occupied eigenstate
between two successive SCF iterations. Typically, we
choose N ∼ Ne

2 + 20. Further, we note that Kohn-Sham
orbitals of single atoms represent a good initial guess for
the subspace V for the first SCF iteration, and is adopted
in the present work.

We note that the degree m of the Chebyshev polyno-
mial filter needed to obtain a good approximation to the

occupied eigenspace of the Kohn-Sham Hamiltonian de-
pends on: (i) the separation between eigenvalues in the
occupied part of the eigenspectrum, and (ii) the ratio be-
tween the spectral widths of the occupied and unoccupied

part of the eigenspectrum of H̃. While the separation be-
tween the occupied eigenvalues depends on the materials
system, the ratio of the spectral widths of the occupied
and unoccupied parts of the eigespectrum depends on the

largest eigenvalue of H̃, which, in turn depends on the
finite-element discretization—it increases with decreas-
ing element size. Typically, in a pseudopotential calcula-
tion, where the orbitals and the electrostatic potentials
vary smoothly, one can use a relatively coarse finite ele-
ment mesh to achieve chemical accuracies of ∼ 1meV per
atom using the classical finite element method. For such
coarse finite element discretizations, a Chebyshev poly-
nomial degree between 10 to 50 is sufficient to compute
the occupied eigenspace. However, in all-electron cal-
culations, where the orbitals are characterized by sharp
variations near atomic cores and the external potential
has Coulomb-singularity, one requires a highly refined fi-
nite element mesh near the atomic cores to achieve chem-
ical accuracies of ∼ 1mHa per atom. In addition to the
significant increase in the degrees of freedom, such mesh
refinement also increases the upper bound of the unoccu-
pied eigenspectrum, thereby requiring a very high Cheby-
shev polynomial degree, O(103), to effectively compute
the occupied eigenspace. These shortcomings of the clas-
sical finite element discretization in the context of all-
electron calculations are noted in53, where comparisons
were made against plane-wave basis for pseudopotential
calculations and against gaussian basis for all-electron.
It was noted that while the classical finite elements basis
outperforms the plane-wave basis in pseudopotential cal-
culations on the benchmark systems studied, they were
ten-fold slower in comparison to the gaussian basis in all-
electron calculations. These disadvantages of the classi-
cal finite element basis for all-electron calculations are
mitigated by using the proposed enriched finite element
basis, as will be demonstrated in the subsequent section.

VI. RESULTS AND DISCUSSION

In this section, we discuss the rate of convergence, ac-
curacy, performance, and parallel scalability of the pro-
posed enriched finite method for all-electron calculations.
We first study the rate of convergence of ground-state
energy with respect to element size for methane and car-
bon monoxide molecules. We then demonstrate the ac-
curacy and performance of the enriched finite element
method using large-scale non-periodic semi-conducting
and heavy metallic systems. We use non-periodic sili-
con nano-clusters of various sizes, with the largest one
containing 621 atoms (8694 electrons), as our bench-
mark semi-conducting systems. For heavy metallic sys-
tems, we use gold nano-clusters, Aun(n = 1 − 23),
as our benchmark systems. In order to assess the ac-
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curacy, reduction in degrees of freedom, reduction in
Chebyshev polynomial degree, and performance of the
enriched finite element method, we use, wherever possi-
ble, the classical finite element method as a reference.
Depending upon the system, we use spectral hexahe-
dral finite elements of polynomial order 2 to 6, denoted
as HEX27, HEX64SPEC, HEX125SPEC, HEX216SPEC,
HEX343SPEC respectively. We also compare, wherever
possible, the accuracy and performance of the enriched
finite element method with that of gaussian basis. All our
calculations using the gaussian basis are performed with
the NWCHEM28 package. We use n-stage Anderson mix-
ing86 for charge density mixing in all our enriched and
classical finite element method based calculations. Fi-
nally, we present the parallel scalability of our implemen-
tation of the proposed enriched finite element method
using Message Passing Interface (MPI). The scalability
studies as well as the benchmark studies demonstrating
the computational efficiency, reported subsequently, are
conducted on a parallel computing cluster with the fol-
lowing configuration: Intel Xeon E5-2680v3 CPU nodes
with 24 processors (cores) per node, 128 GB memory per
node, and Infiniband networking between all nodes for
fast MPI communications.

A. Rate of convergence

In this section, we study the rate of convergence of the
ground-state energy with element size, h, using quadratic
(HEX27) and cubic (HEX64SPEC) spectral finite ele-
ments. To this end, we generate a sequence of finite
element meshes with increasingly smaller element sizes
by uniformly subdividing the coarsest mesh. The ground-
state energy, Eh, obtained from each of the HEX64SPEC
meshes are used in the expression

|Eh − E0| = Chq (39)

to compute the constants E0, q and C through a least-
square fit. In the above expression, E0 is the extrapolated
continuum ground-state energy obtained as h → 0. We
use the E0 obtained from HEX64SPEC to compute the

relative error |Eh−E0|
|E0|

for both HEX27 and HEX64SPEC

meshes. To assess the accuracy of E0, we also compare it
against the ground-state energy obtained using the po-
larization consistent-4 (pc-4)94 gaussian basis.
For the benchmark systems in our convergence study,

we consider two systems: (i) methane molecule with a
C-H bond length of 2.0784 a.u. and H-C-H bond angle
of 109.4712◦, and (ii) carbon monoxide molecule with
a C-O bond length of 2.1297 a.u.. For both the sys-
tems, we use a Chebyshev filter of order 60 to compute
the occupied eigenspace and Fermi-Dirac smearing with
T = 500K. For methane, the value of E0 is evaluated
to be −40.11993 Ha and the ground-state energy from
pc-4 gaussian basis is −40.11992 Ha. For carbon monox-
ide, the value of E0 is evaluated to be −112.47189 Ha
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FIG. 2: Convergence of energy with respect to element
size for methane molecule
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FIG. 3: Convergence of energy with respect element size
for carbon monoxide molecule

and the ground-state energy from pc-4 gaussian basis is

−112.47188Ha. Next, we plot the relative error, |Eh−E0|
|E0|

,

against the smallest element size, and obtain the rates
of convergence from the slopes of these plots. As ev-
ident from Figures 2 and 3, we obtain close to opti-
mal rates of convergence in energy of O(h2k), where k
is the polynomial order (k = 2 for HEX27 and k = 3
for HEX64SPEC). The results also suggest higher ac-
curacies obtained with HEX64SPEC when compared to
HEX27 for the same mesh size. We note that the nu-
merically obtained rates of convergence deviate slightly
from the theoretically optimal rates due to other numer-
ical errors—beyond the discretization errors in the the-
oretical estimates—that are present in simulations, such
as quadrature errors, errors due to stopping tolerance in
the iterative solutions of the Poisson problem, diagonal-
ization of the Hamiltonian and the self consistent field
iteration.
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B. Large-scale materials systems

We now discuss the accuracy and performance of the
proposed enriched finite element method using large-
scale semi-conducting and heavy metallic materials sys-
tems. We also compare, wherever possible, the proposed
method against classical finite element and gaussian basis
based calculations.

1. Semi-conducting systems: Silicon nano-clusters

We consider silicon nano-clusters of various sizes, con-
taining 1×1×1 (252 electrons), 2×1×1 (434 electrons),
2 × 2 × 2 (1330 electrons), 3 × 3 × 3 (3920 electrons);
and 4 × 4 × 4 (8694 electrons) diamond unit cells, as
our benchmark semi-conducting systems. We employ a
lattice constant of 10.26 a.u. in our calculations. These
are isolated clusters in vacuum and we do not use any
surface passivation. To obtain the characteristic element
size to be used in the enriched finite element based calcu-
lations of the nano-clusters, we first obtain the reference
ground-state energy, Eref , for a single silicon atom by
solving its 1D-radial Kohn-Sham eigenvalue problem as
mentioned in Section IVA. Next, we choose a fourth-
order (HEX125SPEC) finite element mesh for which the
single atom ground-state energy obtained from the en-
riched finite element based calculation is within 1mHa
accuracy with respect to Eref . Similarly, to obtain the
characteristic element size for the classical finite element
based calculations of the nano-clusters, we choose a fifth-
order (HEX216SPEC) finite element mesh which is also
within a 1mHa accuracy for the single atom ground-state
energy. We note that the smallest element size, thus ob-
tained for the classical finite element based calculation
is found to be an order of magnitude smaller than that
of the smallest element size obtained in the enriched fi-
nite element based calculation. This, in turn, affects the
largest eigenvalue of the Kohn-Sham Hamiltonian which
is found to be O(106) in case of classical finite elements,
thereby, requiring a Chebyshev polynomial filter of de-
gree 1500 to compute the occupied eigenstates. Cor-
respondingly, for the enriched finite element case, the
largest eigenvalue is found to be O(103), thereby, re-
quiring a ∼ 20-fold smaller Chebyshev polynomial de-
gree of 80 to compute the occupied eigenstates. These
choices for element sizes and Chebyshev polynomial de-
grees from single atom calculations are then carried for-
ward to the nano-cluster calculations. We note that ow-
ing to the steep computational demand arising from large
number of basis functions and high Chebyshev polyno-
mial degree in the case of classical finite element based
all-electron calculations, we could only perform studies
up to 2× 2× 2 nano-cluster size using the computational
resources available to us. We also compare the accuracy
and performance of the enriched finite element method
with gaussian basis. We use the polarization consistent
(pc) family of gaussian basis as it provides a hierarchy

of increasingly larger basis sets. Specifically, we use pc-
3 and pc-4 basis as they are both commensurate with
the ∼ 1mHa accuracy when compared with aforemen-
tioned Eref for a single silicon atom. All the calculations
with gaussian basis are performed using Direct Inversion
of Iterative Subspace (DIIS)95 as well as the quadrati-
cally convergent minimization scheme96, both available
within the NWCHEM package, and the computational
time from the more efficient scheme is reported. For the
DIIS scheme, extrapolation of up to 10 Fock matrices
were used. Table I compares the ground-state energy,
degrees of freedom (number of basis functions) per atom
and the total computation CPU time (CPU time = num-
ber of cores × wall-clock time) for various cluster sizes
using classical and enriched finite element basis. Simi-
larly, Table II compares the ground-state energy and the
total computation CPU time for various cluster sizes us-
ing enriched finite element, pc-3 and pc-4 basis. In all
these calculations, we used a Fermi-Dirac smearing with
T = 500K.

TABLE I: Comparison of classical and enriched finite
element (FE) basis: Energy per atom (E in Ha),
degrees of freedom per atom (DoF), and total

computation CPU time (in CPU hours) for various
silicon nano-clusters.

Si 1× 1× 1 Classical FE Enriched FE

E −288.320035 −288.319450

DoF 402, 112 14, 728

CPU Hrs 1599.15 24.81

Si 2× 1× 1 Classical FE Enriched FE

E −288.334123 −288.333872

DoF 386, 205 13, 557

CPU Hrs 16441.43 57.10

Si 2× 2× 2 Classical FE Enriched FE

E −288.359459 −288.359266

DoF 360, 467 10, 642

CPU Hrs 75936.4 553.13

As is evident from Tables I and II, the enriched fi-
nite element basis achieves accuracies of within 1mHa
in the ground-state energies per atom when compared
with classical finite element, pc-3 and pc-4 basis. We
observe a staggering 60− to 300−fold reduction in the
total computation CPU time for the enriched finite ele-
ment basis when compared with the classical finite ele-
ment basis. This reduction in computation time stems
from a ∼ 30−fold reduction in the degrees of freedom as
well as a ∼ 20−fold reduction in the Chebyshev polyno-
mial degree as compared to the classical finite element
basis. When compared with the pc-3 gaussian basis, the
enriched finite element is a factor ∼ 3 slower in the case
of the smallest (1 × 1 × 1) cluster. However, it outper-
forms the pc-3 basis, in total computation CPU time, by
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TABLE II: Comparison of enriched finite element, pc-3
and pc-4 basis: Energy per atom (E in Ha) and total
computation CPU time (in CPU hours) for various

silicon nano-clusters.

Si 1× 1× 1 Enriched FE pc-3 pc-4

E −288.319450 −288.318996 −288.319448

CPU Hrs 24.81 8.39 98.88

Si 2× 1× 1 Enriched FE pc-3 pc-4

E −288.333872 −288.333447 −288.333898

CPU Hrs 57.10 151.74 1817.30

Si 2× 2× 2 Enriched FE pc-3 pc-4

E −288.359266 −288.360045 FTCa

CPU Hrs 553.13 4097.29 −

Si 3× 3× 3 Enriched FE pc-3 pc-4

E −288.374721 FTC FTC

CPU Hrs 6252.15 − −

Si 4× 4× 4 Enriched FE pc-3 pc-4

E −288.381425 FTC FTC

CPU Hrs 45053.82 − −

a FTC: Failed to converge

a factor of 2.5 for the 2 × 1 × 1 cluster and by a factor
of 7.5 for the 2 × 2 × 2 cluster. Similarly, the enriched
finite element basis outperforms the pc-4 gaussian basis
by factors 4 and 30 for the 1×1×1 and 2×1×1 clusters,
respectively. We note that the pc-3 basis failed to con-
verge for the 3× 3× 3 and 4× 4× 4 clusters, whereas the
pc-4 basis failed to converge for 2×2×2 and higher clus-
ters. The failure of the pc-3 and pc-4 basis to converge
for larger system sizes is primarily due to linear depen-
dency of the gaussian basis functions for larger system
sizes. These results suggest that the enriched finite ele-
ment basis offers a computationally efficient and robust
basis for all-electron calculations in semi-conducting sys-
tems as compared to both classical finite element and
gaussian basis.

2. Heavy metallic systems: Gold nano-clusters

Next, we consider gold nano-clusters, Aun(n = 1−23),
to study the accuracy and performance of the enriched
finite element basis. For n = 2 and n = 6, we use the
stable geometries obtained in a previous work97 wherein
the Au2 has a bond length of 4.818 a.u. and Au6 has a
planar triangle geometry with D3h symmetry and bond
length of 5.055 a.u.. The Au14 and Au23 nano-clusters
were constructed as 1× 1× 1 and 2× 1× 1 face centered
cubic (FCC) lattice, respectively, with a lattice constant
of 6.812 a.u.. We follow the same strategy as used for
silicon nano-clusters to obtain the characteristic element
sizes and Chebyshev polynomial degrees that are to be

used in gold nano-cluster calculations, both using clas-
sical and enriched finite element basis. We use fifth-
order (HEX216SPEC) and sixth-order (HEX343SPEC)
finite elements for the enriched and classical finite ele-
ment based calculations, respectively. We note that since
gold is much heavier than silicon, it is characterized by
more sharply oscillating orbitals and much steeper elec-
trostatic potentials in comparison to silicon, thereby re-
quiring smaller element sizes than those used in silicon
to achieve similar accuracy. This, in turn, results in
an increment in the largest eigenvalues of the Hamilto-
nian, which are found to be O(104) and O(108), for the
enriched and classical finite element basis, respectively,
thereby requiring higher Chebyshev polynomial degrees
to accurately compute the occupied eigenstates. We note
that the Chebyshev polynomial based filtering technique,
being analogous to the power iteration method, can gen-
erate an ill-conditioned space for a very high polynomial
degree, thereby resulting in numerical issues. To circum-
vent this, we employ, at each SCF iteration, multiple
passes of a low polynomial degree Chebyshev filter and
orthonormalize the filtered vectors between two succes-
sive passes. For all our gold cluster calculations based
on the enriched finite element basis we used 30 passes of
a Chebyshev filter of degree 20, whereas 10 passes of a
Chebyshev filter of degree 1200 have been employed for
the classical finite element based calculations. We note
that in the case of classical finite element based calcu-
lations, owing to the huge computational cost, we could
perform calculations only up to Au2 using the compu-
tational resources at our disposal. Further, we do not
present a comparison with gaussian basis owing to the
lack of a good hierarchical non-relativistic basis for gold.
Table III presents the comparison of the ground-state
energies, degrees of freedom and total computation CPU
times for the gold nano-clusters using classical and en-
riched finite element basis.
As is evident from Table III, the enriched finite element

basis obtains chemical accuracy in the ground-state en-
ergies per atom with far fewer degrees of freedom. In
terms of computational efficiency, while the enriched fi-
nite element basis achieves ∼ 14−fold speedup over the
classical finite Au1, we observe ∼ 100−fold speedup for
Au2. Once again, these speedups for the enriched finite
element basis are the result of a 40−fold reduction in
the number of degrees of freedom and a 20−fold reduc-
tion in the Chebyshev polynomial degree as compared to
that of the classical finite element basis. These numerical
experiments demonstrate the accuracy and efficiency for
all-electron calculations in heavy metallic systems.

C. Scalability

We demonstrate the parallel scalability (strong scal-
ing) of the proposed enriched finite element basis in Fig-
ure 4. We choose the 3 × 3 × 3 silicon nano-cluster con-
taining ∼ 4 million degrees of freedom (number of basis
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TABLE III: Comparison of classical and enriched finite
element (FE) basis: Energy per atom (E in Ha),
degrees of freedom per atom (DoF), and total

computation CPU time (in CPU hours) for various gold
nano-clusters.

Au1 Classical FE Enriched FE

E −17860.7623 −17860.7622

DoF 5, 040, 409 120, 361

CPU Hrs 612.22 43.39

Au2 Classical FE Enriched FE

E −17860.8001 −17860.8019

DoF 4, 659, 399 122, 300

CPU Hrs 22950.25 220

Au6 Classical FE Enriched FE

E − −17860.8249

DoF − 178, 906

CPU Hrs − 1924.42

Au14 Classical FE Enriched FE

E − −17860.8077

DoF − 88, 657

CPU Hrs − 3740.29

Au23 Classical FE Enriched FE

E − −17860.8045

DoF − 80, 397

CPU Hrs − 8171.40

functions) as our fixed benchmark system and report the
relative speedup with respect to the wall time on 48 pro-
cessors. The use of any number of processors below 48
was infeasible owing to the memory requirement posed
by the system. As evident from the figure, the scaling
is in good agreement with the ideal linear scaling behav-
ior up to 384 processors, at which we observe a parallel
efficiency of 87.8%. However, we observe a considerable
deviation from linear scaling behavior at 768 processors
with a parallel efficiency of 71.2%. This is attributed to
the fact that at 768 processors the number of degrees
of freedom possessed by each processor falls below 5000,
which is too low to achieve good parallel scalability.

VII. SUMMARY

We have developed a computationally efficient mixed
basis, termed as enriched finite element basis, for all-
electron DFT calculations which combines the efficiency
of atomic-orbitals-type basis to capture the sharp varia-
tions of the electronic fields closer to the atoms and the
completeness of the classical finite element basis. This
work demonstrates the marked computational advantage
afforded by the enriched finite element basis over the

0

2

4

6

8

10

12

14

16

18

100 200 300 400 500 600 700 800

R
el

at
iv

e
S

p
ee

d
u

p

Number of Processors

data
ideal

FIG. 4: Parallel scalability of the enriched finite
element implementation.

classical finite element basis for all-electron DFT calcu-
lations.

The proposed method is developed based on the fol-
lowing key ideas. Firstly, we augmented the classical
spectral finite element basis with enrichment functions
constructed from single-atom Kohn-Sham orbitals and
electrostatic potentials. The enrichment functions are
inexpensively pre-computed and stored by solving radial
Kohn-Sham equations for all atoms in the periodic ta-
ble. The enrichment functions are instrumental in cap-
turing the sharp variations of the Kohn-Sham orbitals
close to an atom, thereby, mitigating the need of high
mesh refinement near the atomic cores. Secondly, we
used smooth cutoff functions to truncate the enrichment
functions so as to ensure locality as well as better con-
ditioning of the enriched finite element basis. Thirdly,
we employ a divide and conquer strategy to construct
an adaptive quadrature grid to efficiently evaluate the
integrals involving the enrichment functions. Next, in
order to convert the generalized Kohn-Sham eigenvalue
problem to a standard eigenvalue problem, we employed
a computationally efficient scheme to evaluate the in-
verse of the overlap matrix in the enriched finite ele-
ment basis, by exploiting the block-wise matrix inversion.
The use of spectral finite elements along with Gauss-
Lobatto-Legendre quadrature rule is crucial in rendering
the classical-classical block of the overlap matrix diago-
nal, whereas the use of the block-wise matrix inversion is
crucial in utilizing the sparsity of the constituent matrices
in the inverse of the overlap matrix for an efficient evalu-
ation of the ensuing matrix-vector products. Finally, we
employed the Chebyshev polynomial based filter to com-
pute the occupied eigenstates. Here, we exploited the
finite element structure in the Hamiltonian and the in-
verse overlap matrices to achieve an efficient and scalable
implementation of the matrix-vector products involved in
the action of the Chebyshev filter on a subspace.

In terms of the numerical convergence afforded by the
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enriched finite element basis, we demonstrated close to
optimal rates of convergence for the ground-state energy
with respect to the finite element discretization. We
demonstrated the accuracy and performance of the pro-
posed enriched finite element basis on: (i) silicon nano-
clusters of various sizes, with the largest cluster contain-
ing 8694 electrons; and (ii) gold nano-clusters of various
sizes, with the largest cluster containing 1817 electrons.
We obtained good agreement in the ground-state ener-
gies when compared to classical finite element and gaus-
sian basis. In the larger clusters considered in this study,
the enriched finite element basis provides a staggering
50− 300 fold speedup compared to the classical finite el-
ement basis, which is attributed to a 30−fold reduction
in the degrees of freedom as well as a 20−fold reduction
in the Chebyshev polynomial degree. We also observed a
significant outperformance by the enriched finite element
basis relative to gaussian basis (pc-3 and pc-4). Further-
more, we were able to perform ground-state energy calcu-
lations for silicon clusters containing 280 and 621 atoms,
for which the gaussian basis failed to converge owing to
linear dependency of the basis. In terms of parallel scal-
ability, we obtained good parallel efficiency with almost
linear scaling up to 384 processors for the benchmark
system comprising of 280 atoms silicon nano-cluster and
containing ∼ 4 million basis functions.

The proposed method offers a computationally effi-
cient, systematically improvable, and scalable basis for
large scale all-electron DFT calculations, applicable to

both light and heavy atoms. The use of the enrichment in
developing linear-scaling DFT algorithms for all-electron
calculations based on finite element basis57,98 or Tucker-
tensor basis99 holds good promise, and is currently being
investigated. Furthermore, the use of enrichment ideas in
conjunction with reduced-order scaling DFT algorithms
can also be effectively utilized in the evaluation of the
exact exchange operator, and forms a future direction
of interest. Last, but not the least, the enriched finite
element basis can be useful in a systematic study of the
applicability and accuracy of various pseudopotential ap-
proximations on a wide range of materials and external
conditions.
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