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We discuss the nodal structure of odd-parity superconductors in the presence of non-symmorphic
crystal symmetries, both with and without spin-orbit coupling, and with and without time reversal
symmetry. We comment on the relation of our work to previous work in the literature, and also the
implications for unconventional superconductors such as UPt3.
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I. INTRODUCTION

Power-law temperature dependences of certain phys-
ical properties in heavy electron superconductors that
were discovered in the 1980s indicated the possible pres-
ence of nodes of the superconducting order parameter
that form lines on the Fermi surface.1 This motivated
a study by Blount2 where he showed that in the pres-
ence of spin-orbit coupling, one would not expect line
nodes for an odd-parity order parameter: the constraint
of having all three components of the triplet vanish can
happen at most at points on the Fermi surface. This was
an issue when an odd-parity order parameter was pro-
posed to explain experimental data in UPt3

3,4 which was
consistent with later phase sensitive Josephson tunnel-
ing measurements.5 In 1995, though, one of the authors
found a possible solution to this problem, by showing
that there is a counter example to Blount’s theorem for
non-symmorphic odd-parity superconductors (UPt3 be-
ing such an example given its P63/mmc space group).6

By explicit construction of the pair wave functions, it was
found that on the zone face, kz = π/c, all components
of the triplet belonged to the same group representation
(as opposed to what happens on the kz = 0 zone plane),
meaning that for the proposed E2u symmetry, line nodes
are indeed possible (two of the Fermi surfaces of UPt3

intersect this zone face). This was a consequence of the
non-symmorphic phase factors associated with the c-axis
(which is a screw axis for this space group). These con-
siderations also potentially apply to other superconduc-
tors. For instance, UBe13 has the non-symmorphic space
group Fm3̄c.

In 2009, a more rigorous treatment of this problem
for the general non-symmorphic case was formulated
by us based on group theoretical arguments.7 Very re-
cently, this problem has been revisited by Yanase8 and
Kobayashi et al..9 The former found that the nodal ‘lines’
actually reconstruct to form nodal ‘loops’ (called ‘rings’
in the latter) which, as we demonstrate here, shrink to
zero as the ratio of the superconducting gap to the spin-
orbit interaction increases. This is discussed in greater
detail in Section III. The latter also discussed the mir-

ror eigenvalues associated with these nodal loops, as well
as contrasted the group theoretical and topological ap-
proaches to this problem. It is our purpose here to clarify
matters by a general group theoretical approach that in
addition generalizes our previous work to the case where
spin-orbit interactions are absent, and also to the case of
time reversal symmetry breaking. We also consider the
effect of glide-plane symmetries, and find that these do
not protect line nodes as do the screw-axis symmetries.

II. GROUP THEORY

The nodal structure of superconducting order parame-
ters can be understood from representations of the sym-
metry group of the underlying crystal. The absence
of certain representations on high-symmetry planes or
lines in the Brillouin zone implies the presence of line
or point nodes of the Cooper-pair wave function, re-
spectively, in cases where the Fermi surface intersects
these planes or lines. Representations of the super-
conducting order parameter in symmorphic crystals are
readily found from the underlying point-group symme-
tries.10 Non-symmorphic crystals, however, contain sym-
metries which consist of the combined operation of point-
group elements with translations by fractions of a lat-
tice vector. These non-primitive translations generate
additional phase factors which have to be accounted
for in the derivation of the Cooper-pair representa-
tions. Indeed, these phase factors may conspire in a
way to exclude some of the symmetry-allowed represen-
tations on high symmetry planes, implying the possibil-
ity of new symmetry-enforced line nodes of the order
parameter which are absent in symmorphic crystals.6,7

A convenient way to derive space-group representations
of the Cooper-pair wave function is to construct anti-
symmetrized products of the irreducible single-particle
space-group representations,11–13 as we discuss next.
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A. Induced Cooper-pair representations

Consider a centrosymmetric crystal generated by a
non-symmorphic space-group. In the following, we de-
note space-group elements by (g, t), where g refers to
the point-group operation and t accounts for possi-
ble non-primitive lattice translations, e.g. (I, 0) is the
inversion symmetry, etc. Our focus here is on line
nodes in odd-parity superconductors protected by non-
symmorphic symmetries. We therefore concentrate on
odd-parity representations of the Cooper-pair wave func-
tion at Brillouin-zone points k belonging to symmetry
planes of non-symmorphic symmetry operations. Specif-
ically, we consider symmetry planes kz = 0, π of a glide-
operation (σz, tσ) and the combined action of inversion
and two-fold screw axis, (2z, t2)(I, 0) (from now on, we
set the lattice constant to unity). Here and in the follow-
ing, 2z denotes the two-fold rotation around the z-axis,
σz is reflection in the z-plane, and t2/σ is half a primitive
translation along/perpendicular to the z-direction.

One can construct representations of the Cooper-pair
wave function from the single-particle representations
γk of symmetry-operations m ∈ Gk leaving k invariant
(the “little group”).12 To this end, one induces represen-
tations P− of the anti-symmetrized Kronecker-product
with vanishing total momentum (modulo a reciprocal lat-
tice vector)11–13

χ(P−(m)) =χ(γk(m))χ(γk(ImI)), (1)

χ(P−(Im)) =− χ(γk(ImIm)), (2)

where χ are the characters of the representation and for
notational convenience we introduced I ≡ (I, 0). In the
presence of the spin-orbit interaction, the above equa-
tions characterize the pseudo-spin triplet components of
the Cooper-pair wave function. In the absence of spin-
orbit, spin-rotational symmetry is conserved and they
account for the Cooper pair’s orbital degree of freedom
of a spin-triplet state.

Single-particle representations γk entering Eqs. (1), (2)
are double- or single-valued, depending on the presence
of the spin-orbit interaction. Time-reversal symmetry θ
can moreover induce extra degeneracies. These are de-
tected by Herring’s criterion14,15 and taken into account
by passing to the corresponding co-representations (see
Appendix A). We next apply the outlined procedure to
construct Cooper-pair representations for the symmetries
of interest.

B. Two-fold screw axis

Consider first the presence of a two-fold screw sym-
metry (2z, t2) along the z-axis. Line nodes can be en-
forced on the symmetry planes kz = 0, π character-
ized by the little group Gk = {(E, 0), (σz, t2)}. No-
tice that in spite of its non-primitive translation vector
(σz, t2) = (2z, t2)I is a symmorphic operation since the

former can be removed by redefinition of the spatial ori-
gin (that is, it is a mirror plane, not a true glide plane).
We next induce representations in the described manner,
i.e. by defining characters for the symmetry operations
in Gk ∪ IGk = {(E, 0), (σz, t2), (I, 0), (2z, t2)}.

Recalling the multiplication rule for non-symmorphic
group elements,12 (g1, t1)(g2, t2) = (g1g2, t1 + g1t2), it is
verified that I(σz, t2)I = e−ikz (σz, t2). We can thus sim-
plify characters in Eqs. (1), (2) for the symmetry planes
of interest as summarized in Table I. From this table we
then read off irreducible components of the Cooper-pair
representations given in Table II. Notice that the second
column in Tables I and II determines the mirror eigen-
value of the Cooper pair. We are thus left with the task
of finding characters in the second and fourth column
which depend on the underlying symmetries.

In the presence of the spin-orbit interaction, γk are
double-valued with purely imaginary eigenvalues. That
is, χ(γk(σ2

z , 0)) = −d and χ(γk(σz, t2)) = ±id with d
the dimension of γk. Time-reversal symmetry may in-
duce extra degeneracies. Applying Herring’s criterion
one indeed detects (Kramers) degeneracies on both sym-
metry planes. That is, d = 2 and one has to consider the
corresponding double-valued co-representations (see Ap-
pendix A for details). If time-reversal symmetry is bro-
ken, γk are one-dimensional. In the absence of the spin-
orbit interaction, γk only account for the orbital degree of
freedom, i.e. are single-valued. That is, χ(γk(σ2

z , 0)) = d
and χ(γk(σz, t2)) = ±d. Herring’s criterion then sig-
nals degeneracies induced by time-reversal symmetry on
the Brillouin zone face kz = π. The latter are known as
“sticking of bands” induced by a two-fold screw axis14–16,
and one has to pass to the single-valued co-representation
(see again Appendix A for details). When time-reversal
symmetry is broken, γk are again one-dimensional.

All characters of the induced representations are sum-

(E, 0) (σz, t2) (I, 0) (2z, t2)

kz = π d2 −χ2((σz, t2)) −d χ((σ2
z , 0))

kz = 0 d2 χ2((σz, t2)) −d −χ((σ2
z , 0))

TABLE I: Character table for representations P− of anti-
symmetrized Kronecker deltas induced by single-particle rep-
resentations of dimension d on the high-symmetry planes. For
notational convenience, we suppress γk.

(E, 0) (σz, t) (I, 0) (2z, t)

Ag 1 1 1 1

Au 1 −1 −1 1

Bg 1 −1 1 −1

Bu 1 1 −1 −1

TABLE II: Character table for the irreducible representations
of the Cooper-pair wave function on high symmetry planes
of a screw-axis/glide-plane (t = tz/σ for a screw-axis/glide-
plane). The second column determines the mirror eigenvalue
of the Cooper pair.
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SO TRS BZ plane irreducible components

yes yes kz = π P− = Ag + 3Bu

kz = 0 P− = Ag +Bu + 2Au

yes no kz = π P− = Bu

kz = 0 P− = Au

no yes kz = π P− = Ag +Bu + 2Au

kz = 0 P− = Bu

no no kz = π P− = Au

kz = 0 P− = Bu

TABLE III: Decompositions of Cooper-pair representations
into their irreducible components. Here g and u denote the
even- and odd-parity representations and Ag/Bu and Bg/Au
are representations which are even and odd under reflection in
the symmetry plane (i.e., mirror eigenvalues ±1), respectively.
The results depend on the presence of time-reversal symmetry
(TRS) and the spin-orbit interaction (SO).

marized in Appendix B. Table III gives the decompo-
sition of the resulting Cooper-pair representations into
irreducible components of Table II. The first four rows
apply in the limit of a strong spin-orbit interaction.
Following Anderson,17 analogues of Cooper-pair singlet
and triplets can then be constructed from Kramers de-
generate states k, θIk and their time-reversed part-
ners θk, Ik. The pseudo-spin singlet d0 belongs to
the one-dimensional even-parity representation (g) and
the pseudo-spin triplet states dx, dy, dz span the three-
dimensional odd-parity representation (u).18 On the high
symmetry planes, the representations are additionally
characterized by their mirror eigenvalue, i.e. pair-wave
functions are even (Ag, Bu) or odd (Bg, Au) under reflec-
tion about the plane.19

The first two rows show that transformation proper-
ties of pseudo-spin triplets with respect to the mirror
plane change from the basal plane to the Brillouin zone
face. That is, in the presence of time-reversal symme-
try, all possible pair representations are allowed on the
basal plane kz = 0. This is in accordance with Blount’s
theorem, since dx and dy belong to one representation,
and dz to the other. On the Brillouin zone face, on the
other hand, odd-parity representations which are odd un-
der reflection in the plane are absent (that is, all com-
ponents of d belong to the same representation). This
opens the possibility of symmetry protected line nodes
when the Fermi surface intersects the Brillouin zone face
and provides a counter example to Blount’s theorem as
previously discussed in Refs. 6 and 7. The third and
fourth line describe situations in which Kramers degen-
eracy is lifted by strong time-reversal symmetry breaking.
In this case, only one of the four Cooper pair functions
survives, i.e. the pseudo-spin triplet component formed
from degenerate states k, Ik (we consider pairing of non-
degenerate states later). Time-reversal symmetry break-
ing thus opens the possibility of symmetry-protected line
nodes on both symmetry planes. This has also been dis-
cussed in a recent work by Nomoto and Ikeda.20

The last four rows apply in the absence of the spin-
orbit interaction. The indicated representations then
classify the orbital part of the pair wave function. This
is combined with one of the three symmetric spin-triplet
states to guarantee overall anti-symmetry of the pair
wave function. In the absence of band degeneracies, rep-
resentations are thus one-dimensional, as in the last three
rows, allowing for symmetry protected line nodes on both
symmetry planes. In the presence of time-reversal sym-
metry, the two-fold screw axis induces, however, sticking
of bands on the Brillouin zone face14–16 (fifth row). One
thus finds four allowed representations and both mirror
eigenvalues are realized. In the absence of both the spin-
orbit interaction and time reversal breaking, symmetry-
protected line-nodes are thus possible on the basal plane
but do not exist on the Brillouin zone face. The differ-
ence from the first two lines of this Table is that this
sticking of bands allows the formation of interband pairs
in this case.8 The interband pairs are odd in the band
index, implying that the intra-orbital part of the Cooper
pair wave function is even to guarantee overall odd par-
ity (that is, they have opposite mirror eigenvalues to
the intraband pairs). We will return to this point be-
low. In the absence of time-reversal symmetry, protected
line nodes can appear on both symmetry planes, inde-
pendent of the spin-orbit interaction. Finally, we note
that for time reversal symmetry breaking, the inversion
of the sign of the Cooper-pair mirror eigenvalue of one-
dimensional representations in the presence (third and
fourth rows) and absence (seventh and eighth rows) of
the spin-orbit interaction is readily related to the double-
and single-valuedness of the representations.

C. Glide plane

Consider next a glide-plane symmetry (σz, tσ), where
without loss of generality we can assume tσ parallel to
the x-axis. The little group on the symmetry planes
kz = 0, π is Gk = {(E, 0), (σz, tσ)} and we induce repre-
sentations for the symmetry operations in Gk ∪ IGk =
{(E, 0), (σz, tσ), (I, 0), (2z, tσ)}. Here (2z, tσ) in spite of
its non-primitive translation is a symmorphic operation
(again the translation can be removed by redefinition
of the spatial origin). Using the commutation relation
I(σz, tσ)I = e−ikx(σz, tσ), characters of the induced rep-
resentations can be simplified, as shown in Table IV. The
induced representations are identical on both symmetry

(E, 0) (σz, tσ) (I, 0) (2z, tσ)

kz = π, 0 d2 e−ikxχ2((σz, tσ)) −d −χ((σ2
z , 0))

TABLE IV: Character table for representations P− of anti-
symmetrized Kronecker deltas induced by single-particle rep-
resentations of dimension d on the high-symmetry planes. For
notational convenience, we suppress γk, and assume tσ par-
allel to the x-axis.
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SO TRS BZ plane irreducible components

yes yes kz = π, 0 P− = Ag +Bu + 2Au

yes no kz = π, 0 P− = Au

no yes/no kz = π, 0 P− = Bu

TABLE V: Decompositions of Cooper-pair representations
into their irreducible components. The latter depend on the
presence of time-reversal symmetry (TRS) and the spin-orbit
interaction (SO). Here, g/u denote representations which are
even/odd under inversion and Ag/Bg, respectively, Bu/Au
which are even/odd under reflection in the symmetry plane.

planes. The dimension d and characters for (σz, tσ) and
(σ2
z , 0) depend again on the underlying symmetries.
Let us first consider the presence of the spin-

orbit interaction with double-valued representations,
χ(γk(σ2

z , 0)) = −d. If time-reversal symmetry is pre-
served, Herring’s criterion indicates the presence of
(Kramers) degeneracies on both symmetry planes. That
is, d = 2 and we need to pass to the double-valued co-
representation (see Appendix A for details). If time-
reversal symmetry is broken, γk remain one-dimensional
and χ(γk(σz, tσ)) = ±ieikx/2. In the absence of the
spin-orbit interaction, on the other hand, all single-
particle representations are one-dimensional, indepen-
dent of time-reversal symmetry.

All characters of the induced representations are sum-
marized in Appendix B. Table V shows the decompo-
sitions of the resulting Cooper-pair representations into
irreducible components of Table II. If the spin-orbit in-
teraction and time-reversal symmetry are both present,
all odd-parity representations are allowed on both planes.
That is, glide-plane symmetries do not provide us with
counter examples to Blount’s theorem. In the absence of
either time-reversal symmetry or the spin-orbit interac-
tion, symmetry-protected line nodes can occur on both
symmetry planes.

Our discussion so far has shown that in the presence
of time-reversal symmetry and the spin-orbit interaction,
only two-fold screw axes can protect line nodes in odd-
parity superconductors. Next, we discuss that these line
nodes typically form as loops.

III. NODAL STRUCTURE OF ODD-PARITY
SUPERCONDUCTORS

As pointed out by Yanase,8 the nodal lines discussed
above in the kz = π zone face actually reconstruct to
form nodal loops in the case of UPt3. The latter are,
in contrast to line nodes, contractible, i.e. they continu-
ously shrink to zero as the ratio of the superconducting
gap to the spin-orbit interaction increases. The forma-
tion of these nodal loops can be understood from the
results of Section II. In particular, along the A-L lines of
this zone face, the spin-orbit interaction vanishes, leading
to band sticking (this band sticking effect has been seen
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FIG. 1: Illustration of nodal loops in UPt3 based on the toy
model of Yanase.8 Solid curves indicate the superconducting
state dispersion, dashed curves the normal state dispersion.
(a) dispersion along A-H for ∆=0.1, where A is (0,0,π/c) and
H is (0,4/3a,π/c). (b) dispersion along A-L for ∆=0.1, where
A is (0,0,π/c) and L is (2π/

√
3a,0,π/c). Here, ∆ is the value

of the superconducting E2u order parameter in these energy
units, this being the f function of Yanase which pairs electrons
between two near-neighbor uranium sites (taken here as a
constant for illustrative purposes). The nodes in (a) (due to
the absence of intraband pairing for E2u symmetry) and their
lack thereof in (b) (due to interband pairing, which is allowed
for this symmetry) lead to the two nodal lines closing to form
nodal loops in the kz=π/c zone face. (c) Same as (a), but for
∆=0.5, showing the disappearance of the nodes along A-H,
and thus the collapse of the nodal loops.23 (d) dispersion along
kz normal to the second node along A-H in (a), illustrating
that these are nodal loops, and not toroidal Fermi surfaces.
This can also be seen from plots like in (a), where the nodes
lift when kz deviates from π/c.

in UPt3 from breakdown orbits in deHaas-vanAlphen
measurements21). This means that interband pairs can
form at these sticking points on the Fermi surface, and
since they have opposite mirror eigenvalues, they are al-
lowed representations for the case where the intraband
pairs are not allowed. This leads to a gapping of the
Fermi surface at these points, thus converting the nodal
lines to nodal loops, as we illustrate in Figs. 1 and 2.
As the order parameter increases, these nodal loops will
eventually shrink to zero, leading to a topological transi-
tion (Fig. 1c). In Ref. 9, topological arguments are pre-
sented (following earlier work22) that confirm the group
theoretical ones. There, a claim was made that the topo-
logical arguments are more general than the group the-
ory ones, but in fact they are equivalent. In particular,
as we showed in Section II, in the presence of time rever-
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FIG. 2: Nodal loops in the kz=π/c zone face using the pa-
rameters from Fig. 1. They form due to the energy gap from
interband pairing that occurs along the A-L lines.

sal symmetry breaking, the nodal structure of the pairs
changes due to lifting of the degeneracy of the single-
particle states.

Although much of the discussion above was motivated
by UPt3, there are other superconductors that have non-
symmorphic space groups. We earlier mentioned UBe13.
But its space group does not have a screw axis, but rather
a glide plane, so we would not expect nodal lines in this
case for odd parity pairing, which is consistent with spe-
cific heat data.24 But, URhGe, UCoGe, and UIr have
screw axes, though the last breaks inversion symmetry,
meaning even and odd parity can mix.1 Moreover, the
presence of magnetism can induce non-symmorphic be-
havior and nodal lines as recently discussed in the con-
text of UCoGe and UPd2Al3.20 Yet to be explored are
the consequences of the effects discussed here on poten-
tial topological surface states. This will be addressed in
future work.
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Appendix A: Herring’s criterion and
co-representations

As stated in the main text, time-reversal symmetry
θ can induce additional degeneracies. In this case, one
should pass from the representations to corresponding co-
representations of the magnetic group Gk = Gk + IθGk.
Degeneracies induced by θ can be detected by Herring’s

criterion from the sum of characters,15

∑
B∈Gk

χ
(
γk(IθB)2

)
=


+|Gk| case (a)

−|Gk| case (b)

0 case (c).

(A1)

Here |Gk| is the order of the little group. In case (a) no
degeneracies are induced, while (b) and (c) indicate the
presence of degeneracies. The latter are accounted for by
passing to co-representations γk 7→ Γk ≡

( γk
γ̄k

)
, where

γ̄k(m) = γk(m) in case (b) and γ̄k(m) = γ∗k((Iθ)−1m Iθ)
in case (c), respectively, with ‘ ∗ ’ the complex conjuga-
tion. We next consider the cases of interest.
Two-fold screw axis:— In presence of the spin-orbit

interaction, the sum of characters for double-valued rep-
resentations reads

χ
(
[Iθ(E, 0)]2

)
+ χ

(
[Iθ(σz, t2)]2

)
= −χ ((E, 0))− eikzχ

(
(σ2
z , 0)

)
= −1 + eikz, (A2)

where we used that θg1θg2 = −g1g2. For double val-
ued co-representations on the basal-plane (case (c)), we
then employ γ̄k((σz, t2)) = γ∗k

(
(Iθ)−1(σz, t2) Iθ

)
=

γ∗k((σz, t2)). For single-valued representations, on the
other hand, θg1θg2 = g1g2 and

χ
(
[Iθ(E, 0)]2

)
+ χ

(
[Iθ(σz, t2)]2

)
= χ ((E, 0)) + eikzχ

(
(σ2
z , 0)

)
= 1 + eikz . (A3)

For the single-valued co-representation on the Bril-
louin zone face (case (c)), we use that γ̄k((σz, t2)) =
γ∗k
(
(Iθ)−1(σz, t2) Iθ

)
= −γ∗k ((σz, t2)).

Glide-plane symmetry:— In the presence of the spin-
orbit interaction

χ
(
[Iθ(E, 0)]2

)
+ χ

(
[Iθ(σz, tσ)]2

)
= −χ((E, 0)) + χ

(
(σ2
z , 0)

)
= 0, (A4)

and for the double valued co-representations (case (c)),
we then employ γ̄k((σz, tσ)) = γ∗k

(
(Iθ)−1(σz, tz) Iθ

)
=

eikxγ∗k((σz, t2)), i.e. Γk((σz, tσ)) = ±eikx/2( i −i ). In the
absence of the spin-orbit interaction

χ
(
[Iθ(E, 0)]2

)
+ χ

(
[Iθ(σz, tσ)]2

)
= χ ((E, 0)) + χ

(
(σ2
z , 0)

)
= 2. (A5)

Appendix B: Irreducible representations of the
Cooper-pair wave function

We summarize the characters of induced representa-
tions in the case of a two-fold screw axis (Table VI) and
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a glide-plane symmetry (Table VII). The decompositions
of Cooper-pair representations into their irreducible com-
ponents are done using the character table for the zero-
momentum representations of the Cooper-pair wave func-
tion defined in Table II in the main text.

SO TRS BZ plane (E, 0) (σz, t2) (I, 0) (2z, t2)

yes yes kz = π 4 4 −2 −2

kz = 0 4 0 −2 2

yes no kz = π 1 1 −1 −1

kz = 0 1 −1 −1 1

no yes kz = π 4 0 −2 2

kz = 0 1 1 −1 −1

no no kz = π 1 −1 −1 1

kz = 0 1 1 −1 −1

TABLE VI: Character table for representations P− of anti-
symmetrized Kronecker deltas on symmetry planes induced
by single-particle representations. Depending on the pres-
ence of time-reversal symmetry (TRS) and the spin-orbit in-
teraction (SO), the latter are single or double-valued (co-
)representations.

SO TRS BZ plane (E, 0) (σz, tσ) (I, 0) (2z, tσ)

yes yes kz = π, 0 4 0 −2 2

yes no kz = π, 0 1 −1 −1 1

no yes/no kz = π, 0 1 1 −1 −1

TABLE VII: Character table for representations P− of anti-
symmetrized Kronecker deltas on symmetry planes induced
by single- or double-valued (co-)representations.
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