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We explore the phase diagram of the Kitaev-Heisenberg model with nearest neighbor interactions
on the honeycomb lattice using the exact diagonalization of finite systems combined with the cluster
mean field approximation, and supplemented by the insights from analytic approaches: the linear
spin-wave and second–order perturbation theories. This study confirms that by varying the balance
between the Heisenberg and Kitaev term, frustrated exchange interactions stabilize in this model
either one of four phases with magnetic long range order: Néel phase, ferromagnetic phase, and
two other phases with coexisting antiferromagnetic and ferromagnetic bonds, zigzag and stripy
phase, or one of two distinct spin-liquid phases. Out of these latter disordered phases, the one with
ferromagnetic Kitaev interactions has a substantially broader range of stability as the neighboring
competing ordered phases, ferromagnetic and stripy, have very weak quantum fluctuations. Focusing
on the quantum spin-liquid phases, we study spatial spin correlations and dynamic spin structure
factor of the model by the exact diagonalization technique, and discuss the evolution of gapped
low-energy spin response across the quantum phase transitions between the disordered spin liquid
and phases with long range magnetic order.

I. INTRODUCTION

Frustration in magnetic systems occurs by competing
exchange interactions and leads frequently to disordered
spin-liquid states1–3. Recent progress in understand-
ing transition metal oxides with orbital degrees of free-
dom demonstrated many unusual properties of systems
with active t2g degrees of freedom — they are character-
ized by anisotropic hopping4–8 which generates Ising-like
orbital interactions9–17, similar to the orbital superex-
change in eg systems18,19. Particularly challenging are
4d and 5d transition metal oxides, where the interplay
between strong electron correlations and spin-orbit in-
teraction leads to several novel phases20,21. In iridates
the spin-orbit interaction is so strong that spins and or-
bital operators combine to new S = 1/2 pseudospins at
each site22, and interactions between these pseudospins
decide about the magnetic order in the ground state.

The A2IrO3 (A=Na, Li) family of honeycomb iridates
has attracted a lot of attention as these compounds have
t2g orbital degree of freedom and lie close to the exactly
solvable S = 1/2 Kitaev model23. This model has a
number of remarkable features, including the absence of
any symmetry breaking in its quantum Kitaev spin-liquid
(KSL) ground state, with gapless Majorana fermions23

and extremely short-ranged spin correlations confined to

nearest neighbors24. We emphasize that below we call a
KSL also disordered spin-liquid states which arise near
the Kitaev points in presence of perturbing Heisenberg
interactions ∝ J .

By analyzing possible couplings between the Kramers
doublets it was proposed that the microscopic model ad-
equate to describe the honeycomb iridates includes Ki-
taev interactions accompanied by Heisenberg exchange
in form of the Kitaev-Heisenberg (KH) model25. Soon
after the experimental evidence was presented that sev-
eral features of the observed zigzag order are indeed cap-
tured by the KH model26–34. Its parameters for A2IrO3

compounds are still under debate at present35,36. One
finds also a rather unique crossover from the quasipar-
ticle states to a non-Fermi liquid behavior by varying
the frustrated interactions37. Unfortunately, however, it
was recently realized that this model is not sufficient to
explain the observed direction of magnetic moments in
Na2IrO3 and its extension is indeed necessary to describe
the magnetic order in real materials38,39. For example,
bond-anisotropic interactions associated with the trigo-
nal distortions have to play a role to explain the dif-
ferences between Na2IrO3 and Li2IrO3

40, the two com-
pounds with quite different behavior reminiscent of the
unsolved problem of NaNiO2 and LiNiO2 in spin-orbital
physics19. On the other hand, the KH model might be
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applicable in another honeycomb magnet α-RuCl3, see
e.g. a recent study of its spin excitation spectrum41.

Understanding the consequences of frustrated Heisen-
berg interactions on the honeycomb lattice is very chal-
lenging and has stimulated several studies42–45. The KH
model itself is highly nontrivial and poses an even more
interesting problem in the theory25,34,46,47: Kitaev term
alone has intrinsic frustration due to directional Ising-like
interactions between the spin components selected by the
bond direction23. In addition, these interactions are dis-
turbed by nearest neighbor Heisenberg exchange which
triggers long-range order (LRO) sufficiently far from the
Kitaev points25,34,46,47. In general, ferromagnetic (FM)
and antiferromagnetic (AF) interactions coexist and the
phase diagram of the KH model is quite rich as shown in
several previous studies25,34,46–49. Finally, the KH model
has also a very interesting phase diagram on the trian-
gular lattice50–53. These studies motivate better under-
standing of quantum effects in the KH model on the hon-
eycomb lattice in the full range of its competing interac-
tions.

The first purpose of this paper is to revisit the phase
diagram of the KH model and to investigate it further
by comparing exact diagonalization (ED) result34 with
the self-consistent cluster mean field theory (CMFT),
supplemented by the insights from the linear spin-wave
theory (LSWT) and the second–order perturbation the-
ory (SOPT). The main advantage of CMFT is that it
goes beyond a single site mean field classical theory and
gives not only the symmetry-broken states with LRO,
but partly includes quantum fluctuations as well, namely
the ones within the considered clusters43,54. In this way
the treatment is more balanced and may allow for dis-
ordered states in cases when frustration of interactions
dominates.

We present below a complete CMFT treatment of the
phase diagram which includes also the Kitaev term in
MF part of the Hamiltonian and covers the entire pa-
rameter space (in contrast to the earlier prototype ver-
sion of CMFT calculation on a single hexagon for the
KH model55). Note that the CMFT complements the ED
which is unable to get symmetry breaking for a finite sys-
tem, but nevertheless can be employed to investigate the
phase transitions in the present KH model by evaluating
the second derivative of the ground state energy to iden-
tify phase transitions by its characteristic maxima25,34.
ED result can be also used to recognize the type of mag-
netic order by transforming to reciprocal space and com-
puting spin-structure factor. The second purpose is to
investigate further the difference between quantum KSL
regions around both Kitaev points mentioned in Ref.34

and LRO/KSL boundaries.

The paper is organized as follows: In Sec. II we intro-
duce the KH model and define its parameters. In Sec.
III we present three methods of choice: (i) the exact di-
agonalization in Sec. III A, (ii) the self-consistent CMFT
in Sec. III B, and (iii) linear spin wave theory in Sec.
III D. An efficient method of solving the self-consistence

problem obtained within the CMFT is introduced in Sec.
III C. The numerical results are presented and discussed
in Sec. IV: (i) the phase transitions and the phase di-
agram are introduced in Sec. IV A, and (ii) the phase
boundaries, the values of the ground state energies and
the magnetic moments obtained by different methods are
presented and discussed in Secs. IV B and IV C, and (iii)
we discuss the impact of the Kitaev interaction on dif-
ferent spin ordered states in Sec. IV C. Spin correlations
obtained for various phases are presented in Sec. V. The
dynamical spin susceptibility and spin structure factor
are introduced and analyzed for different phases in Sec.
VI. Finally, in Sec. VII we present the main conclusions
and short summary. The paper is supplemented with
Appendix where we explain the advantages of the lin-
earization procedure implemented on the CMFT on the
example of a single hexagon.

II. KITAEV-HEISENBERG MODEL

We start from the KH Hamiltonian with nearest neigh-
bor interactions on the honeycomb lattice in a form,

H ≡ K
∑
〈ij〉‖γ

Sγi S
γ
j + J

∑
〈ij〉

Si · Sj , (2.1)

where γ = x,y,z labels the bond direction. The Kitaev
term ∝ K favors local bond correlations of the spin com-
ponent interacting on the particular bond. The superex-
change J is of Heisenberg form and alone would gen-
erate a LRO state, antiferromagnetic or ferromagnetic,
depending on whether J > 0 or J < 0. We fix the overall
energy scale,

J2 +K2 = 1, (2.2)

and choose angular parametrization:

K = sinϕ, J = cosϕ, (2.3)

varying ϕ within the interval ϕ ∈ [0, 2π]. This
parametrization exhausts all the possibilities for nearest
neighbor interactions in the KH model.

While zigzag AF order was observed in Na2IrO3
28–32,

its microscopic explanation has been under debate for a
long time. The ab initio studies56,57 give motivation to
investigate a broad regime of parameters K and J , see
Eqs. (2.3). Further motivation comes from the honey-
comb magnet α-RuCl3

41. Note that we do not intend
to identify the parameter sets representative for each in-
dividual experimental system, but shall concentrate in-
stead on the phase diagram of the model Eq. (2.1) with
nearest neighbor interactions only.
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III. CALCULATION METHODS

A. Exact diagonalization

We perform Lanczos diagonalization for N = 24-site
cluster with periodic boundary conditions (PBC). This
cluster respects all the symmetries of the model, includ-
ing hidden ones. Among the accessible clusters it is ex-
pected to have the minimal finite-size effects.

B. Cluster mean field theory

A method which combines ED with an explicit break-
ing of Hamiltonian’s symmetries is the so-called self-
consistent CMFT. It has been applied to several models
with frustrated interactions, including Kugel-Khomskii
model54. The method was also extensively used by Al-
buquerque et al.43 as one of the means to establish the
full phase diagram of Heisenberg-J2-J3 model on the hon-
eycomb lattice.

Within CMFT the internal bonds of the cluster [con-
necting the circles in Fig. 1(a)] are treated exactly. The
corresponding part HIN of the Hamiltonian is the near-
est neighbor KH Hamiltonian, Eq. (2.1). The external
bonds that connect the boundary sites (•) with the corre-
sponding boundary sites of periodic copies of the cluster
(2) are described by the MF part of the Hamiltonian,

HMF ≡ K
∑

[ij]‖z

〈Szi 〉Szj + J
∑
[ij]

〈Szi 〉Szj , (3.1)

where [ij] marks the external bonds. Since the ordered
moments in KH model align always along one of the cubic
axes x, y, z (see e.g. Ref.25) we have put

〈~Si〉 · ~Sj ≡ 〈Szi 〉Szj (3.2)

in HMF to simplify the calculations.
The averages 〈Szi 〉 generate effective magnetic fields

acting on the boundary sites of the cluster. The total
Hamiltonian

H ≡ HIN +HMF, (3.3)

is diagonalized in a self-consistent manner, taking slightly
different approach than the one presented in Ref.43: in-
stead of starting with random wave function our algo-
rithm begins with expectation values 〈Szi 〉ini on each
boundary site i of the cluster. These can represent a
certain pattern (zigzag, stripy, Néel, FM) or be set ran-
domly to have a “neutral” starting point. After diago-
nalizing the Hamiltonian (3.3) (again by the ED Lanczos
method) the ground state of the system is obtained and
we recalculate the expectation values 〈Szi 〉 to be used in
the second iteration. The procedure is repeated until
self-consistency is reached.
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FIG. 1. (a) 24-site cluster and the introduction of the mean
fields. Gray (black) circles indicate internal (boundary) sites.
In CMFT the internal bonds of the cluster are treated ex-
actly while the external bonds crossing the cluster boundary
(dashed) are treated on the MF level. The sites marked by 2

generate an effective magnetic fields on the boundary sites •.
Labels x, y and z stand for three inequivalent bond directions
determining the active products Sγi S

γ
j in Kitaev part of the

Hamiltonian (2.1), e.g. bonds of x direction contribute with
the Sxi S

x
j product to the Hamiltonian, etcetera. The pseu-

dospin axes used here are parallel to the cubic axes indicated
in the top view of a single octahedron. (b) Unit cells: for
honeycomb lattice (coinciding with single hexagon of that lat-
tice), for triangular lattice (inner dotted hexagon) and zigzag
magnetic unit cell (dashed rectangle). Black and white circles
stand for up/down spin and indicate one of three equivalent
zigzag patterns. (c) Corresponding Brillouin zones and spe-
cial q points for the lattice constant a = 1. The q vectors
compatible with the 24-site cluster in (a) are also shown.

C. Linearized cluster mean field theory

A single iteration of the self-consistent MF calculation
may be viewed as a nonlinear mapping of the set of ini-
tial averages {〈Szi 〉in} to the resulting averages {〈Szi 〉fin}.
The self-consistent solution is then a stable stationary
point of such a mapping. To find the leading instability,
we may consider the case of small initial averages in the
CMFT calculation and identify the pattern characterized
by the fastest growth during the iterations. To this end
we linearize the above mapping.

In the lowest order the mapping corresponds to the
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10
-1

10
0

10
1

10
2

0 π/2 π 3π/2 2π
λ

(a)

(b)

FIG. 2. (a) The values of λ obtained by the linearization
of CMFT for an embedded cluster of N = 24 sites with fixed
magnetic order patterns: FM, AF, stripy, and zigzag. Leading
λ > 1 indicates the order that sets in. The disordered KSL
phases near ϕ = π/2 and 3π/2 are indicated by red. (b)
Second derivative of the ground state energy, −d2E0(ϕ)/dϕ2,
obtained by ED. Adopted from Ref.34.

multiplication of the vector of the averages {〈Szi 〉in} by
the matrix,

Fij =
∂〈Szi 〉fin

∂〈Szj 〉in
, (3.4)

where i and j run through the cluster boundary sites.
During iterations, the patterns corresponding to the in-
dividual eigenvectors of the matrix F grow as λn after
n iterations for a particular eigenvalue λ. The ordering
pattern obtained by CMFT is then given by the eigenvec-
tor with largest λmax > 1. In the quantum KSL regimes,
all the eigenvalues are less than 1 and no magnetic order
emerges. An example of linearized CMFT applied to a
single hexagon with PBC can be found in the Appendix.

A modified version of this method, used to obtain Fig.
2(a), assumes a particular ordered pattern (Néel, zigzag,
FM, or stripy phase) and uses a single spin average 〈Sz〉in
distributed along the boundary sites outside the cluster,
with the signs consistent with this pattern. The resulting
values, 〈Szi 〉fin, are then averaged correspondingly. In this
case the matrix F is reduced to a single value λ plotted in
Fig. 2(a). We observe that the largest eigenvalue either
drops below 1 when the disordered KSL state takes over,
or interchanges with another eigenvalue at a quantum
phase transition to a different ordered phase.

D. Linear spin-wave theory

The LSWT is a basic tool to determine spin excita-
tions and quantum corrections in systems with LRO58.

For systems with coexisting AF and FM bonds quantum
corrections are smaller than for the Néel phase on the
same lattice but are still substantial for S = 1/2 spins59.
For the KH model the LSWT25,29,34 has to be imple-
mented separately for each of the four ordered ground
states: Néel (N), zigzag (ZZ), FM, or stripy (ST). Then
for a particular ground state the Hamiltonian is rewritten
in terms of the Holstein-Primakoff bosons29,60 and only
quadratic terms in bosonic operators are kept. The spec-
trum of such quadratic Hamiltonian is finally obtained
using the successive Fourier and Bogoliubov transforma-
tions.

While the spin wave dispersion relations are usually of
prime interest25,29,34,60, there are also two other quan-
tities which can easily be calculated using LSWT and
which will be important in the discussion that follows: (i)
the value of the total ordered moment 〈M〉 per site, and
(ii) the total energy per site 〈E〉. These observables are
calculated in a standard way58,59 and expressed in terms
of the eigenvalues, i.e., spin-wave energies ωkα, and the
eigenvector components {vkαλ}) of the bosonic Hamilto-
nian before the Bogoliubov transformation:

〈M〉 = S − 1

LV

∑
α,λ=1,...,L

∫
k∈BZ

|vkα,λ|2 d2k, (3.5)

and

〈E〉 =Ecl [S2 → S(S + 1)]

+
S

2LV

∑
α=1,...,L

∫
k∈BZ

ωkα d
2k, (3.6)

where the choice of the sign of the eigenvalues and the
normalization of their eigenvectors is described in Ref.58.
Here Ecl is the classical ground state energy per site, e.g.

Ecl = −JzS2/2, (3.7)

with z = 3 for the Néel phase atK = 0 and S = 1/2 is the
value of spin quantum number. L in Eqs. (3.5)-(3.6) is
the number of the eigenvalues of the problem (spin-wave
modes) and α enumerates these modes. For all cases
except for the zigzag order25, the integrals go over the
two-sublattice (L = 2) rectangular Brillouin zone (BZ)61

with its volume V = 8π2/3
√

3 and −π/
√

3 ≤ kx ≤ π/
√

3,
−2π/3 ≤ ky ≤ 2π/3 (as already mentioned we assume
the lattice constant a = 1). For the zigzag state L = 4

and the rectangular BZ can be chosen as: −π/
√

3 ≤
kx ≤ π/

√
3 and −π/3 ≤ ky ≤ π/3 and its volume is

V = 4π2/3
√

3.

IV. QUANTUM PHASE TRANSITIONS

A. Phase diagram

Here we supplement the ED–based phase diagram for
the KH model Eq. (2.1) established in Ref.34 with the
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FIG. 3. T = 0 phase diagram for KH model. The outer ring
is composed from ED data for the 24-site cluster, reproducing
the result from Ref.34 in the new parametrization, the middle
ring shows CMFT results also for 24-site cluster and the inner
black circle represents the classical result. The convention
used for the angular parameter ϕ which determines coupling
constants [see Eqs. (2.3)] is shown in the center of the inner
circle. The colors represent particular phases, shown also as
mini-drawings next to suitable regions of the phase diagram.
Starting from ϕ = 0 green colored region corresponds to Néel
order, red — KSL, yellow — zigzag order, dark blue — FM,
red — KSL, light blue — stripy phase and again green —
Néel phase.

one obtained within CMFT. Figure 3 displays the phase
boundaries obtained with ED34, within CMFT, as well
as classical (Luttinger-Tisza) phase boundaries. The lat-
ter are included for completeness and to highlight the
fact that the quantum fluctuations stabilize the KSL
phases beyond single points, see below. To examine
them in more detail it is instructive to analyze the data
in Fig. 2(a) for the boundaries obtained from linearized
CMFT and Fig. 2(b) for the peaks in the second deriva-
tive of energy, −d2E0(ϕ)/dϕ2, giving phase boundaries
in ED34.

It is clearly visible that all the methods that include
quantum fluctuations give quantum versions of the four
classically established magnetic phases: Néel, zigzag, FM
and stripy. As the most important effect we note that
when quantum fluctuations are included within a classi-
cal phase, the energy is generally lowered and that the
emerging phase is expected to expand beyond the clas-
sical boundaries, but only in case when a phase which
competes with it has weaker quantum fluctuations. This
implies that phases of AF nature will expand at the ex-
pense of the FM ones as the latter phases have lower

energy gains by quantum fluctuations (which even van-
ish exactly for the FM order at K = 0 and J < 0).

We summarize the phase boundaries obtained within
different methods in Table I. One finds substantial cor-
rections to the quantum phase transitions which follow
from quantum fluctuations. These corrections are quite
substantial in both KSLs at the Kitaev points (K = +1,
ϕ = 1

2π and K = −1, ϕ = 3
2π, first column of Table I).

Indeed, in the classical approach massively degenerate
ground states exist just at isolated points but they are
replaced by disordered spin-liquid states that extend to
finite intervals of ϕ when quantum fluctuations are in-
cluded, see the second, third and fourth column in Table
I. The expansion of Néel and zigzag phases beyond clas-
sical boundaries is given by particularly large corrections
and is well visible.

The most prominent feature in the phase diagram de-
scribed above is however the difference in size between
two KSL regions, already addressed before using ED34

and also visible now in the CMFT data. Therefore, the
CMFT result supports the claim from Ref.34 that the
stability of KSL perturbed by relatively small Heisen-
berg interaction depends on the nature of the phases
surrounding the spin liquid and the amount of quantum
fluctuations that they carry. In the following we discuss
the above issues more thoroughly, examining: (i) ground
state energy curves emerging from ED, CMFT, SOPT
within the linked cluster expansion and LSWT, (ii) the
ordered moment given by various methods, (iii) the spin–
spin correlation functions, and (iv) the spin structure fac-
tor as well as the dynamical spin susceptibility in the
vicinity of the Kitaev points.

B. Quantum corrections: energetics

We start the discussion of quantum corrections to the
energy of the ordered phases by noting that, even though
it properly captures finite order parameters, the CMFT
looses quantum energy on the external bonds and would
therefore not provide a reliable estimate of the ground-
state energy. However, if one calculates instead the en-
ergy based on the correlations on the bonds of the central
hexagon, the estimate is significantly improved. Here we
choose the energy obtained using the ED calculations [see
Fig. 4(a)] as a reference value because of all the bonds
treated in an exact manner. This observation is also sup-
ported by the fact that the ED phase boundaries were
roughly confirmed by tensor networks (iPEPS)49 and
density matrix renormalization group (DMRG) results48:
While the iPEPS phase boundaries agree with ED for AF
KSL/LRO transitions and the boundaries between differ-
ent LRO phases differ only slightly from those found in
ED (iPEPS: zigzag/FM – 0.808π, stripy/Néel – 1.708π).
For FM KSL/LRO transition however the iPEPS result
deviates more, i.e., KSL/stripy – 1.528π. On the other
hand, DMRG boundaries agree perfectly with ED and
due to four–sublattice dual transformation10,25 one can
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TABLE I. Phase boundaries for KH model, parameterized by
the angle ϕ (in units of π), see Eqs. (2.3). Columns: clas-
sical Luttinger-Tisza approximation, second–order perturba-
tion theory (SOPT), exact diagonalization (ED), and self–
consistent cluster mean field theory (CMFT).

boundary classical SOPT ED CMFT

Néel/KSL 0.5 0.492 0.494 0.496

KSL/zigzag 0.5 0.507 0.506 0.505

zigzag/FM 0.75 0.813 0.814 0.825

FM/KSL 1.5 1.463 1.448 1.478

KSL/stripy 1.5 1.530 1.539 1.519

stripy/Néel 1.75 1.705 1.704 1.699

reproduce the FM/zigzag as well as FM/KSL boundaries.
Only the extent of the AF spin-liquid phase cannot be
extracted from this result, but that is already confirmed
by iPEPS.

Figure 4(a) shows a quite remarkable agreement be-
tween the energy values and critical values of ϕ obtained
by the simplest SOPT25 and our reference ED results.
This suggests that this analytical method can be utilized
to get better insight to the quantum contributions to the
ground state energy. For a phase X with LRO, the en-
ergy per site EX, written as a sum of the classical energy
Ecl and the quantum fluctuation contribution ∆EX, is
obtained as:

EN = −1

8
(K + 3J)− 1

16
(K + 3J), (4.1)

EZZ = −1

8
(K − J)− 1

16
(K − J), (4.2)

EFM = +
1

8
(K + 3J) +

1

16

K2

K + 2J
, (4.3)

EST = +
1

8
(K − J) +

1

16

(K + 2J)2

K
. (4.4)

In addition, to get the LRO/KSL phase boundary points
in Table I, we estimate the energy of the KSL phase as

EKSL '
3

2
(K + J)〈SγSγ〉Kitaev, (4.5)

using the analytical result for the Kitaev points24,
〈SγSγ〉Kitaev ≈ ±0.131.

The two spin-liquid phases in the phase diagram of
KH model differ strongly in their extent, despite the for-
mal equivalence of the FM (K = −1) and AF (K = 1)
Kitaev points provided by an exact mapping of the Ki-
taev Hamiltonian23. As mentioned earlier, this is due to
the fact that the two KSLs compete with LRO phases of
a distinct nature. Here we give a simple interpretation
based on the strength of the quantum corrections of the
LRO phases estimated using Eqs. (4.1)–(4.4). Later, in
Secs. V and VI we illustrate the different nature of the
transitions between FM and AF KSL and the surround-
ing it LRO phases in terms of spin correlations and spin
dynamics.
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FIG. 4. (a) Comparison between ground state energies per
site obtained using various methods: classical Luttinger-Tisza
approximation (dashed black), SOPT (solid red), LSWT
(dashed red), ED for 24-site cluster (solid blue, see34 for
this result in a different parametrization), and CMFT (en-
ergy given by the central hexagon, solid green). (b) Ordered
moment obtained from CMFT (solid green line for the central
hexagon, dashed green line for the value for intermediate and
boundary sites) and LSWT (dashed red line).

Let us now compare the quantum fluctuation contri-
bution and the classical one. For the LRO phases sur-
rounding the AF spin liquid — Néel and zigzag — we
always have ∆E/Ecl = 1

2 as deduced from Eqs. (4.1)

and (4.2), i.e., only 2
3EN and 2

3EZZ are found in the clas-
sical approach. This guarantees that the quantum phase
transition between these two types of order occurs at the
same value of ϕ = π/2 in SOPT and in the classical
approach that do not capture the spin-liquid phase in
between these ordered states, see Fig. 4(a). In contrast,
the phases neighboring to the FM spin liquid — FM and
stripy — would reach the value of ∆E/Ecl = 1

2 only at
the FM Kitaev point with J = 0 and away from this
point the contribution of quantum fluctuations decreases
rapidly allowing for large extent of the FM spin-liquid
phase. Note, that both these latter phases contain a point
which is exactly fluctuation free — for FM phase when
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frustration is absent (K = 0), and for stripy phase it is re-
lated to the FM one by the interaction transformation39

at K = −2J .
Moving to the CMFT energy analysis one should also

keep in mind that within the CMFT method the external
bonds between 〈Szi 〉 and Szj do not include quantum fluc-
tuations fully. This implies worse estimate of the energy
(of the whole cluster) for regions of the phase space that
allow quantum fluctuations. As a consequence the region
of stability of FM spin-liquid phase is smaller than that
obtained in the ED. Significantly better energy estimate
is given by the central hexagon, for which all the bonds
experience exact interactions. As a result, this CMFT
energy curve [green line in Fig. 4(a)] lies almost as close
to ED energy as SOPT one. Finally, the estimates ob-
tained from LSWT, which represents a harmonic approx-
imation to the quantum fluctuations, are not as good as
those from central hexagon via CMFT and SOPT, see
dashed red lines in Fig. 4(a). As expected, the energy
obtained from the LSWT agrees well with ED curve for
phases with less quantum fluctuations, FM and stripy
phase, and starts to diverge when these phases are un-
stable beyond quantum phase transitions within Néel and
zigzag phases.

C. Quantum corrections: ordered moment

As usual, getting the correct value of the ordered mo-
ment turns out to be a more difficult task than estimat-
ing the ground state energy. This is primarily due to the
fact that the ED does not capture the symmetry-broken
states and the ordered moment can only be indirectly ex-
tracted from the m2; moreover, the SOPT may not be
reliable here. Hence, we are mostly left with the results
obtained with CMFT and LSWT. We discuss the cor-
responding data [shown in Fig. 4(b)] together with the
several values given already in the literature.

Let us begin with the Heisenberg AF point ϕ = 0:
here it is expected that the ordered moment should be
strongly reduced by quantum fluctuations. LSWT es-
timates the ordered moment value at 0.24861. Similar
values were extracted from m2 in quantum Monte Carlo
(0.26862–64) and ED (0.27043) calculations. In the last
case however the authors admit that the set of clusters
for finite size scaling was chosen so as to make the best
agreement with quantum Monte Carlo. Another method
— series expansion (high order perturbation theory)47

sets ordered moment value at a somewhat higher value
of 0.307. While all the above results seem roughly con-
sistent, CMFT value obtained from the boundary sites
seems to stand out (0.374 for ϕ = 0). Nevertheless, the
central-hexagon value (0.330 for ϕ = 0) lies much closer
to the results from the methods mentioned above. More-
over, one should note that the ordered moment estimated
from m2 for 24–site cluster ED equals 0.4543 which is
above the CMFT value. This suggests that at this point
the finite size scaling is important.

Before moving to the frustrated regime we briefly men-
tion that the trivial ordered moment value at ϕ = π is
here correctly reproduced by both CMFT and LSWT.
Besides, for the regions around the fluctuation–free FM
(and stripy) point the ordered moments predicted by
CMFT and LSWT also match. Following the ground
state energy analysis, LSWT gives the correct result be-
cause quantum fluctuations contribution is small com-
pared to the classical state. The further one moves to-
wards the Kitaev points, however, the more incorrect the
LSWT approximation should be because of the strong
reduction of the ordered moment due to increasing frus-
tration.

In contrast, the lack of quantum fluctuations on the ex-
ternal bonds generates systematic errors within CMFT
except for FM and stripy phases. The ordered moment
obtained from the boundary sites experiences the errors
discussed above. However, the ordered moment values
for intermediate sites and the central hexagon become
largely reduced in the whole Néel and zigzag regions due
to the fact that for the internal part of the cluster the
fluctuations are fully included. Still, the best estimate
comes from the central hexagon where quantum fluctu-
ations on the bonds are included and CMFT gives more
realistic results than LSWT in frustrated parts of the
phase diagram. Here it is also important to stress, that
the series expansion captures correctly the fluctuation–
free point at ϕ = π (FM) and ϕ = − arctan 2 (stripy)
and predicts a broader region of FM KSL phase47. The
order parameter is also qualitatively correctly estimated
and is reduced more to m ' 0.3 for both Néel and zigzag
phases47. However, while the ordered moment values ob-
tained by CMFT are consistent with the four–sublattice
dual transformation, the ordered moment data from the
high–order perturbation theory47 are not as the values
of ordered moment differ at the points connected by the
mapping. Unfortunately the largest difference appears
near the FM LRO/KSL boundaries. This observation
uncovers certain shortcomings of the high–order pertur-
bation theory.

D. Quantum corrections: naive interpretation

Let us conclude the discussion of the quantum correc-
tions with the following more general observation: De-
veloping the argumentation presented by Iregui, Corboz,
and Troyer49, the dependence of the quantum corrections
to the energy and to the ordered moment on the angle
ϕ suggests that the Kitaev interaction is less “compat-
ible” with the FM/stripy ground states than with the
Néel/zigzag ones. This can be understood in the simple
picture of the KH model on a 4-site segment of the hon-
eycomb lattice consisting of three bonds attached to a
selected lattice site, as presented below.

Starting with ϕ = π (FM ground state, e.g. along
the z quantization axis), increasing ϕ leads to gradual
increase of the FM Kitaev term which favors ferromag-
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netically aligned spins along the x, y, and z quantization
axes for the x, y, and z directional bonds, respectively.
It can easily be seen that, e.g. for the x bond, the eigen-
state of the FM Kitaev-only Hamiltonian on that bond
(|↑x↑x〉) has a 25% overlap with the FM ground state,
|〈↑z↑z|↑x↑x〉|2 = 1

4 . While again a similar situation hap-
pens for the y bond, the overlap between such states for
the z bond is maximal, i.e., these states are identical (we
assume the same phase factors 1).

Next, we perform a similar analysis for ϕ = 0 and
firstly assume that we deal with a classical Néel ground
state, |↑z↓z〉. In this case for the “unsatisfied” bonds
from the point of view of the increasing AF Kitaev in-
teraction we also obtain that the eigenstate of the AF
Kitaev-only Hamiltonian (|↑x↓x〉) on that bond has a
25% overlap with the classical Néel ground state — e.g.:
|〈↑z↓z|↑x↓x〉|2 = 1

4 . However, this situation changes once
we consider that the spin quantum fluctuations dress the
classical Néel ground state. This can be best under-
stood if we assumed the unrealistic but insightful case
of very strong quantum fluctuations destroying the clas-
sical Néel ground state: then for the x bond a singlet
could be stabilized and the overlap between such a state
and the state “favored” by the Kitaev term increases to
50%: |〈0|↑x↓x〉|2 = 1

2 . This suggests that the Néel ground
state, which contains quantum spin fluctuations, is more
“compatible” with the states “favored” by the Kitaev
terms than the FM ground state, resulting in more sta-
ble values of ordered moment for Néel phase. It seems
that the above difference is visible in CMFT data but
not in LSWT ones. We shall discuss this issue further by
analyzing spin correlations below.

V. SPIN CORRELATIONS

Additional information about the ground state is given
by spin–spin correlation functions. In Fig. 5(a) one can
observe isotropic stable 〈Sγi S

γ
j 〉 correlations in almost the

entire AF phase (with 〈Si · Sj〉 ≈ −0.36 for ϕ = 0),
while for FM phase the anisotropy quickly develops when
moving away from FM Heisenberg point ϕ = π (here
〈Si · Sj〉 reaches the classical value 0.25). This again
demonstrates that the AF (and zigzag) phase is more
robust and uniform than FM (and stripy) phase.

Moreover, spin-spin correlations allow us to confirm
the disordered regions around the Kitaev points as criti-
cal cases of quantum spin liquid65. At the Kitaev points
(J = 0) we observe the expected undisturbed KSL pat-
tern: non–zero values of nearest neighbor correlations
between spin components active in the Kitaev interac-
tion (blue curve in Fig. 5(a)) and vanishing correlations
between complementary components (red curve). In con-
trast, the next nearest and further neighbor correlations
disappear, see Figs. 5(b) and 5(c). While moving away
from the Kitaev points the absolute values of the corre-
lations enter the regions of slow growth — these are sig-
natures of the critical spin-liquid phases and they look
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FIG. 5. (a) Spin correlations 〈Si · Sj〉 obtained within ED
for the bonds between nearest neighbors (black line), spin
correlations of the components active in the Kitaev inter-
action, 〈Sγi S

γ
j 〉 (blue line), and complementary spin compo-

nents, 〈Sγ̄i S
γ̄
j 〉 (red line). Below further neighbor spin correla-

tions |〈Si ·Sj〉| are shown (colors correspond here to different
neighbors). ED: (b) near the AF spin-liquid phase, and (c)
for the angle ϕ interval including the FM spin-liquid phase.
CMFT — the neighborhood of the: (d) AF spin-liquid, and
(e) FM spin-liquid region.

similar in AF and FM spin liquid cases. At some point
however proceeding further results in rapidly growing ab-
solute values which mark KSL/LRO boundaries.

Furthermore, Figs. 5(b) and 5(c) prove that there
is a qualitative difference between the two spin-liquid
regimes. This is observed in the rapid growth of spin
correlations at the onset of LRO: step-like jump visible
in Fig. 5(b) contrasts with smoother crossover seen in
Fig. 5(c). Below we investigate this distinct behavior
by analyzing the dynamical spin susceptibility for vari-
ous available phases. After Fourier transformation of the
z–component correlations, we obtain the spin structure
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factor to be discussed in the context of the spin suscep-
tibility also in Sec. VI.

As a supplement we present the further neighbor spin
correlations obtained via CMFT [Figs. 5(d) and 5(e)].
One should remark that within KSL the averages 〈Szi 〉
are 0 and CMFT is thus equivalent to ED for an iso-
lated cluster (open boundary conditions). This leads to
stronger finite size effects and larger inhomogeneity of the
correlations. Nevertheless, considering the central part
of the cluster, the emergence of the longer-range correla-
tions away from the Kitaev point presented in Figs. 5(d)
and 5(e) is almost identical to that calculated by ED, see
Figs. 5(b) and 5(c).

VI. SPIN SUSCEPTIBILITY AND
EXCITATIONS IN THE VICINITY OF THE

KITAEV POINTS

Below we study the spin dynamics within the KH
model by analyzing the dynamical spin susceptibility at
T = 0,

χαα(q, ω) = i

∫ ∞
0

〈
Φ0|[Sαq (t), Sα−q(0)]

∣∣Φ0〉 eiωt dt,

(6.1)
with the Fourier-transformed spin operator defined via

Sαq =
1√
N

∑
R

e−iq·RSαR , (6.2)

and |Φ0〉 denoting the cluster ground state. For ω > 0,
the imaginary part of χ(q, ω)αα reads as

χ′′αα(q, ω) = −Im 〈Φ0|Sαq
1

ω + EGS −H+ iδ
Sα−q |Φ0〉 ,

(6.3)
which can be conveniently expressed as a sum over the
excited states {|ν〉},

χ′′αα(q, ω) = π
∑
|ν〉

|〈ν|Sα−q|Φ0〉|2δ(ω − Eν) , (6.4)

where the excitation energy Eν is measured relative
to the ground state energy EGS. We have evaluated
χαα(q, ω) by ED on a hexagonal cluster of N = 24
sites. In the ED approach, the exact ground state of
the cluster |Φ0〉 is found by Lanczos diagonalization, the
operator Sα−q is applied, and the average of the resol-
vent 1/(z − H) is determined by Lanczos method using
normalized Sα−q|Φ0〉 as a starting vector66.

In our case of the KH model, the calculation generally
requires a relatively large number of Lanczos steps (up
to one thousand) to achieve convergence of the dense
high-energy part of the spectrum. Having the advantage
of being exact, the method is limited by the q vectors
accessible for a finite cluster and compatible with the
PBC, and by finite-size effects due to small N . These
concern mainly the low-energy part of χ′′ and lead e.g.
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FIG. 6. (a) Dynamical spin susceptibility χ′′(q, ω) obtained
by ED near the AF KSL phase at the characteristic wavevec-
tor of the AF order, q = Γ′. (b) The same for the zigzag
wavevector q = M . (c) Brillouin zone portraits of the spin-
structure factor 〈Sz−qS

z
q〉 at ϕ = 87.5◦, 90◦, and 92.5◦ (inter-

polated from the ED data). The inner hexagon is the Brillouin
zone of the honeycomb lattice, the outer one corresponds to
the triangular lattice with the missing sites filled in. (d,e) The
same as in panels (a,b) but for the interval containing the FM
(q = Γ) and stripy (q = X) phase. (f) Brillouin zone por-
traits of the spin-structure factor obtained at ϕ = 255◦, 270◦,
and 285◦.

to an enlarged gap of spin excitations in LRO phases
of AF nature. Nevertheless, a qualitative understanding
can still be obtained.

The evolution of numerically obtained χ′′(q, ω)αα (6.4)
with varying ϕ is presented in Figs. 6(a) and 6(b) for
the region including AF spin-liquid phase, as well as
in Figs. 6(d) and 6(e) for the region including the FM
spin-liquid phase. The transitions are well visible at the
characteristic q vectors of the individual LRO phases.
The structure factor pattern, see Figs. 6(c) and 6(f),
changes accordingly between the sharply peaked one in
LRO phases and a wave-like form characteristic for near-
est neighbor correlations in the spin-liquid phases.
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After entering the spin-liquid phase, further changes of
the spin response are very different for the AF and FM
case. In the AF case, there is a sharp transition — a level
crossing for our cluster, so that the ground state changes
abruptly. The original intense pseudo-Goldstone mode
as well as many other excited states become inactive in
the spin-liquid phase. The observed low–energy gap in
χ′′(q, ω)αα varies only slightly with ϕ.

In contrast, when entering the FM spin-liquid phase
the excitation that used to be the gapless magnon mode
is characterized by a gradually increasing gap which cul-
minates at the Kitaev point. Starting from the Kitaev
point, the gradual reduction of the low–energy gap in
χ′′(q, ω)αα due to the Heisenberg perturbation mani-
fests itself by a development of finite spin correlations
beyond nearest neighbors (already reported in Fig. 2 of
Ref.25) and an increase of the static susceptibility to the
magnetic field Zeeman-coupled to the order parameter
of the neighboring LRO phase. This susceptibility then
diverges at the transition point (see also Fig. 3 of Ref.25).

VII. SUMMARY AND CONCLUSIONS

In the present paper we report a study of the phase
diagram of the Kitaev-Heisenberg model by a combina-
tion of exact diagonalization and cluster mean field the-
ory (CMFT), supplemented by the insights from linear
spin-wave theory and the second–order perturbation the-
ory. Both methods allowed to stabilize previously known
phases with long range order: Néel, zigzag, FM and
stripy. Moreover, the ordered moment analysis provided
by cluster mean field approach demonstrates Néel–zigzag
and FM–stripy connections described before34. Com-
pared to the previous CMFT studies utilizing N = 6 site
cluster (see Ref.55 or the Appendix), we have used a suffi-
ciently large cluster of N = 24 sites preserving the lattice
symmetries and improving the ratio between internal and
boundary bonds. This led to a balanced approach which
allowed us to treat both ordered and disordered (spin-
liquid) states on equal footing.

As the main result, the present study uncovers a funda-
mental difference between the onset of broken symmetry
phases in the vicinity of Kitaev points with antiferromag-
netic or ferromagnetic interactions. While the spin liq-
uids obtained at K = +1 and K = −1 are strictly equiv-
alent and can be transformed one into the other in the
absence of Heisenberg interactions (at J = 0), spin exci-
tations and quantum phase transitions emerging at finite
J are very different in both cases. For antiferromagnetic
Kitaev spin liquid phase (K ' 1) one finds that a gap

opens abruptly in χ′′(q, ω) at q = Γ
′

and q = M when
the ground state changes to the critical Kitaev quantum
spin liquid. This phase transition is abrupt and occurs by
level crossing. In contrast, for ferromagnetic spin liquid
K ' −1 the gaps in χ′′(q, ω) at q = Γ and q = X open
gradually from the points of quantum phase transition
from ordered to disordered phase. With much weaker

quantum corrections for ordered phases in the regime of
ferromagnetic Kitaev interactions, the spin liquid is more
robust near K = −1 as a phase that contains quantum
fluctuations and survives in a broader regime than near
K = 1 when antiferromagnetic Kitaev interactions are
disturbed by increasing (antiferromagnetic or ferromag-
netic) Heisenberg interactions. This behavior is reminis-
cent of the ferromagnetic Kitaev model in a weak mag-
netic field65.
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tion (GAČR) under Project No. GJ15-14523Y and by
the project CEITEC 2020 (LQ1601) with financial sup-
port from the Ministry of Education, Youth and Sports
of the Czech Republic under the National Sustainabil-
ity Programme II. Access to computing and storage fa-
cilities owned by parties and projects contributing to
the National Grid Infrastructure MetaCentrum, provided
under the program “Projects of Large Research, De-
velopment, and Innovations Infrastructures” (CESNET
LM2015042), is acknowledged. G. J. is supported in
part by the National Science Foundation under Grant
No. NSF PHY11-25915.

Appendix: Comparison between CMFT and
linearized CMFT for a single hexagon

Here we compare linearization results for a single
hexagon with full CMFT to see how well linearized
CMFT performs as a shortcut method. It is important
to realize that this cluster is not compatible with stripy
or zigzag order because of their four-site magnetic unit
cell, see Fig. 1(b), and they are suppressed within vast
regions of ϕ compared to the 24-site case. The size of
the system allows for quick CMFT computations and en-
ables detailed comparison between the two approaches.
Moreover, specific problems linked to the above incom-
patibility make the N = 6-site cluster a good test case
to illustrate the linearized CMFT.

Following the procedure described in Sec. III C, 6
eigenvalues λi are produced for each value of ϕ param-
eter. The corresponding spin patterns are inferred by
inspecting the eigenvectors. Only the patterns associ-
ated with λi > 1 are able to grow during iterations
and eventually stabilize as a self-consistent solution of
full CMFT. Comparison of both methods presented in
Figs. 7 and 8 provides the phase diagram for a single
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hexagon: Néel phase for ϕ ∈ [0, 0.5)π, KSL for ϕ = π
2 ,

zigzag phase for ϕ ∈ (0.5, 0.555)π, disordered region I for
ϕ ∈ (0.555, 0.864)π, FM phase for ϕ ∈ (0.864, 1.5)π, KSL
for ϕ = 3

2π, stripy phase for ϕ ∈ (1.5, 1.62)π (lineariza-
tion), ϕ ∈ (1.5, 1.64)π (CMFT), disordered region II for
ϕ ∈ (1.62, 1.684)π (linearization) and ϕ ∈ (1.64, 1.684)π
(CMFT), and Néel phase for ϕ ∈ (1.684, 2]π. In contrast
to N = 24 cluster the two spin-liquid regions are replaced
by single points ϕ = π

2 and ϕ = 3
2π.
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FIG. 8. (a) Spin patterns obtained for a single hexagon by
CMFT. From the left: Néel, zigzag, FM and stripy. (b) Phase
diagram for a single hexagon determined by |〈Szi 〉|. Red and
blue sites (see inset) are nonequivalent in the present CMFT
due to the approximation given by Eq. (3.2) which generates
the terms ∝ J that add to Kitaev term only on the vertical
bonds 〈ij〉 ‖ z in the MF part of the Hamiltonian (2.1).

Striking difference between phase diagrams for 24-site
and 6-site clusters is the reduction of the zigzag and
stripy phases and the emergence of two regions of dis-
order indicated by two gray-shaded regions. Here all
λi < 1 and no spin pattern is strong enough to stabi-
lize. Zigzag pattern emerges from CMFT with random
initial values of 〈Szi 〉 without additional help. Stripy pat-
tern however is more difficult to catch. As one can see
in Fig. 7, two different λi corresponding to two stripy
patterns exchange at ϕ = 1.568π. Unfortunately, huge
parasitic oscillations make these patterns extremely dif-
ficult to stabilize within CMFT. These stem from a large
negative λi that previously corresponded to FM pattern
and decreased rapidly for ϕ > 1.5π. If one recalls that
the equivalent of one iteration in linearized version of
CMFT is in fact multiplication by λi, one can easily see
that large negative λi would cause oscillations with an
exponentially growing amplitude when performing the
iterations of the self-consistent loop. To overcome this
issue we introduce a damping into a self-consistent loop
by taking (1 − d)〈Szi 〉fin + d〈Szi 〉ini as the new averages.
Here d < 1 is a suitably chosen damping factor. With
this modification CMFT produces one finite stripy order
suggested by linearization. However since the parasitic
negative λi grows enormously in magnitude as we ap-
proach the phase boundary an extreme damping has to
be included making the phase boundary hard to deter-
mine by using CMFT.

In conclusion, it is evident that the ordered patterns
suggested by linearization were reproduced by CMFT
within regions dictated by the maximal λi > 1. More-
over, the linearized procedure indicated possible difficul-
ties with stabilizing stripy phases that had to be cured
by a strong damping introduced into the self-consistent
loop.
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014432 (2012).
17 G. Chen and L. Balents, Phys. Rev. Lett. 110, 206401

(2013).
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