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We study the time evolution of an half-filled Hubbard layer coupled to a magnon bath after a
quench of the Hubbard interaction. Qualitatively different regimes, regarding the asymptotic long
time dynamics, are identified and characterized within the mean-field approximation. In the absence
of the bath, the dynamics of the closed system is similar to that of a quenched BCS condensate.
Though the presence of the bath introduces an additional relaxation mechanism, our numerical
results and analytical arguments show that equilibration with the bath is not necessarily attained
within approximations used. Instead, non-equilibrium states, similar to the ones observed in the
closed system, can emerge at long times as a consequence of the competition between intrinsic
relaxation mechanism (Landau damping, for example), and the bath-induced dissipation.

I. INTRODUCTION

Most thermodynamic systems, if taken away from equi-
librium, evolve back to an equilibrium state. The initial
stage of the equilibration process often includes energy
transfer from macroscopic collective excitations to the
individual, microscopic degrees of freedom. The overall
equilibration dynamics is thus governed by the coupling
between the collective and individual modes.

Modern quantum technologies aim to store information
via controlled excitation of collective states in engineered
solid structures, such as various types of superconducting
qubits. In order to improve quantum coherence, signifi-
cant attention, both at experimental and theoretical lev-
els, has been paid to the optimization of the decoupling
between collective modes and the rest of the degrees of
freedom. In certain cases, undamped collective excita-
tions completely decoupled from the microscopic degrees
of freedom were predicted theoretically. Such decoupling
arises due to existence of conservation laws present in
some particular system1. Although the optimal degree
of decoupling is model-specific and the excitation lifetime
is, in practice, always finite, one expects those systems
to show considerable improvements in experimentally ob-
served decoherence times.

The energy transfer from the collective to individual
degrees of freedom can, in many cases, be studied using
the concept of Landau damping, which does not require a
detailed knowledge about the decoherence process. Lan-
dau damping appears in a collisionless models and its
only precondition is the causality principle. First for-
mulated for Langmuir waves in a collisionless electron
plasma2, Landau damping is nowadays known to be a
generic feature of the mean-field perturbative description
of collective excitation. In particular, it appears in the
BCS description of superconductors3,4. In this case, the
collective mode is associated with deformations of the

superconducting order parameter ∆ and the individual
degrees of freedom are Cooper pairs.

Sufficiently far away from equilibrium, regimes beyond
the Landau-damping scenario may arise, such as the ones
found in recent studies5,6 of the BCS-model. Here, a
perturbation of the initial ground state is realized as an
abrupt change (quench) of the BCS coupling parameter
g from its initial value gi to a final one gf . For a small
perturbation gi ≈ gf the dynamics can be well described
by a Landau-damping scenario4. For gi � gf , as in the
case of the quench from normal metal to BCS7, a syn-
chonization between Cooper-pairs through the collective
mode yields to persistent oscillations of the order param-
eter (phase-locked regime).

In the opposite case, gi � gf , the gap vanishes expo-
nentially fast5 (overdamped regime), since the system is
effectively heated above the superconducting transition
temperature.

The interplay between microscopic and collective
modes has been studied in other setups8–14, includ-
ing the non-equilibrium dynamics of half-filled Hubbard
model supporting an antiferromagnetic collective modes.
Within the Gutzwiller approach, the after-quench dy-
namics of this model was shown15 to be similar to that
of the BCS model featuring all three regimes. However,
because of electron-electron collisions, oscillations were
found to be weakly damped in the phase-locked regime.
The transition between the anti-ferromagnetic and para-
magnetic states was also explored16 within DMFT.

The examples given below refer to close systems. Un-
der which conditions the asymptotic long time state equi-
librates has recently been an active topic of research17–19.
Clearly, some of the above regimes cannot be consid-
ered as equilibrium states. Nonetheless, if equilibrium
is attained, the extensive injection of energy implies that
properties of the effective equilibrium state correspond
to those of a finite temperature Gibbs-like ensemble20,21.

The presence of a weakly-coupled zero-temperature



2

reservoir is expected to radically change the physical
picture22,23: if energy is dissipated to the bath, the sys-
tem’s degrees of freedom should acquire properties of the
post-quench zero-temperature state. However, a compe-
tition between the system’s own dissipative processes and
those of the bath may allow for other scenarios. Under-
standing the robustness of different dynamical regimes to
the presence of an environment is a natural question as in
realistic experimental situations some degree of environ-
mental coupling is expected. The competition between
dissipative effects induced by the microscopic degrees of
freedom of the system or of the bath can help to shed
light in the collective mode dynamics observed in recent
pump-probe-like experiments.

In this work we study the fate of non-equilibrium
regimes, found in the post-quench dynamics of closed sys-
tem, in the presence of a bath. In particular, we consider
interaction quenches in the half-filled Hubbard model on
a 2d square lattice, coupled at each site to a magnetic
Ohmic bath. The bath degrees of freedom consist of a
collection of vector bosons that couple isotropically to the
local magnetization and are taken to be independent on
each lattice site. The system models an antiferromagnet-
ically ordered 2d layer in the presence of a magnon envi-
ronment. Such spatially independent environment mod-
els a superparamagnetic bath medium present for exam-
ple in disordered nanomagnets. In addition, though for
an homogeneous ordered substrate spatial correlations of
the bath modes may become important, our results are
still relevant if the order of low-lying bath modes is in-
commensurate with that of the Hubbard layer. In this
case, although the spatially coherent states still couple to
the magnetic modes of the Hubbard layer their ordering
is not transferred to the layer.

The paper is organized as follows: Sec. II introduces
the model, Sec. III describes the dynamics in the absence
of any environmental coupling and identifies the different
dynamical regimes in correspondence with the one in the
BCS model, section IV presents the bulk of our work
identifying the different dynamic regimes in the presence
of the bath. A discussion and conclusions are given in
Sec. V. The appendix is devoted to study the specificities
of the overdamped regime in the 2d square lattice.

II. MODEL

To study the post-quench dynamics we consider a joint
Hamiltonian of the antiferromagnetically ordered layer
coupled to a magnon bath given by

H = HHub +HBath +HC, (1)

where

HHub = J
∑
〈r,r′〉

c†σrcσr + U
∑
r

c†↑,rc↑rc
†
↓rc↓r (2)

is the two-dimensional Hubbard Hamiltonian describing
the electronic system. c†σr and cσr are, respectively, the

fermion creation and annihilation operators of an elec-
tron on site r with spin σ. The coupling to the bosonic
bath is given by:

HC = g
∑
r

Sr ·
[∫

q

(
b†qr + bqr

)]
, (3)

where Sir = 1
2c
†
αrτ

i
αβcβr is the spin operator of the elec-

trons at the r-th site and τ i=x,y,zαβ denote the Pauli ma-

trices. bi†qr, biqr are creation and annihilation operators of
the vector bosons. The magnon environment is assumed
to be spacially incoherent, therefore the summation over
bosonic momentum index q is performed independently
for each site index r. The Hamiltonian of the bath is

HBath =
∑
r

∫
q

Ωqb
†
qr · bqr. (4)

The two dimensional antiferromagnet magnon bath has
an Ohmic density of states of the form ρ(ε) =

∫
q
δ(ε −

Ωq) = ε
C2 e

− ε
Λ , where Λ is a high-energy cutoff and C is

a constant with dimension of energy. In the following we
set C = 1 and measure all other energies in units of C. In
all numerical result we set Λ = 20, J = 2. No qualitative
changes arise by changing the cutoff Λ as long as it is
taken to be much larger than all other energies scales.

We study the dynamics of the magnetization after an
interaction quench where the value of U is switched from
U = Ui to U = Uf at t = 0. We treat the system within a
mean-field approximation assuming the spin fluctuations
are small as compared with the average magnetization.
For all the analyzed cases the initial state is the ground
state of the system for U = Ui obtained within the mean-
field approach.

III. CLOSED SYSTEM

In this section we study quenches of the closed system,
i.e. when the coupling to the bath, g, is set to zero.
First, we derive the set of mean-field equations governing
the post-quench dynamics. We then analyze the long
time asymptotic dynamics, establishing the parallels and
differences to previous studies of the BCS model.

For the isolated electronic system described by Eq.(2)
the mean-field approximation is valid for time scales
lesser than τq ∼ EF /∆

2, after which, interactions be-
tween quasiparticles can no longer be neglected7. The
mean-field Hamiltonian can be obtained from Eq.(2)
by neglecting second order magnetic fluctuation terms
(Sr − 〈Sr〉)2 and assuming a spin ordered state 〈Sr〉 =
M cos(Q · r) with ordering wavevector Q24.

A systematic approach for the construction of a mean-
field approximation can be obtained within the func-
tional integral formalism and amounts to a decou-
pling of fermionic fields using the Hubbard-Stratonovich
transformation25. The latter step, while mathematically
exact, induces an ambiguity (sometimes alluded to as
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Fierz ambiguity26) related with the choice of the decou-
pling channel that conditions further approximations. In
this work, we deal exclusively with an half-filled Hubbard
layer known to have an magnetic instability towards the
formation of an antiferromagnetic state. Therefore, on
physical grounds, we have have chosen a decoupling in
the magnetic exchange channel as this gives the leading
contribution to free energy. We thus consider an anti-
ferromagnetic state, i.e. Q = {π, π}, magnetised along
the z-axes, M = Mez, corresponding to a mean-field
Hamiltonian of the form

HMF =

∫
k

εkc
†
σkcσk +

2U

3
M2 − 4U

3
SzQM (5)

with k labelling the two-dimensional momentum and∫
k

=
∫

d2k
(2π)2 the Brillouin-zone integration. εk =

2J(cos kx + cos ky) is the dispersion relation and SzQ =
1
2

∫
k
c†σkτ

z
σσ′cσ′k+Q the staggered spin-operator in the z

direction.
The dynamics can most easily be described in

terms of pseudo-spins, that are similar to Anderson
representation27:

τ̂xσk =
1

2
(c†σkcσk+Q + c†σk+Qcσk) (6)

τ̂yσk =
i

2
(c†σkcσk+Q − c†σk+Qcσk) (7)

τ̂zσk =
1

2
(c†σkcσk − c

†
σk+Qcσk+Q.) (8)

defined for each spin projection σ. Assuming that the ini-
tial state respects the symmetries of HMF, the expecta-
tion values for the two spin projections are simply related
by 〈

τ̂x↑k
〉

= −
〈
τ̂x↓k
〉
, (9)〈

τ̂y↑k

〉
= −

〈
τ̂y↓k

〉
, (10)〈

τ̂z↑k
〉

=
〈
τ̂z↓k
〉
. (11)

Therefore, in the following we set τ̂αk = τ̂α↑k in order to
simplify notation. In terms of the pseudospin variables τ
the equations of motion can be written in a closed form

d

dt
〈τ̂k(t)〉 = 2Bk(t)× 〈τ̂k(t)〉 (12)

where Bk(t) = {hc(t), 0, εk}, with hc(t) =
−4U(t)M(t)/3 and the self-consistent condition

M(t) =

∫
k

〈τ̂xk (t)〉 . (13)

For the quench protocol studied here U(t > 0) = Uf . The
initial conditions, obtained by starting from the ground-
state of HMF with U(t = 0) = Ui, are given by

〈τ̂k(t = 0)〉 = − Bk(t = 0)

2
√
ε2k + hc(t = 0)2

. (14)

This result can be derived by minimizing the mean-field
energy, that in terms of the pseudospin τ is given by
EMF = 〈HMF〉 = 2

∫
k
Bk. 〈τ̂k〉 with respect to the order

paramter M(t = 0).
The mean field dynamics obtained by this procedure is

closely related to that of the BCS-model5,15,16. In fact,
the equations of motion (12) and those of the BCS Hamil-
tonian can be mapped to each-other by a suitable iden-
tification of physical quantities. The main difference be-
tween the two models comes from the dispersion relation
εk that in the BCS-model is usually taken to be that of a
free-electron gas, yielding in 2d to a constant density of
states within the Debay window. Here, the fact that εk
admits the nesting wave-vector Q at half filling is crucial
for the establishment of the anti-ferromagnetic instability
and has therefore to be explicitely taken into account.

In the reminder of this section we study the differ-
ent dynamical regimes of the asymptotically large time
dynamics of the post-quench evolution governed by the
equations (12). The different regimes are similar to those
of the BCS model16, crucial differences arise nonetheless
in the approach to the long-time limit due to the partic-
ular features of the dispersion relation.

FIG. 1. Upper panel: Sketch of the phase diagram as a func-
tion of Uf and Ui. Lower pannel: Examples of the different
dynamical regimes, from left to right: phase-locked - Ui = 0.8,
Uf = 12; Landau-damping - Ui = 4, Uf = 5; overdamped -
Ui = 3, Uf = 0.5.

Fig. (1)-upper panel shows the phase diagram in the
Uf − Ui parameter space. As in the BCS case there are
three different regimes, shown in the Fig. (1)-lower panel:

- The phase-locked regime, arising for Ui/Uf � 1,
is characterised by non-vanishing oscillations of the
order parameter. This behavior is similar to the one



4

described in7: the collective mode synchronizes the
different momentum pseudo-spin precessions.

- The Landau-damping regime, for Ui/Uf ≈ 1, where the
order parameter attains a non-vanishing constant value.
Here, oscillations decay as ∝ 1√

t
as in the BCS case28.

The mechanism behind this kind of damping is similar
to the one firstly found in plasma2: as in BCS case3,5,
a collective mode interacts with quasiparticles with
energies around 2∆, where ∆ is an antiferromagnetic
gap.

- The overdamped regime, when Ui/Uf � 1, where
the order parameter vanishes at large times. As in
the BCS case28 the order parameter drops to zero.
However, instead of the exponential decay observed for
BCS, the decay is algebraic in 1/t and a crossover is
observed as a function of Ui from damped-oscillatory
to purely damped behaviour in the dynamics of M(t).
This behaviour, overlooked in similar setups15,16, is due
to the non-analyticities of the density of states in two
dimensions: a logarithmic divergence near the Fermi
surface, and a sharp cutoff at the band edges. A detailed
analysis of the crossover is given in Appendix A.

IV. OPEN SYSTEM

We now address the changes in the dynamics of the
system in the presence of the environment. In the fol-
lowing we generalize the equations of motion to account
for the magnetic bath and analyze the different dynami-
cal regimes.

Following the same steps as before, the mean-field
Hamiltonian is given by:

HMF =

∫
k

εkc
†
σkcσk +

2U

3
M2 − 4U

3
SzQM

+ gM

∫
q

(bz†q + bzq) +

∫
q

Ωqb
z†
q b

z
q . (15)

In addition to the pseudo-spin degrees of freedom the
dynamics of the bosonic fields also has to be consid-
ered. At the mean-field level this can be done by explic-
itly solving the equation of motion for the bosonic fields
d
dtb

z
q = i[HMF, b

z
q ]. Similarly to the case of the closed sys-

tem, the initial state is taken to be the ground state of the
whole system. Substituting in the equations of motion of
pseudo-spins we get a closed system of equations that
have the same form (12) as in the isolated case but with
a different ”pseudo magnetic field” Bk(t) = {hd(t), 0, εk}
where

hd(t) = −2U(t)M(t)

3
− g2 ΛM(0)

1 + Λ2t2

− 2g2

∫ t

0

dτ
Λ3M(τ)(t− τ)

[1 + Λ2(t− τ)2]2
. (16)

As before, M(t) respects the self-consistency condition
(13) and M(0) is the initial value of the staggered mag-
netization.

Before studying the effects of the environment in dif-
ferent dynamic regimes let us analyze the stationary so-
lutions M(t) ≡ M in the presence of the environment.
In this case hd simplifies to

hd = −2

(
2U

3
+ g2Λ

)
M. (17)

This stationary condition is equivalent to that of the close
system with a renormalisation of the value of the coupling

U → UR = U + 3g2Λ
2 . Therefore, the only effect of envi-

ronment on equilibrium properties of electronic subsys-
tem is a renormalization of the coupling constant. Since
the renormalization of U is always positive, the presence
of the environment always enhances the antiferromag-
netic order.

It is worth noting that in case the system approaches
such stationary solution (not necessary an equilibrium
one) the equations of motion of the open system reduce
to those of the closed one with a renormalized U . This
can be most easily shown by introducing a time scale
Tstat after which M(t) is close to the stationary value
Mstat. For times 1/Λ � Tstat � t, up to terms of order
t/Tstat and 1/(Λt)2, one has:

hd(t) ≈ hstat −
2g2Λ[M(0)−Mstat]

(Λt)2

− 4g2

(Λt)3

∫ Tstat

0

dτM(τ), (18)

which when t → ∞ tends to hstat = − 4UfMstat

3 −
2g2ΛMstat. Thus, for sufficiently large times, in the ap-
proach to Mstat the individual degrees of freedom τxk are
governed by the renormalized electronic dynamics. Con-
sequently, we may conclude, that whenever configuration
with stationary Mstat (not necessarily equilbrium) has
been reached, environment’s role is reduced to renormal-
ization of U . This argument is essential for undersanding
absence of thermalization in overdamped and damped
regimes which will be described below.

In the following it is important to distinguish between
two kinds of stationary solution: equilibrium states where
Mstat minimizes the mean-field energy and yields no dy-
namics to the pseudo-spins d 〈τ̂k〉 /dt = 0; and non-
equilibrium states where d 〈τ̂k〉 /dt 6= 0. In the case of
a closed system conservation of energy implies that only
non-equilibrium stationary states can be attained as is
the case of the final state of the Landau damped regime.
In the presence of a bath, even if the total energy is
still conserved, a change of energy of the system can be
absorbed by the bath with no macroscopic changes in
any intensive bath observable. It is naively expectable
that, by absorbing the excess energy, the environment
renders the system observables to their equilibrium val-
ues. Nonetheless, as shown below, both equilibrium and
non-equilibrium solutions may arise for the open system.



5

Fig. 2 shows a sketch of the phase diagram of the
open system for different values of the coupling g. Ap-
proximate boundaries between phases were estimated us-
ing N = 150. In particular, the boundary between the
regime with slowly decaying oscillations and the Landau-
like damped case was estimated by plotting the order pa-
rameter ∆M(TN ) = [M(TN )−Meq]/Meq, where TN ∝ N
is the largest time for which the evolution does not de-
pict any finite size effects (see sections IV and Fig. 5 for
details). With the present numerical data, one cannot
determine boundaries precisely, therefore the sketch in
Fig. 2 provides only a qualitative understanding of their
mutual arrangement. The non-monotonic behaviour of
the left boundary can be an artefact of the method. The
three phases found are reminiscent of those described for
the closed system. In the following sections we present
our numerical results obtained by solving the equations
of motion and give analytical arguments in order to char-
acterise the nature of each phase.

FIG. 2. Sketch of the phase diagram for open system for
g = 0.25. With increasing of g the damped regime expands,
pushing its boundaries in both directions. This arises due to
the renormalization of U (see text) that decreases the effective
amplitude of the quench.

The equation of motion (12), with the memory kernel
defined in Eq.(16), were solved numerically using a 4th-
order Runge-Kutta method. The integral in Eq.(16) was
calculated at each step by employing Simpson’s rule. Cal-
culations were performed on a discrete momentum-grid
corresponding to a finite system with periodic boundary
conditions and linear size N . Accordingly, k-space inte-
grals were substituted by discrete sums:

∫
k
→ 1

N2

∑
k.

All the numerics were done using J = 2.

A. Damped regime

FIG. 3. Impact of the bath on the post-quench dynamics.
Damped regime decribed in sec. IV A, for Ui = 4.5 to Uf = 5,
Λ = 20. a) Time evolution of staggered magnetization for sev-
eral values of g and N = 200. b) Time evolution of individual
mode τxk for several values of g and N = 200 computed for a
generic value of the momentum k = {2π/(N−1), π/(N−1)}.
c) Dimensionless parameter ∆M(TN ) as a function of g for
two values of N . The finite size times were taken to be
TN=100 = 23, TN=200 = 45.

As argued before, in the mean-field description of the
open system the presence of the dissipative bath only
seems to qualitatively affect the evolution as long as
M(t) is time dependent; for M(t) = M its effect simply
amounts to a renormalization of the interaction constant.
This helps to understand Uf ' Ui quenches, correspond-
ing to the Landau-damping regime in the closed system.
Fig. 3-a) shows the time evolution of the order param-
eter for different values of the environment coupling g.
As in the closed case one observes a decay of the per-
sistent oscillations and the establishment of an asymp-
totic stationary state that differs from the equilibrium
one. Fig. 5-b) further corroborates that Mstat 6= Meq as
the dynamics of the pseudo-spins seems to be non-trivial
d 〈τ̂k〉 /dt 6= 0 in the long lime limit.

Fig. 3-c) shows the rescaled deviation from equilibrium
of the order parameter ∆M(TN ) = [M(TN )−Meq]/Meq

as a function of g for different system sizes. TN ∝ N
is the largest time for which the evolution does not de-
pict any finite size effects. Defined in this way ∆M∞ =
limN→∞∆M(TN ) vanishes in the equilibrated phase and
is non-zero for non-equilibrium stationary solutions. We
observe that ∆M(TN ) appears to be converged to ∆M∞
for the considered sizes. The decreasing of ∆M∞ with
the coupling to the bath is due to the fact that for larger
g both the initial and the final values of the renormalized
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U increase with g2, therefore the relative quench magni-
tude decreases and thus, in the large g limit the quenched
system is asymptotically close to the equilibrium one.

In order to understand this behaviour we proceeded as
in the closed case and consider the quench to be a small
perturbation δM/M(∞)� 1, with δM = M(∞)−Meq,
where Meq is the equilibrium value of the magnetization
at U = Uf . The solution of the equations of motion (12)
is assumed to be of the form 〈τ̂k(t)〉 = 〈τ̂k〉eq +sk(t), and

M(t) = Meq − δ(t), where 〈τ̂k〉eq is equilibrium value of

pseudo-spin for U = Uf . Expanding Eq. (12) to first
order in for sxk, δ(t) and δM one obtains:

d

dt
sk(t) ≈ 2

 bx(t)
0
εk

× sk(t) (19)

with bx(t) = − 4UMeq

3 + 2g2 ΛδM
1+Λ2t2 − 2g2ΛMeq. Further

simplifying the equation by assuming t → ∞ one gets
explicitely

d
dts

x
k(t) ≈ −2εks

y
k

d
dts

y
k(t) ≈ 2εks

x
k + 2bxs

z
k

d
dts

z
k(t) ≈ −2bxs

y
k

(20)

with bx = limt→∞ bx(t) = − 4UMeq

3 − 2g2ΛMeq. The so-
lution for sx is thus of the form:

sxk(t) ≈ Ck

εk cos

[
2

√
ε2k +

(
4URMeq

3

)2

t

]
√
ε2k +

(
4URMeq

3

)2
(21)

where the constants Ck are determined by the initial
condition and the previous evolution of the system for
times smaller than t ' Λ−1. The form of the Eq. (21)
is the same as the one for the closed system28 with Uf
substituted by UR. Besides this renormalization factor,
the only impact of the bath is accounted in the coeffi-
cients Ck. Thus, in this regime, the dynamics of the
individual degrees of freedom of the open system are
qualitatively similar to that of the closed one. Nonethe-
less the dependence of Ck on the bath makes the expo-
nent ν, governing the approach to the asymptotic value
M(t) ' M(∞) + O(t−ν), different from the Landau-
damping result ν = 1/2. Fig. (4) shows a log-log plot
of the staggered magnetization as a function of time. In
order to estimate ν we fit the local maxima of to the
function −νN (g) log(t) + a. The exponent ν is found
to have a substantial dependence on g: it varies from
ν200(g = 0.0) ≈ 0.5 to ν200(g = 0.25) ≈ 0.9 smoothly.
Finite-size effects were found to be negligible for N = 150
and N = 200.

B. Equilibrating regime

For quenches with Uf � Ui, roughly corresponding to
the phase locked regime in a closed system, the presence

FIG. 4. Influence of bath on exponents νN (g) in the damped
regime (Ui = 4.5 to Uf = 5, Λ = 20) for different values of
coupling g and different system sizes (solid line for N=150
and dotted for N = 100, coincide for all g-s). Exponents were
computed by fitting maximums of staggered magnetization to
linear function −νN (g) log(t) + a (solid line).

FIG. 5. Impact of the bath on the post-quench dynamics.
Equilibrated and damped regimes (Ui = 0.8 to Uf = 12, Λ =
20). a) Time evolution of staggered magnetization for several
values of g and N = 100. b) Time evolution of individual
mode τxk for several values of g and N = 100 computed for a
generic value of the momentum k = {2π/(N−1), π/(N−1)}.
c) Dimensionless parameter ∆M(TN ) as a function of g for
three values of N . The finite size times were taken to be
TN=80 = 23, TN=100 = 45, TN=200 = 250.

of the dissipative bath leads to the decay of the persis-
tent oscillations and the establishment of an asymptotic
equilibrium state. Fig. 5-a) shows the evolution of the
order parameter for different values of the environment
coupling g. For the smaller values of g the long time
M(t→∞) attains the equilibrium value. For the larger
values of g this is no longer the case. Fig. 5-b) shows that
these two asymptotic regimes correspond to the trivial
d 〈τ̂k〉 /dt = 0 and non-trivial d 〈τ̂k〉 /dt 6= 0 dynamics
of the pseudo-spins. Fig. 5-c) shows the rescaled devi-
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ation from equilibrium of the order parameter ∆M(TN )
as a function of g for different system sizes. The finite
size scaling with N shows that in the equilibrated phase
∆M(TN ) vanishes with increasing N while for larger g
it attains a finite value. The presence of a fixed point
around g ≈ 0.2 indicates a dynamical phase transition
between the two regimes.

The fact that the system does not equilibrate for large
system-bath coupling seems rather counterintuitive. This
can however be explained by the fact that besides dissi-
pation, i.e. the appearance of a memory kernel in the
evolution, the presence of the environment also renor-
malizes the coupling constant U and thus the system
moves into Landau-damping-like regime where equilibra-
tion with environment does not happen.

The fact that the amplitude of oscillations that were
persistent in closed system, now decreases with time can
be understood in the following way: without bath, a
phase-locked collective mode cannot transfer energy to
individual modes due to the presence of the energy gap;
in the open system there are always bath modes to which
energy may be transferred. As a result, excited state
decays. Moreover, since the energy exchange between
the collective and the individual quasiparticle modes is
suppressed, there is no electronic relaxation mechanism
available other then the bath. Therefore the only possi-
bility for the system is to equilibrate with it.

C. Overdamped regime

In overdamped regime arising for Uf � Ui the inter-
action with the bath does not change qualitatively the
dynamics with respect to the g = 0 case apart from the
renormalization of U . A fast decay of the order param-
eter to M(∞) = 0 can be observed for the small val-
ues of g depicted in Fig. 6-a). For larger values of g
the damped regime sets in and M(∞) is non-vanishing.
Fig.6-b) shows that even if M(∞) = 0, the microscopic
dynamics 〈τ̂k〉 is non-trivial. In this regime the bath
effectively decouples from the system since M ≈ 0 and
coupling to bath is proportional to g2M . As a conse-
quence the system does not equilibrate and the order
paramenter vanishes as a power law M(t) ∝ tν .

As in the damped regime the algebraic decay in the
overdamped case is also g-dependent thus differing from
the ν = 1 results obtained for a closed system. This
is shown in Fig. 7, where we have plotted the stag-
gered magnetization averaged over a period in log-log
scale. The numerical results are fitted to a linear func-
tion νN (g)y + a, with y = log(t). ν is observed to vary
with g: ν200(g = 0.1) ≈ 0.96 to ν200(g = 0.18) ≈ 0.70.
Notice that the result slightly varies with system size.
This is because the equilibrium staggered magnetization
is very sensitive to the size of the system for these values
of U . Nonetheless it is clear that νN (g) is converging to
a g dependent exponent ν(g).

The transition between the overdamped and the

FIG. 6. Impact of the bath on the post-quench dynamics.
Overdamped and damped regimes (Ui = 3.0 to Uf = 0.5, Λ =
20). a) Time evolution of staggered magnetization for several
values of g and N = 150. b) Time evolution of individual
mode τxk for several values of g and N = 150 computed for a
generic value of the momentum k = {2π/(N−1), π/(N−1)}.
c) Dimensionless parameter M(TN )/Meq as a function of g
for two values of N . The finite size times were taken to be
TN=100 = 23, TN=150 = 35.

damped regimes upon increasing g can be seen in the
finite size scaling of M(TN )/M(Teq) shown in Fig. 6-c).
In the small g region M(TN ) vanishes for increasing N
whereas for large g it seems to attain a finite value. The
crossing of the finite size data is compatible with transi-
tion arising for 0.2 < gc < 0.24 for the parameter values
of Fig. 6-c).

FIG. 7. Exponents ν(g) in the overdamped (Ui = 3.0 to
Uf = 0.5, Λ = 20) regime for different values of coupling g and
different system sizes. Exponents were computed by fitting
(solid line for linear size N = 200, dashed for N = 150, dotted
for N = 100) of the averages of time-dependence of logarithm
of staggered magnetization (plotted only for N = 200) by
linear function −νN (g) log(t) + a.
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V. DISCUSSION

We studied the dynamics ensuing after an interaction
quench in a model consisting of a Hubbard layer cou-
pled to an antiferromagnetic magnon bath. For vanishing
system-bath coupling, within a mean-field approxima-
tion, the post quench dynamics can be mapped to that of
well studied BCS quenches. We identify the three known
asymptotic long-time regimes: persistent oscillations of
the order parameter, Landau-damping and overdamped.
In the overdamped regime, we found that specificities of
the 2d electronic density of states - a discontinuity at the
band edges and a logarithmic divergence near the Fermi
energy - result in a power law decay of the order parame-
ter rather than the exponential one reported for the BCS
case that assumes a smooth density of states.

For a finite system-bath coupling we show that the sys-
tem does not always equilibrate as one would expect. In-
stead, three different regimes are observed at large times:
an equilibrating regime, where the system attains an
asymptotic equilibrium state; a damped regime, where
the magnetization attains a static finite value that differs
from the equilibrium one; and an overdamped regime,
characterised by an asymptotically vanishing magnetiza-
tion.

Each regime can be seen as a reminiscence of one of
the different dynamical phases of the close system. The
persistent oscillations found in the phase-locked regime
of the closed system do not survive in the presence of
the bath and slowly decay to the equilibrium solution.
The presence of non-equilibrium states is possible as the
dissipative environment is only sensitive to time changes
of the magnetization. For a static magnetization it acts
simply as a renormalization of the Hubbard interaction.
Therefore non-equilibrium phases with a static magneti-
zation are stable. These static phases include zero mag-
netized phase of the overdamped regime and a phase sim-
ilar to the one obtained in the Landau-damped regime of
the closed system.

We show that, though the bath does not change the
dynamics qualitatively in the overdamped and damped
regimes, there is a difference on how the staggered mag-
netization approaches its asymptotic value M 'M(∞)+
O(t−ν). For finite g, the exponent ν does no longer take
the discrete values 1 or 1/2. Instead, it seems to vary
continuously in the range from 1/2 to 1 as a function of
g.

Our results are based on mean-field theory and there-
fore qualitatively correct only on time scales smaller than
the quasiparticle lifetime τq. The presence of the bosonic
bath introduces an additional time-scale τg. Thus our
treatment is relevant for parameter sets such that τg �
τq. Moreover, mean-field approximation discard quan-
tum fluctuations of the order parameter both perpendic-
ular and parallel to the magnetization vector. It would
be interesting to investigate the effect of these fluctua-
tions in the asymptotic long time regime, in particular
to study the survival of the non-equilibrium states found

here at the mean-field level.

Nonetheless, even if not all the dynamic mean-field
regimes survive the inclusion of quantum fluctuation,
traces of these regimes should be found at time scales
for which fluctuation effects can be disregarded.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with Y.E.
Shchadilova and enlightening remarks on the work of
S.M. Apenko. The study was founded by the RSF, grant
16-42-01057. PR acknowledges support by FCT through
the Investigador FCT contract IF/00347/2014.

Appendix A: Closed system - Crossover in
overdamped regime

Here we derive the asymptotic long time behaviour
in the overdamped regime. Fig. (1)-(lower-right panel)
shows examples of the time evolution for hc(t = 0)� 8J
and hc(t = 0) � 8J . Though the temporal behaviour
for hc(t = 0) � 8J looks different from the one of
hc(t = 0) � 8J both regimes can be described by a
smooth function of hc(t = 0).

In the overdamped regime which arises for Ui/Uf � 1,
it is therefore natural to consider an expansion around
small Uf . At Uf = 0 one has that Bk(t > 0) = {0, 0, εk}
and thus the evolution of the different momenta decou-
ples. Starting from initial conditions (14) the evolution
of the order parameter becomes

M(t) =
1

2

∫
dε

%(ε)√
1 + ε2

hc(t=0)2

e2iεt (A1)

where %(ε) =
∫
k
δ(ε− εk) is the bare density of states of

the electronic system.

In two spatial dimensions %(ε) has two distinctive fea-
tures that may contribute to the asymptotic long time
behaviour of M(t): %(ε) ∝ − ln(|ε|) for ε ' 0; and %(ε)
has sharp cutoffs at ε = ±4J . The damped-oscillatory or
purely damped behaviour of M(t) depends on the respec-
tive contribution of each of these features: the denomina-
tor in the right-hand side of Eq.(A1) defines a window of
characteristic size hc(t = 0) within which the integrand
is non-negligible; if this window is much smaller than the
bandwidth the only singularity that contributes to the
long time behaviour is the one at ε ' 0 that leads to
an asymptotic behaviour in 1/t; on the contrary, if the
hc(t = 0) is much larger than the bandwidth there are
additional oscillatory contributions coming from the non-
analyticities at the band edges that behave as sin(8Jt)/t.

A more quantitative way to obtain the oscillatory-
damped crossover of M(t) as a function of hc(t = 0)
is to develop Eq.(A1) around hc(t = 0) ' 4J . Defining
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δ = hc(t = 0)− 4J we obtain:

M(t) ≈ 1

8Jπt
+

sin(8Jt)

8Jπ
√

2t
− δ

2(4J)2tπ(2)3/2
sin(8Jt)

− 3δ2

4(4J)3π25/2t
sin(8Jt)− 3δ3

4(4J)4π27/2t
sin(8Jt)+O(δ4)

(A2)

Even if the region of applicability of this expression is
limited, it reproduces well the numerical results and
captures the crossover behaviour observed in the over-
damped regime.
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