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We study the non-equilibrium properties of a non-ergodic random quantum chain in which highly
excited eigenstates exhibit critical properties usually associated with quantum critical ground states.
The ground state and excited states of this system belong to different universality classes, charac-
terized by infinite-randomness quantum critical behavior. Using strong disorder renormalization
group techniques, we show that the crossover between the zero and finite energy density regimes is
universal. We analytically derive a flow equation describing the unitary dynamics of this isolated
system at finite energy density from which we obtain universal scaling functions along the crossover.

I. INTRODUCTION

The concepts of scaling and universality near a critical
point are central to the modern understanding of sta-
tistical mechanics and condensed matter physics, culmi-
nating in the development of the renormalization group.
Whereas classical (thermal) phase transitions occur at
finite temperatures and separate states with extensive
(volume-law) entanglement, quantum mechanics also al-
lows for the possibility of quantum critical points oc-
curring at zero temperature separating distinct ground
states with area-law entanglement1. In both cases, uni-
versal features emerge at long distances and low temper-
ature, so that the high-temperature regime of many-body
quantum systems is often associated with non-universal,
classical properties. This conventional wisdom relies on
the assumption of thermal equilibrium, either due to cou-
pling to an external heat bath, or because the system
under consideration acts as its own heat bath and ther-
malizes on its own.

However, not all many-body quantum systems self-
thermalize in isolation, and the laws of thermodynam-
ics can break down in the presence of strong disorder
because of the localization of excitations2 that would
ordinarily move around and establish thermal equilib-
rium. Such many-body localized (MBL) systems3–7 fail
to act as their own heat bath and remain firmly out-
of-equilibrium8, thus opening the door to qualitatively
new quantum critical, universal phenomena at very high-
energy density, in a regime where ordinary, thermaliz-
ing systems would be effectively at infinite temperature.
This can be understood intuitively as the highly excited
eigenstates of MBL systems behave as zero-temperature
quantum ground states, and in particular are charac-
terized by an area-law scaling of the entanglement en-
tropy9,10.

MBL systems raise the intriguing possibility of com-
pletely novel, excited-state phase transitions far from
equilibrium. In particular, the dynamical transition
between the MBL phase, characterized by an area-
law structure of entanglement, and an ergodic regime
with highly entangled eigenstates – as required by the

eigenstate thermalization hypothesis (ETH), is believed
to be characterized by a very rich scaling structure
that has attracted a lot of attention recently6,7,11–14.
Moreover, MBL systems can support various types of
symmetry-breaking, topological and symmetry protected
topological orders9,15–21, and the phase transitions be-
tween different MBL states represent new classes of
non-equilibrium quantum critical behavior, occurring in
highly excited states. Even more dramatically, certain
models have been shown to exhibit self-organized excited
state quantum critical phases that are neither thermal
nor MBL, and exhibit new universality classes distinct
from any equilibrium phase transition22.

The universal properties of such excited-state critical
points (and critical phases) separating area-law entan-
gled MBL phases can be efficiently captured by strong
disorder real space renormalization group (RSRG)23–25

approaches. The starting point of such approaches is
the RSRG procedure that has proven very useful to
study zero-temperature random spin chains, in which
strong couplings in the Hamiltonian are decimated be-
fore weaker ones, putting the spins involved in a strong
bond in their local ground state. The effective disorder
strength grows upon renormalization so that the result-
ing RSRG flows to infinite randomness and is said to
be asymptotically exact – meaning that it is believed to
yield exact results for universal quantities such as crit-
ical exponents. This approach was recently generalized
to target many-body excited states by observing that at
each step, it is possible to project the strong bond onto
an excited-state manifold16. The resulting excited-state
RSRG (RSRG-X) iteratively resolves smaller and smaller
energy gaps, corresponding to slow modes in the dynam-
ics26,27. This RSRG-X approach (and variants thereof)
has been applied to a variety of systems recently, in-
cluding random-bond Ising-type16,28,29, Heisenberg22,30,
XX31, XXZ32 and XYZ33 spin chains. In particular, the
RSRG-X procedure was argued to flow to infinite ran-
domness for an infinite family of random spin chains
at finite energy density, resulting in non-ergodic states
called quantum critical glass (QCG)22, where highly ex-
cited eigenstates in the middle of the many-body spec-
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trum (corresponding to infinite effective temperature)
have quantum critical properties usually associated with
T = 0 quantum critical ground states, including loga-
rithmic (non-thermal) entanglement and algebraic mean
correlations.

Some of these non-ergodic critical states, sometimes
called critical or marginal MBL in the literature28,33,
can be thought of as a critical variants of MBL, de-
scribing critical points separating different MBL phases
(such as the MBL paramagnet and spin glass phases in
the random transverse field Ising model for example16).
Similarly to MBL systems, marginal MBL phases can
be characterized by independent “local” integrals of mo-
tion (“l-bits”10,34) with algebraic rather than exponential
tails. These marginal MBL phases have the same univer-
sal properties in highly excited states as in their ground
states. However, some strongly disordered anyon chains
can host more interesting QCG phases (instead of critical
points) that do not admit a description in terms of l-bits,
and that have universal exponents that are distinct from
their zero-temperature counterparts, with finite energy
density being a relevant perturbation in the renormaliza-
tion group sense22.

Whereas finite temperature properties were originally
obtained numerically in the case of the transverse field
Ising model using a Monte Carlo sampling of the tree of
eigenstates generated by RSRG-X16, it was later argued
that the properties of highly excited states at infinite
effective temperature can be efficiently captured analyti-
cally by exact RG flow equations22. However, the nature
of the finite energy density crossover, and the possibility
of writing down analytic flow equations for eigenstates at
a given energy density were left as open questions.

In this paper, we investigate the finite energy den-
sity properties of a random one-dimensional chain of Fi-
bonacci anyons35, first introduced in the context of topo-
logical quantum computation36. This anyon chain is the
simplest example of QCG where the infinite temperature
universality class22 is different from that of the ground
state37–39. We argue here that such disordered Fibonacci
anyons at arbitrary non-zero energy density (the ana-
log of “finite temperature”) can be described by analytic
flow equations, thereby avoiding a computationally ap-
proximate numerical results via expensive Monte Carlo
sampling. We justify our approach numerically and we
use these exact flow equations to extract the universal
features of the finite energy density crossover.

Before going further, it is worth clarifying what we
mean by finite temperature. Just like an MBL system,
we note that coupling a QCG to an external heat bath
would eventually lead to delocalization40. However, our
finite temperature flow equations can be used to describe
the thermal response (say the AC thermal conductivity)
of a QCG that was initially coupled to a bath and where
the coupling to the bath was turned off as explained in
Ref. 16. Alternatively, one can think of sampling many-
body eigenstates according to a Boltzmann distribution
in order to target the properties of eigenstates at a spe-

cific energy density. A natural experimental setup would
indeed be to monitor the non-equilibrium dynamics of
a wave packet centered on a given energy density, with
a width vanishing in the thermodynamic limit. In the
absence of additional information, targeting this energy
density using a Boltzmann sampling of the eigenstates is
the most natural choice (as the distribution maximizing
the entropy). For instance, the dynamics after a global
quench starting from a completely random state with no
other prior information should be well described by aver-
aging over the full many-body spectrum with a uniform
distribution (T =∞), corresponding for entropic reasons
to the properties of typical eigenstates in the middle of
the many-body spectrum.

The remainder of this paper is organized as follows:
in section II, we introduce a simple model of disor-
dered, interacting one-dimensional system, the so-called
Fibonacci chain, for which the zero and infinite temper-
ature properties are different, and we introduce a real-
space renormalization group (RG) method to understand
the properties of this 1D system in isolation. In Sec. III,
we discuss different ways to target states with a given en-
ergy density (or “temperature”); this allows us to derive
analytically RG flow equations at finite temperature or
energy density. We then analyze in Sec. IV the universal
crossover to between the zero and infinite temperature
limits.

II. DISORDERED FIBONACCI CHAIN AT T = 0

A. Golden chain

We begin by introducing a simple one-dimensional
model, the so-called Fibonacci chain (also called the
golden chain), whose eigenstates exhibit quantum crit-
ical properties, with different critical exponents and uni-
versal classes in the ground state and in highly excited
states. This “spin” chain is constructed in analogy with

the spin- 1
2 Heisenberg model H =

∑
i Ji

~Si·~Si+1 for which
the nearest neighbor interaction gives a different energy
to the singlet and triplet channels in the tensor product
(fusion) 1

2 ⊗
1
2 = 0⊕ 1, where we labelled the irreducible

representations of SU(2) by their spin j = 0, 1
2 , 1, . . . .

Whereas the SU(2) group has infinitely many irreducible
representations, it is useful to think of models similar to
the spin- 1

2 Heisenberg chain where the number of “spins”
is truncated. The Fibonacci chain is an example of such
truncation of the Heisenberg chain, and models a chain
of nonabelian anyons carrying a non-trivial topological
charge τ , with the fusion property

τ ⊗ τ = 1⊕ τ. (1)

In analogy with the Heisenberg chain, the Hamiltonian
of such a system would then take the form

H = −
N∑
i=1

JiP
A
i (2)
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where Ji are the interaction strength which are drawn
from some random distribution and PAi is the singlet
projection operator (projection to the trivial anyon) be-
tween site i and i + 1. Contrary to the fusion rule for
SU(2) spins 1

2 , Eq. 1 implies that the Hilbert space of

N + 1 anyons is equal to the N th Fibonacci number, FN
where F1 = 1 = F2, and Fn+1 = Fn + Fn−1 which scales

asymptotically as ϕN where ϕ = 1+
√

5
2 is the golden ratio.

This implies that each Fibonacci anyon has quantum di-
mension, ϕ, an irrational number. This implies that the
Hilbert space of the Fibonacci chain cannot be described
as a tensor product of local degrees of freedom. The
precise definition of the Hilbert space and of the expres-
sion of the Hamiltonian (2) is reviewed in Appendix A,
in relation with the more general SU(2)k anyonic chains
(the Fibonacci case corresponding to k = 3). Beyond
the potential relevance of this one dimensional Hamil-
tonian in the context of topological quantum computa-
tion36 (where it could be realized as a quasi-one dimen-
sional trench of anyonic excitations of a topologically or-
dered phase), we find it useful to think of anyonic chains
such as (2) as a convenient lattice regularization of crit-
ical points that would be multi-critical (and therefore
highly fine-tuned) in regular spin chains. For example, at
zero temperature anyonic chains with uniform couplings
are known to provide a very natural lattice regulariza-
tion of the minimal models of conformal field theory41,
and their ground states in the presence of strong dis-
order correspond39 to the so-called Damle-Huse infinite
randomness fixed points42.

B. Real space renormalization group at T = 0

Similar to ordinary disordered spin chains23–25,43, the
ground state (T = 0) properties of the disordered Fi-
bonacci chain (2) can be obtained37–39 via strong dis-
order, real space renormalization group (RSRG) meth-
ods. The key idea of this approach is to focus on the
strongest bond of the chain Ω = |Ji|, which at strong
disorder will be typically much larger than its neighbors
Ω � |Ji+1| , |Ji−1|. We can then diagonalize this strong
bond by choosing the singlet channel for an antiferromag-
netic (AF) strong coupling Ji > 0, or the triplet channel
for a ferromagnetic (FM) strong coupling Ji < 0. In the
singlet channel, the two Fibonacci anyons on sites i and
i+ 1 form a singlet and quantum fluctuations induce an
effective second-order coupling Jeff = 2

ϕ2
JLJR
J2
i

between

the anyons on sites i−1 and i+2. In the triplet channel,
the Fibonacci anyons on sites i and i + 1 instead form
an effective new Fibonacci anyon that interacts with its

neighbors via the first order couplings −JL/Rϕ . These dec-

imation rules conserve the form of the original Hamilto-
nian and are summarized in Fig. 1. While this RSRG
is a priori approximate and accurate only at strong dis-
order, the effective disorder strength increases along the
RG flow so that this method becomes “asymptotically ex-

… … 

… … 

… … 

FIG. 1. Decimation rules for the disordered Fibonacci anyon
chain. We decimate −JiPAi and set JL = Ji−1 and JR = Ji+1.
Left: Strong bond in the chain. Right: The Hamiltonian after
the decimation. The triplet (singlet) sector decimates 1 (2)
spin(s) and renormalizes the Hamiltonian.

act” and yields exact predictions for universal properties
such as critical exponents.

This RSRG approach predicts that the ground state of
the random Fibonacci chain is in a random-singlet phase,
an infinite randomness quantum critical point character-
ized by algebraically decaying averaged correlation func-
tions24,25,44, logarithmic scaling of entanglement45, and
energy-length scaling25,44

ln
1

E
∼ Lψ, (3)

instead of the usual quantum-critical relation E ∼ L−z.
The exponent ψ in eq. (3) is given by ψ = Πs

1+Πs
, where

Πs is the probability that an RG step results in a second-
order decimation by fusing two anyons into a singlet. For
an antiferromagnetic chain37, all decimated bonds are
fused to a singlet Πs = 1, so that ψAF = 1

2 . Introducing
a finite fraction of ferromagnetic bonds can be argued to
be a relevant perturbation to this AF fixed point38, and
the system flows to a fixed point42 with equal ratio of F
and AF bonds, so that Πs = 1

2 and ψF/AF = 1
3 .

III. FINITE TEMPERATURE REAL-SPACE
RENORMALIZATION GROUP

Whereas the discussion above focused on construct-
ing iteratively the ground state of the Fibonacci chain,
Eq. (2), we are interested in this paper in the quantum
critical behavior of finite energy density excited states.
For this purpose, we introduce a variation of the RSRG
introduced above called RSRG-X16, designed to target
excited states. This method was first introduced as a nu-
merical method to analyze the finite energy density prop-
erties of the disordered Ising spin chain, and it was soon
after generalized to disordered anyon chains22 like Eq. (2)
that show a much richer critical behavior (whereas the
excited states in the Ising model have the same prop-
erties as the ground state16,46). Going beyond the nu-
merical analysis of Ref. 16, it is possible to write down
exact analytic flow equations to describe the behavior of
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Excited eigenstate

Groundstate

FIG. 2. Schematic tree of many-body eigenstates generated
by RSRG-X. Every eigenstate corresponds to a branch in this
tree of choices between singlet and triplet channels at each
decimation. The ground state branch (blue path) is chosen
by minimizing the energy at each RG step, whereas typical
many-body eigenstates at T =∞ (red path) can be obtained
by performing a random walk on the tree.

infinite temperature eigenstates22 (i.e. eigenstates deep
in the middle of the many-body spectrum which would
have T =∞ in a thermal system), similarly to the ground
state case (T = 0) described above. Here, our goal is to
analyze the crossover from T = 0 and T = ∞ analyti-
cally by deriving flow equations to target finite temper-
ature eigenstates. Before proceeding, we first review the
RSRG-X method and the exact solution at T =∞.

A. Infinite temperature quantum critical glass

The ground state RSRG described above can be
straightforwardly generalized to target many-body ex-
cited states by observing that at each step, it is possible
to project the strong bond onto an excited-state mani-
fold16. The resulting excited-state RSRG (RSRG-X) it-
eratively resolves smaller and smaller energy gaps, corre-
sponding to slow modes in the dynamics26,27, and allows
one to construct, in principle, all the many-body eigen-
states of the system16,22 (see also 28, 29, and 32). For our
example of the Fibonacci chain Eq. (2), one identifies and
diagonalizes the strongest bond Ω in the chain just like
the ground state version. However, instead of automat-
ically choosing the fusion channel with minimal energy,
one can choose to sometimes increase the total energy
by choosing higher energy fusion channels. The whole
many-body spectrum can in principle be obtained in this
way, and every eigenstate corresponds to a “branch” in
the tree of choices between singlet and triplet channels
at each step of the RG (Fig. 2). For instance, the ground
state (the zero temperature sampling23–25,38,43) can be
obtained by following the branch with the lowest energy,
i.e. by choosing the singlet (triplet) channel if the strong
bond is antiferromagnetic (ferromagnetic).

Even if RSRG-X allows one to construct in principle all
the many-body eigenstates, computing physical quanti-
ties remains a very complicated task due to the exponen-
tial size of the Hilbert space. However, T =∞ properties

can be simply obtained by noting that for entropic rea-
sons, typical eigenstates in the middle of the many-body
spectrum can be targeted by performing a random walk
on the tree of many-body eigenstates22. This amounts
to choosing a fusion channel (or a branch) with a proba-
bility based on the dimension of the Hilbert space of the
effective chain after decimation. In the Fibonacci chain
with N + 1 anyons, this means we should weight the sin-
glet channel with probability FN−2/FN and the triplet
branch with probability FN−1/FN to ensure that each
branch (or each eigenstate) is given the same probability
by the RG (T = ∞). When N is large, these probabil-
ities converge to 1/ϕ2 and 1/ϕ, respectively. From now
on, for notational convenience we will fix Πs = 1/ϕ2 to
be the singlet fusion probability at infinite temperature.
The critical behavior of T = ∞ eigenstates is therefore
given by a RG flow similar to T = 0, but where the prob-
ability to fuse to a singlet at each RG step is governed by
entropy maximization rather than energy minimization.
The T =∞ RSRG-X still flows to an infinite randomness
fixed point characterized by the scaling (3), but with a
new infinite temperature tunneling exponent:

ψ∞ =
1

2 + ϕ
, (4)

different from the T = 0 exponents ψAF = 1
2 and

ψF/AF = 1
3 . Dimerization is irrelevant at the infinite tem-

perature fixed point22 (this is related to the impossibility
to many-body localize Fibonacci anyons47), and the re-
sulting T =∞ critical phase was dubbed Quantum Criti-
cal Glass (QCG) in Ref. 22, and is characterized by a non-
ergodic logarithmic scaling of eigenstate entanglement
S ∼ lnL violating ETH, and by algebraic decaying aver-
aged correlation functions. Although there is no formal
proof for the stability of this non-ergodic critical phase
against thermalization as in the MBL case48, several ar-
guments14,26 suggest it is stable at strong enough disor-
der, while for weak disorder, the proliferation of many-
body resonances ignored by RSRG-X naturally leads to
thermalization49. Regardless of this question of stabil-
ity of QCG in the thermodynamic limit, we remark that
RSRG-X can be made arbitrarily accurate for any finite
size system by increasing the disorder strength.

We emphasize that this QCG non-ergodic phase is very
different from “marginal MBL” critical points that arise
in the random transverse field Ising chain for example,
for which the ground state critical behavior simply ex-
tends to finite energy density. In the random Fibonacci
chain, the ground state and excited states of the system
belong to completely different universality classes, char-
acterized by distinct RG fixed points. Moreover, random
Fibonacci anyons are generically critical and cannot be
many-body localized47 – even by strongly dimerizing the
couplings22, so that the QCG state should be considered
as a (non-equilibrium) phase, rather than a fine-tuned
critical point.

As we will see in details in the following, finite temper-
ature or energy density is a relevant perturbation to the
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FIG. 3. Excited-state RG flow for the random Fibonacci
chain. At zero temperature, the system is described by two
infinite-randomness random singlet fixed points depending on
the ratio of ferromagnetic bonds in the chain, with different
ψ exponents characterizing the scaling between length and
energy Γ = − lnE ∼ Lψ. Considering the system at finite en-
ergy density or temperature is a relevant perturbation in the
renormalization group sense, and the system flows to a sta-
ble quantum critical glass (QCG) fixed point. In this paper,
we analyze the universal finite-temperature crossover between
the T = 0 and T =∞ fixed points.

T = 0 fixed points, so that the system flows to the T =∞
QCG fixed point for all temperatures T > 0. The corre-
sponding schematic RG flows are sketched in Fig. 3 and
the goal of this paper is to study the (universal) finite-
temperature crossover between the T = 0 and T = ∞
behaviors. We now turn to how finite-temperature prop-
erties can be efficiently obtained using RSRG-X.

B. Local node sampling vs. Monte Carlo sampling

As we argued in the introduction, a physically moti-
vated way to interpolate between the T = 0 and T =∞
quantum critical behaviors is to weight finite energy den-
sity eigenstates by a Boltzmann distribution. We em-
phasize however that we are dealing with an isolated
non-ergodic system, so that the effective temperature T
is used merely as a way to target the properties of fi-
nite energy density eigenstates. The expectation is that
typical eigenstates with similar energy density, ε, have
the same bond distribution, and since the Boltzmann
distribution produces uncertainty in energy density that
scales like ∆ε ∼ 1/

√
L where L is the system size, that

this sampling method enables us to reproduce the dy-
namical scaling properties of a more generic quench from
an arbitrary non-eigenstate with typical energy density

ε. Within RSRG-X, this means that we want to sam-
ple eigenstates with energy E according to a Boltzmann
distribution e−βE/Z.

In Ref. 16, it was demonstrated that this could be
done numerically using a Monte Carlo sampling using
the Metropolis algorithm50. This Monte Carlo sampling
of the RSRG-X tree of eigenstates can be summarized
as follows: let us start with a single eigenstate (corre-
sponding to a given branch in the tree), which we call
a sample eigenstate, with energy Es. We make a trial
move by picking a random eigenstate, a trial eigenstate,
with energy Et. We accept the move if e−βEt/e−βEs is
larger than a random number in an interval [0, 1]. If
the trial state is accepted, then the trial state becomes
a sample eigenstate and if not, then the sample eigen-
state remains the same. At the end of each attempt, we
compute some desired quantities, e.g., the entanglement
entropy or some correlation function, and because of the
detailed balance condition we are guaranteed to sample
eigenstates according to the Boltzmann distribution at
β. Even though this Monte Carlo sampling is a powerful
tool that allows one to partly overcome the exponential
number of eigenstates, generating a random eigenstate
requires some computation time and limits the system
size to O(100) sites. This number might be too small to
capture the fixed point coupling distribution which would
require at least 104 spins. Another disadvantage of the
Monte Carlo sampling is that it gets harder upon ap-
proaching zero temperature as since each trial eigenstate
is chosen randomly, it is exponentially hard to sample ex-
actly the ground state at zero temperature as the system
size becomes larger.

Because of these complications, we seek an analyti-
cally tractable alternative to Monte Carlo sampling. To
this end, we note that a sampling method that leads
to analytically tractable flow equations, is to indepen-
dently weight the fusion choice locally at each node of the
RSRG-X tree (Fig. 2), rather than globally based on the
entire energy of the branch. Namely consider, the follow-
ing local-node weighting scheme. If the strongest bond
is antiferromagnetic, Ji > 0, then we choose the singlet

branch with probability p1
A = Πse

βΩ

(1−Πs)+ΠseβΩ and choose

the triplet branch with probability pτA = 1−Πs
(1−Πs)+ΠseβΩ .

Otherwise, if the strongest bond is ferromagnetic, Ji <
0, then we choose the singlet branch with probability

p1
F = Πse

−βΩ

(1−Πs)+Πse−βΩ and choose the triplet branch with

probability pτF = 1−Πs
(1−Πs)+Πse−βΩ . By sending β either

to infinite or zero, this “local node sampling” reduces
to the zero or infinite temperature cases, and at first
glance, one might hope that it correctly interpolates be-
tween these limits giving the desired Boltzmann sam-
pling of many-body eigenstates. However, this local-node
sampling turns out to actually deviate from the desired
Boltzmann distribution on eigenstates, as we will argue
shortly for a simple four-site system. Nonetheless, we
will demonstrate that local-node sampling actually pro-
vides a very good approximation at strong disorder, and
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FIG. 4. Simplified RSRG-X tree with four eigenstates
(branches) illustrating the difference between Monte-Carlo
and local node finite temperature samplings (see text).

hence will ultimately be successful for computing univer-
sal scaling properties due to the flow to strong disorder.

To see that the local-node weighting scheme deviates
from the desired global-branch Boltzmann weighting
for finite temperatures 0 < T < ∞, let us consider a
simplified 4-state model where 4 eigenstates correspond
to 4 branches at the end of the RG-tree. This model
is different from the Fibonacci anyon chain and would
arise for instance for an Ising chain, but it captures the
essence of the local node sampling in the most simplified
fashion. Our model system is described in Fig. 4. The
energies are given by E1,1 +E2,1, E1,1 +E2,2, E1,2 +E2,3,
and E1,2 +E2,4 with the associated Boltzmann probabil-

ities 1
Z e
−β(E1,1+E2,1), 1

Z e
−β(E1,1+E2,2), 1

Z e
−β(E1,2+E2,3),

and 1
Z e
−β(E1,2+E2,4), where Z = e−β(E1,1+E2,1) +

e−β(E1,1+E2,2) + e−β(E1,2+E2,3) + e−β(E1,2+E2,4) =
e−βE1,1(e−βE2,1 + e−βE2,2) + e−βE1,2(e−βE2,3 + e−βE2,4)
is the partition function. The probability of choosing the
ground state in the local node sampling is given by the
product of choosing a lower branch in RG-step 1, p1, and
the probability of choosing a lower branch in RG-step
2, p2. Note that the dimension of the Hilbert space of a
lower and an upper branch are the same at each RG step,

we get p1 = e−βE1,1

e−βE1,1+e−βE1,2
and p2 = e−βE2,1

e−βE2,1+e−βE2,2
.

Hence the local node probability associated with the
ground state is p1p2 = 1

Z′ e
−β(E1,1+E2,1), where Z ′ =

e−βE1,1(e−βE2,1 + e−βE2,2) + e−βE1,2(e−βE2,1 + e−βE2,2)
which is different from Z. All the other eigenstates
suffer from the same problem, resulting from the fact
that E2,1, E2,2 6= E2,3, E2,4, meaning that the energies
involved in the second decimation are influenced by the
outcome of the first decimation.

FIG. 5. Local node probability vs. energy of 103 random
eigenstates from a disordered Fibonacci chain with 103 spins
with the initial disorder strength W = 2. Probabilities are
calculated from the local node probabilities with β equals 1
(blue) and 0 (red). The splitting in the β = 0 case is due to
the finite size effect (i.e., goes away when taking number of
spins to infinity), which is completely removed when using the
exact finite-size single fusion probability, FN−2/FN , instead
of Πs. The fitted linear curve has a slope ≈ 0.99. Inset
(a): Plot of local node sampling probabilities at β = 0 but
with a wrong Πs (0.1 larger than the correct one) showing a
nonphysical probability distribution. Inset (b): Plot of local
node sampling probabilities at β = 1 sampled over the full
spectrum.

C. Validity of the local node sampling and history
dependence

Despite this discrepancy, this local node sampling ap-
proximation can be justified analytically by analyzing the
history dependence of the RG flow, that is, by quantify-
ing how much a choice of fusion channel at energy scale
Γ0 affects the rest of the RG flow for Γ > Γ0. As we have
seen above, the difference between the local node and
the true Boltzmann samplings comes from this history
dependence: if the choice of fusion channel in the first
step affects the energy at a later step (in our example,
E2,1, E2,2 6= E2,3, E2,4), then the two samplings will be
different. In practice though, a given decimation will not
affect most of the subsequent RG steps that will most
likely involve bonds far away from it, but it will modify
the energy when the renormalized bonds resulting from
the original decimation are decimated again.

When one decimates a strong bond with strength
Ω0 = e−Γ0 , there are two options: either a singlet is
formed with some probability leading to a strongly weak-
ened renormalized coupling ∼ JLJR/Ω0 between the
neighboring anyons, or a new effective anyon τ is created
with two effective couplings to its neighbors given by
first-order perturbation theory. If we choose the singlet
channel, the renormalized second-order coupling is typi-
cally much weaker than most bonds in the chain, so that
it will be decimated much later in the flow. Generalizing
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the ideas of Ref. 45, we find that it will typically be
decimated at scale Γs = Γ0e

Πs(2+Πs) where for simplic-
ity, we assumed that the singlet fusion probability Πs is
constant over this range of energy scales. This will lead

to a contribution of order Ωs ∼ Ωe
Πs(2+Πs)

0 to the energy.
If on the other hand we pick the τ channel at scale Γ0, we
find that the resulting first order couplings will typically
be decimated at scale Γτ = Γ0e

Πs(1+Πs) leading to a

term in the many-body energy of order Ωτ ∼ Ωe
Πs(1+Πs)

0 .
The crucial point is that by these decimations will
occur much later in the RG, and give contributions
to the energy Ω1 or Ωτ that are negligible compared
to Ω0 is the strong disorder limit Ω0 → 0 (Γ0 → ∞).
This implies that in the strong disorder limit, a given
decimation will essentially not affect the subsequent flow
so that the local node sampling will become an increas-
ingly good approximation of the Boltzmann distribution.

D. Numerics

0.0 0.1 0.2 0.3 0.4 0.5 0.60.0

0.2

0.4

0.6

0.8

1.0

1.2

1
W

err
or

FIG. 6. Plot of the “error” in effective partition function ver-
sus the inverse disorder strength. This “error” is computed
as the averaged value of standard deviations of effective parti-
tion functions associated with random eigenstates. We sample
over 103 eigenstates in each disorder realization and 500 dis-
order realizations for each W with 103 spins. Error-bars are
always smaller than the size of the symbols.

In agreement with this analytical argument, we will
show numerically in the following that the local node
sampling using (p1

A, p
τ
A, p

1
F , p

τ
F ) is a good approximation

of the Boltzmann sampling with an error that decreases
upon increasing the initial disorder strength. This im-
plies the local node sampling using (p1

A, p
τ
A, p

1
F , p

τ
F ) cap-

tures the correct universal long-time dynamics at finite
β since the disorder strength increases without bound
along the RG flow.

To see how the local node sampling works in practice,
we plot the probability given to eigenstates using the lo-
cal node sampling as a function of energy for 103 eigen-
states drawn randomly in a disordered Fibonacci chain
with 103 anyons (Fig. 5). The initial couplings are drawn

from P (log J−1) = 1
W e−

log J−1

W , where W is the initial
disorder strength. We used RSRG-X at infinite temper-
ature to sample eigenstate randomly and set W = 2.
The probability is then computed by a local node prob-
ability (p1

A, p
τ
A, p

1
F , p

τ
F ) with β = 1 and 0. We find that

the local node sampling gives a distribution very close to
the Boltzmann result, with an effective fitted tempera-
ture β ≈ 0.99 which agrees with the correct value. We
remark that the data at infinite temperature (β = 0)
shows a small splitting instead of perfect horizontal line
because we used the expression Πs = 1/ϕ2 to weight the
different fusion channels, which is exact in the thermody-
namic limit but which differs from the exact expression
FN−2/FN when the number N of remaining anyons be-
comes small near the end of the renormalization process.

To quantify the difference between Boltzmann and lo-
cal node sampling, recall that the local node sampling

associates the probability pi = e−βEi/Z(i)
eff to an eigen-

state i, where Ei is the energy and Z
(i)
eff is the guessed

(effective) partition function of i. Ideally, the effective
partition function should be independent of the eigen-
state, and should coincide with the actual partition func-
tion at temperature β−1. To see how the accuracy of the
local node sampling changes upon increasing the initial
disorder strength, we compute the averaged standard de-
viations of the guessed (or effective) partition function
as the error as we vary the initial disorder strength W .
We averaged over 500 disorder realizations with 103 spins
and we sample 103 eigenstates randomly to calculate the
standard deviation of the effective partition function. It
is clear from Fig. 6 that the error decreases as we increase
the disorder strength, which implies that the local node
sampling becomes a better approximation upon increas-
ing the disorder strength. Since the disorder strength
increases without bound along the RG-flow, we expect
that the local node sampling captures the correct long-
time, universal behavior of the system. We note that the
non-zero value of the extrapolated error at W = ∞ is a
finite size artifact, and appears to vanish in the infinite
system limit.

We note in passing that it might be possible to in-
terpolate between the exact – but numerically costly –
Boltzmann (Monte Carlo) sampling and our asymptot-
ically exact – approximate but analytically tractable –
local node sampling. To be more specific, one could imag-
ine choosing trial states of the Monte Carlo procedure by
following the local node sampling at desired temperature
β−1, while accepting or rejecting the trial states by us-
ing both the probability given by the exact Boltzmann
factor and the probability associated with the local node
sampling. This kind of “assisted” Monte Carlo sampling
method has appeared in the literature recently51,52 and
was shown to be much more efficient than conventional
Monte Carlo samplings. It will be interesting to investi-
gate such improved Monte Carlo samplings in the future.
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IV. UNIVERSAL FINITE-TEMPERATURE
CROSSOVER

A. Finite-Temperature Flow Equations

As we have seen in the previous section, the sim-
ple local-node Boltzmann weighting of the RG fusion
branches (p1

A, p
τ
A, p

1
F , p

τ
F ) gives arbitrary good approxi-

mation to the Boltzmann distribution at strong disor-
der, and can therefore be expected to accurately capture
the universal finite-temperature crossover physics. Us-

ing this local node probability, we can derive analytic
finite-temperature RG flow equations for the disordered
Fibonacci chain in a way that is very similar to the T = 0
and T =∞ cases. These flow equations encode how the
coupling distribution evolves along the RG flow. It is
convenient to define the energy scale at a given RG step
by Ω = maxi |Ji|, the RG scale Γ = log( 1

Ω ), and loga-

rithmic couplings ζi = log Ω
|Ji| . (We normalize the initial

energy scale to be Ω0 = 1.) The full flow equations are
derived in Appendix B, and they read

∂ρF (ζ,Γ)

∂Γ
=
∂ρF (ζ,Γ)

∂ζ
+ ρF (0,Γ)

[
2p1
F ρF ? ρA + 2(1− p1

F )ρA(ζ,Γ)− (1− p1
F )ρF (ζ,Γ)

]
+ ρA(0,Γ)

[
2p1
AρF ? ρA + 2(1− p1

A)ρA(ζ,Γ)− (1− p1
A)ρF (ζ,Γ)

]
,

∂ρA(ζ,Γ)

∂Γ
=
∂ρA(ζ,Γ)

∂ζ
+ ρF (0,Γ)

[
p1
F

(
ρF ? ρF + ρA ? ρA

)
+ 2(1− p1

F )ρF (ζ,Γ)− (1− p1
F )ρA(ζ,Γ)

]
+ ρA(0,Γ)

[
p1
A

(
ρF ? ρF + ρA ? ρA

)
+ 2(1− p1

A)ρF (ζ,Γ)− (1− p1
A)ρA(ζ,Γ)

]
, (5)

where ρA and ρF are the probability distribution of
the coupling strength of antiferromagnetic and ferromag-

netic bonds, p1
A = p1

A(β; Γ) = Πse
βΩ

(1−Πs)+ΠseβΩ and p1
F =

p1
F (β; Γ) = Πse

−βΩ

(1−Πs)+Πse−βΩ are singlet fusion probabilities

of antiferromagentic/ferromagnetic bond at an energy-

scale Ω = e−Γ, and ρ1 ? ρ2 =
∫ ζ

0
dζ ′ρ1(ζ − ζ ′,Γ)ρ2(ζ ′,Γ)

is the convolution between the two distributions ρ1 and
ρ2. ρA and ρF are normalized in such a way that
pA =

∫
dζρA(ζ,Γ) and pF =

∫
dζρF (ζ,Γ) are the ratio of

the total antiferromagnetic and ferromagnetic bonds at
the RG scale Γ. Eq. (5) reduce to the zero or the infinite
temperature flow equations22,38 by sending β to infinite
or zero. One powerful feature of these flow equations is
that they describe the flow of couplings associated with
a single typical eigenstate under the RG flow at the de-
sired energy density (or temperature). This again shows
a great advantages over the Monte Carlo sampling which
requires reasonably many samplings in order to obtain
finite temperature properties.

Like the flow equations at zero and infinite tempera-
ture, the equations (5) admit a remarkably simple fixed-
point (or scale-invariant) solution. Using a stability anal-
ysis, one can show that the fixed point distribution has
equal proportion of ferromagnetic and antiferromagnetic
bonds, so that ρA(ζ,Γ) = ρF (ζ,Γ). Let us therefore de-
fine ρ(ζ,Γ) = 2ρA(ζ,Γ) = 2ρF (ζ,Γ), so that the flow
equations (5) reduce to

∂ρ(ζ,Γ)

∂Γ
=
∂ρ(ζ,Γ)

∂ζ
+ρ(0,Γ)

[
Πs(β)ρ?ρ+(1−Πs(β))ρ

]
,

(6)
where Πs(β) = Πs(β; Γ) = 1

2 (p1
A + p1

F ) is the aver-
aged singlet fusion probability. The fixed-point solu-

FIG. 7. Crossover length scales L versus 1
log β

. At small
but finite temperature, the short-length scale physics is dom-
inated by the ground state fixed point phase. After passing
through the crossover region, the physics is eventually dom-
inated by the infinite-temperature infinite-randomness fixed
point. The crossover boundaries are determined by comput-
ing at which length scale Πs(β; Γ) approaches or departs from
its UV (ultraviolet)/IR (infrared) value within one percent,
using Eq. (7) to convert Γ into a distance L.

tion thus reads ρ(ζ,Γ) = 1
W+Ξs(β;Γ)e

− ζ
W+Ξs(β;Γ) , where

Ξs =
∫ Γ

0
dΓ′Πs(β; Γ′) is the integral of Πs(β; Γ). Note

that the Ising (k = 2) case has constant Πs(β) = 1, i.e.,
the flow equation is the same as the ground state and at
infinite temperature and there is no crossover (so that
there is no difference between ground state and excited-
states in this case, see also 31 and 46).
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B. Universal finite-temperature crossover

The averaged singlet fusion probability Πs(β; Γ) de-
termines how fast the effective disorder strength changes
as we increase the RG-parameter Γ. Upon increasing Γ,
Πs(β; Γ) exhibits a crossover from the zero-temperature
value Π0

s = 1
2 to the infinite-temperature value Π∞s =

Πs = 1
1+τ around the energy scale Ω ∼ 1/β. We ex-

pect physical quantities such as correlation functions or
entanglement entropy to show a crossover interpolating
between the T = 0 and T = ∞ critical properties as a
function of say, distance L. In order to determine how
the scaling between energy and distance evolves along
the crossover, we need to determine how the scaling be-
tween energy and length evolves along the flow. This can
be computed by noting that as we increase the RG scale
from Γ to Γ+dΓ, the number of decimated spins is given
by dN = −N(Γ)ρ(0,Γ)

(
1 + Πs(β; Γ)

)
dΓ. Using the fixed

point solution, the typical distance between spins at scale
Γ is equal to:

L(Γ) =
N0

N(Γ)
= exp

(∫ Γ

0

dΓ′
1 + Πs(β; Γ′)
W + Ξs(β; Γ′)

)
, (7)

where N0 is the initial number of spins and N(Γ) is the
number of spins at scale Γ. (Note also that we set our
initial energy scale to unit, Ω0 = 1.) At high energy or
short distances, Πs(β; Γ) is close to its UV (ultraviolet)
value and we have the random-singlet scaling Γ ∼ Lψ0

with ψ0 =
Π0
s

1+Π0
s

= 1
3 , while in the IR (low energy),

the scaling between energy and length is modified to

Γ ∼ Lψ∞ with a different, smaller exponent ψ∞ =
Π∞s

1+Π∞s
.

As the crossover takes place when Ω ∼ 1/β, two length
scales L0 = L0(β) and L∞ = L∞(β) naturally emerge
below and above which the physics is captured by the
zero and infinite temperature infinite-randomness fixed
points, respectively. This finite-temperature crossover is
summarized in Fig. 7 which shows that at any tempera-
ture T > 0, the system eventually flows to the infinite-
temperature fixed point responsible for the large-scale
and long-time behavior, after crossing over from the zero
temperature random-singlet phase.

To illustrate how physical quantities scale along the
crossover, let us consider for example the typical behavior
of the two-point correlation function obtained by mea-
suring the projection operator onto the singlet channel
of two sites separated by distance L, which we denote

by suggestive short-hand notation 〈~S0 · ~SL〉T (with this
shorthand notation, the Hamiltonian of our Fibonacci

chain can be written as H =
∑
Ji~Si · ~Si+1 as for an or-

dinary Heisenberg spin chain). At zero and infinite tem-
perature, the typical behavior of this correlation function

is governed by a stretched exponential decay ∼ e−αL
ψ0,∞

(averaged correlation functions should instead decay al-
gebraically because of rare events that dominate the av-
erage). At finite temperature, it is given by the typical

10-2 10-1 100 101 102 103 104 105 106

L/L0 (β)

0.5

0.6

0.7
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1.1

−
L
−
ψ

0
lo

g
〈 ~ S 0.~

S
L

〉 typic
a
l

T
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β=10^11
β=10^14
β=10^16

FIG. 8. Universal scaling function f(x) given by Eq. (9)
that controls the typical decay of correlation functions. Data
points are obtained by evaluating (7), (8) numerically for var-
ious temperatures. The dashed black curve corresponds to
Eq. (10).

virtual coupling between sites at distance L

〈~S0 · ~SL〉typical
T ∼ Jtyp(L) = e−Γ(L)−ξ(L), (8)

where ξ = W+Ξs(β; Γ) and Γ(L) is obtained by inverting
Eq. (7). Taking the scaling limit T → 0 and L → ∞ of
Eq. (8) numerically while keeping L/L0(β) fixed (recall
that L0(β) ∼ (log β)1/ψ0), we find that the typical spin-
spin correlation function obeys the following universal
scaling

〈~S0 · ~SL〉typical
T ∼ exp

[
−CLψ0f (L/L0(β))

]
, (9)

where C is a non-universal (cutoff dependent) constant,
ψ0 = 1

3 and f(x) is a universal scaling function that inter-
polates between f(0) = 1 in the UV and limx→∞ f(x) ∼
xψ∞−ψ0 in the IR (Fig. 8).

The full functional form of the crossover function
f(x) can be computed in closed form by approximating
the double exponential Boltzmann factors of the form

e−βΩ0e
−Γ

in Πs(β; Γ) by step functions, from which we
find:

f(x) =

{
1, if x < 1,

x−ψ0 Π∞s −Π0
s

Π∞s (1+Π0
s)

+ xψ∞−ψ0 Π0
s(1+Π∞s )

Π∞s (1+Π0
s)
, if x > 1.

(10)
This function is plotted in dashed lines in Fig. 8, and
produces close agreement with the numerical evaluation
of Eq. (7) using the exact form of Πs(β; Γ).

This computation demonstrates the methodology for
computing universal crossover scaling of other quantities,
including mean correlation functions as well as more com-
plicated observables such as entanglement entropy38,45.
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V. CONCLUSION

In this paper, we studied analytically the universal
crossover between ground state and excited-state quan-
tum criticality in a strongly disordered non-ergodic any-
onic chain. We argued that the finite “temperature”
(or energy density) properties of this system can be ef-
ficiently captured using RSRG-X using a “local node
sampling” that is suitable for analytic treatments. This
allowed us to compute exactly universal scaling func-
tions describing eigenstate correlation functions along the
crossover, and we expect that other quantities (such as
the entanglement entropy) could be computed similarly.
Although we focused our analysis on the Fibonacci chain,
we expect our main conclusions to hold for more general
SU(2)k anyonic chains with k ≥ 4. It would be very in-
teresting to find an example of disordered quantum spin
chain with excited-state critical properties analogous to
the anyonic chain studied here: we expect that this will
require some amount of fine tuning (recall that at zero
temperature, anyonic chains usually allow one to access
multicritical points without fine-tuning, for both clean
and random couplings). We leave these open questions
for future work.
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Appendix A: Disordered Fibonacci anyon chain and
RSRG-X

… 

FIG. 9. A system with N + 1 anyons in a 2D surface with
total topological charge S.

Formally, the algebraic theory of anyonic systems can
be described using the language of modular tensor cate-
gory36,53. In this appendix, we mainly focus on the (dis-
ordered) Fibonacci anyon chain35,41,53, which is the sim-
plest non-abelian anyon theory among SU(2)k≥2 anyon
theories. The SU(2)k anyon theory contains finite num-
ber of particles with labels {0, 1

2 , 1, . . . ,
k
2} which are of-

ten referred to as “spins” of particles. These particles
can fuse with each other according to the fusion rules

… 

… 

… 

FIG. 10. Basis vector of the Fibonacci anyon Hilbert space of
N + 1 anyons S1, . . . , SN+1, labeling “legs” of the basis. Dots
are drawn to provide a connection with dots in Fig. 9. Each
vertex satisfy the admissibility condition (fusion rule).

FIG. 11. (a) Quantum dimension of the Fibonacci anyon
system. (b) Useful identities including ‘no tadpole’ rule. (c)
Nontrivial ‘F-moves’ in the Fibonacci anyon system.

FIG. 12. Projection operators. Left: Definition of PAi which
projects spins at i and i + 1 onto the singlet (trivial anyon).
Right: Definition of PFi which projects spins at i and i + 1
onto the triplet (τ anyon).

FIG. 13. Change in logarithmic bond strength upon changing
the RG scale from Γ to Γ + dΓ. 0 denotes the strongest bond
at Γ which is decimated away at Γ+dΓ. Left: Bond strengths
at Γ. Right: Bond strengths at Γ + dΓ. Due to the change
in the energy scale, logarithmic-variables are shifted by dΓ.
Diagrams at middle and bottom show how the nearby bonds
change as a result of a triplet (ferromagnetic) and a singlet
(antiferromagnetic) decimation.

j1 ⊗ j2 = |j1 − j2| ⊕ · · · ⊕min
(
j1 + j2, k− (j1 + j2)

)
. (In

this “spin” labeling, 0 is the trivial or vacuum particle.)
The Fibonacci anyon system can be defined as a subcate-
gory of the SU(2)3 anyon theory allowing only for {0, 1}
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anyons. In the following, we re-label anyons from {0, 1}
to {1, τ}. The fusion rules in the Fibonacci anyon system
are 1 ⊗ 1 = 1, 1 ⊗ τ = τ , and τ ⊗ τ = 1 + τ , where the
last rule shows the “nonabelian” nature of the Fibonacci
anyon.

The Hilbert space of the Fibonacci anyon chain can be
constructed as follows. Suppose we place some anyons
S1, . . . , SN+1 in a 2D surface where Si ∈ {τ} is the only
nontrivial anyon. We can fuse anyons together to yield
the total topological charge S as described in Fig. 9. Be-
cause the Fibonacci anyon system is “nonabelian”, there
could be multiple ways of fusing anyons and this multi-
plicity becomes the dimension of the Hilbert space. To
be specific, the Hilbert space is spanned by the (unnor-
malized) basis {|j1, . . . , jN 〉 : ji ∈ {1, τ}, ji+1 ∈ ji ⊗ Si}.
We demand that every vertex satisfy the “admissible con-
dition” (or fusion rule) ji+1 ∈ ji ⊗ Si. We use solid line
to represent τ anyon, and empty line to represent the
trivial anyon. From the fusion rules, trivial anyons (1’s)
cannot appear adjacent to each other: if ji = 1 for some
i, then we must have ji−1 = ji+1 = τ . This restric-
tion implies the dimension of the Hilbert space of N + 1
anyons is equal to the Nth Fibonacci number FN , hence
the nomenclature. (F1 = 1, F2 = 1, and the rest fol-
lows from the recursion relation Fn+1 = Fn + Fn−1.)
The dimension of the Hilbert space grows as ϕN as N

goes to infinity, with ϕ the golden ratio 1+
√

5
2 ≈ 1.618.

The ket vector 〈j1, . . . , jN |, the adjoint of |j1, . . . , jN 〉,
is the “upside-down” diagram of |j1, . . . , jN 〉 and the in-
ner product is given by the diagrammatic concatenation
between “ket” and “bra” diagrams. Two diagrams are
considered as identical up to “isotopy”, “F-moves”, eval-
uation of quantum dimension etc.53. (A partial set of
rules for the Fibonacci case is described in Fig. 11.)

Having defined the Hilbert space, we can construct lo-
cal operators acting on the Hilbert space. We consider
local projection operators PAi and PFi which are the “sin-
glet” and the “triplet” projectors acting on the sites i and
i+1. The definition of the operators in terms of diagram

is provided in Fig. 12.
The Hamiltonian of the Fibonacci anyon chain is given

by

H = −
N∑
i=1

JiP
A
i (A1)

where Ji are the interaction strength. When Ji > 0
(< 0), the singlet (triplet) fusion is preferred between Si
and Si+1 spins to lower the energy.

Appendix B: Derivation of the finite-temperature
flow equation

In this section, we derive the finite temperature
flow equations (5) using the local node probabilities
(p1
A, p

τ
A, p

1
F , p

τ
F ) for the different fusion channels. These

flow equations describe how the coupling constants
change as we decimate the largest energy gaps Ω =
maxi |Ji| in the system. We introduce the logarithmic
variables Γ = log(Ω0/Ω) and ζi = log(Ω/|Ji|), where Ω0

is the initial energy scale. The RG scale Γ grows from
0 to ∞ along the flow and ζi ≥ 0 where the equality
holds when i is the strongest bond. Let ρF (ζ,Γ) and
ρA(ζ,Γ) be the probability distribution of having ferro-
magnetic (Ji < 0) and antiferromagnetic bond (Ji > 0)
with bond strength ζ at scale Γ. The probability of
having (anti-)ferromagnetic bonds at scale Γ is pF =∫
ρF (ζ,Γ)dζ (pA =

∫
ρA(ζ,Γ)dζ), where pA + pF = 1.

As we increase the RG scale by dΓ, we decimate
ρF (0,Γ)dΓ ferromagnetic bonds and ρA(0,Γ)dΓ antifer-
romagnetic bonds. Due to this decimation, the coupling
of the nearby bonds are renormalized. It is convenient
to define the constants c1 = log(τ) and c2 = log(τ2/2).
As the energy scale Ω changes, the logarithmic coupling
strength ζ also changes. The effects of the change in the
coupling constants are summarized in Fig. 13. With all
these ingredients, we can derive the flow equation:

ρF (ζ,Γ + dΓ)dζ

=

(
ρF (ζ + dΓ,Γ)dζ + ρF (0,Γ)dΓ

[
2p1
F

∫ ∞
0

dζ1

∫ ∞
0

dζ2δ(ζ − ζ1 − ζ2 − c2 + dΓ)ρF (ζ1,Γ)ρA(ζ2,Γ)

+ 2pτF ρA(ζ − c1 + dΓ,Γ)dζ − 2ρF (ζ + dΓ,Γ)dζ
]

+ ρA(0,Γ)dΓ
[
2p1
A

∫ ∞
0

dζ1

∫ ∞
0

dζ2δ(ζ − ζ1 − ζ2 − c2 + dΓ)ρF (ζ1,Γ)ρA(ζ2,Γ)

+ 2pτAρA(ζ − c1 + dΓ,Γ)dζ − 2ρF (ζ + dΓ,Γ)dζ
])

×
(

1− (2p1
F + pτF )ρF (0,Γ)dΓ− (2p1

A + pτA)ρA(0,Γ)dΓ

)−1

, (B1)

where the first term on the right-hand side is the number of couplings that lie in ζ ∼ ζ+dζ after the decimation. The
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second term is the generation of new couplings in (ζ, ζ + dζ) after decimating ferromagnetic bonds to singlets. When
decimating a ferromagnetic bond to a singlet, a ferromagnetic bond is generated if and only if one of the adjacent
bond is ferromagnetic and the other adjacent bond is antiferromagnetic. The third term counts the generation of
ferromagnetic bonds by antiferromagnetic bonds for which the adjacent ferromagnetic bonds are decimated to triplets,
as well as the loss of ferromagnetic bonds due to the decimation. The fourth and the fifth terms count the generation
and removal of ferromagnetic bonds due to the decimation of antiferromagnetic bonds. Finally, the last term is the
change in the total probability due to the decrease in the total number of couplings. The probability distribution of
antiferromagnetic bonds can analogously be obtained:

ρA(ζ,Γ + dΓ)dζ

=

(
ρA(ζ + dΓ,Γ)dζ

+ ρF (0,Γ)dΓ
[
p1
F

∫ ∞
0

dζ1

∫ ∞
0

dζ2δ(ζ − ζ1 − ζ2 − c2 + dΓ)
(
ρF (ζ1,Γ)ρF (ζ2,Γ) + ρA(ζ1,Γ)ρA(ζ2,Γ)

)
+ 2pτF ρF (ζ − c1 + dΓ,Γ)dζ − 2ρA(ζ + dΓ,Γ)dζ

]
+ ρA(0,Γ)dΓ

[
p1
A

∫ ∞
0

dζ1

∫ ∞
0

dζ2δ(ζ − ζ1 − ζ2 − c2 + dΓ)
(
ρF (ζ1,Γ)ρF (ζ2,Γ) + ρA(ζ1,Γ)ρA(ζ2,Γ)

)
+ 2pτAρF (ζ − c1 + dΓ,Γ)dζ − 2ρA(ζ + dΓ,Γ)dζ

])
×
(

1− (2p1
F + pτF )ρF (0,Γ)dΓ− (2p1

A + pτA)ρA(0,Γ)dΓ

)−1

(B2)

Expanding in dζ and dΓ, and throwing away irrelevant terms, Eq. (B1) and Eq. (B2) reduce to Eq. (5).
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