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In one-dimensional electronic systems with strong repulsive interactions, charge excitations prop-
agate much faster than spin excitations. Such systems therefore have an intermediate temperature
range [termed the “spin-incoherent Luttinger liquid” (SILL) regime] where charge excitations are
“cold” (i.e., have low entropy) whereas spin excitations are “hot.” We explore the effects of charge-
sector disorder in the SILL regime in the absence of external sources of equilibration. We argue that
the disorder localizes all charge-sector excitations; however, spin excitations are protected against
full localization, and act as a heat bath facilitating charge and energy transport on asymptotically
long timescales. The charge, spin, and energy conductivities are widely separated from one another.
The dominant carriers of energy in much of the SILL regime are neither charge nor spin excitations,
but neutral “phonon” modes, which undergo an unconventional form of hopping transport that we
discuss. We comment on the applicability of these ideas to experiments and numerical simulations.

I. INTRODUCTION

In models of electrons with strong repulsive
interactions—such as the large-U Hubbard model,
the t−J model or the Wigner crystal—the characteristic
energies of charge and spin excitations are widely
separated. For instance, in the Hubbard model at large
interactions U , charge excitations have an energy scale
set by the hopping t, whereas spin excitation energies
are set by the exchange scale J = t2/U � t. When the
temperature of the system lies between these two widely
separated scales, the charge degrees of freedom are
“cold” (i.e., essentially in their ground state) whereas
the spins are “hot” (i.e., close to infinite temperature1–4).
In one dimension, this intermediate-temperature regime
is called a “spin-incoherent Luttinger liquid” (SILL)5.
In the SILL, charge degrees of freedom are at low
temperature and thus form a Luttinger liquid6, whereas
the spin degrees of freedom are at infinite temperature
and are therefore trivial from the point of view of
thermodynamics and static correlations. The SILL is
thus a tractable regime of these strongly interacting
models that is conceptually (and phenomenologically5)
quite distinct from the conventional Luttinger-liquid
regime7, where both charge and spin excitations are
“cold.”

Because spin excitations in the SILL regime are ef-
fectively at infinite temperature, their equilibrium den-
sity matrix is close to the identity, so the thermodynamic
properties of the SILL are independent of the spin energy
scale. Although degrees of freedom at infinite tempera-
ture do not contribute to thermodynamics, they can still
govern dynamics. This situation obtains, for example, in
disordered isolated quantum systems, which undergo a
many-body localization (MBL) transition8,9 even at in-
finite temperature10 (see Refs. 11 and 12 for recent re-
views). We argue here that a similar situation arises
in the disordered, isolated SILL. The charge excitations

alone would be localized by disorder, causing the intrin-
sic charge relaxation timescale to diverge. Instead, the
dominant mechanism for charge dynamics involves tran-
sitions that borrow energy from the “hot” spin bath —
the spins ‘catalyze’ conduction by placing processes on
shell that in their absence would be forbidden due to en-
ergy conservation. The SILL regime is an unusual setting
for exploring such phenomena: prior studies of MBL have
involved systems all of whose degrees of freedom are cold8

or hot10, whereas in the SILL some degrees of freedom
are cold and others are hot.

Understanding transport and relaxation in this regime
is important, first, because experimental proposals for
realizing the SILL regime tend to involve systems that
are well-isolated from their environments and tempera-
tures where phonon-mediated relaxation is unimportant.
Moreover, relaxation in “two-component” systems—
involving high-frequency, tightly localized modes coupled
to low-frequency delocalized modes—naturally arises in
multiple experimental settings. For instance, the exper-
iments of Ref. 13 involve quasi-1D geometries, in which
localized longitudinal modes can relax by coupling to de-
localized transverse modes whose bandwidth is tunable
by varying lattice depth; in solid-state systems, nuclear
spins can play a similar role in thermalizing the dynam-
ics of electron spins. While such “narrow-bath” sys-
tems ultimately establish ergodic dynamics, the crossover
to such behavior occurs over asymptotically long time
scales: the dynamics at shorter times may retain imprints
of the (avoided) localized phase, e.g., via the parameter-
dependence of relaxation timescales14. As true many-
body localization is an experimentally elusive ideal —
particularly in the solid-state setting — understanding
such dynamical crossovers is an important route to study
various intriguing phenomena that have been proposed to
occur in the MBL regime and proximate to the localiza-
tion transition15–19.

Accordingly, here we advocate that the disordered
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SILL is profitably viewed as an instance of a “nearly
many-body localized metal”14, and consequently study-
ing its transport properties may provide insight into uni-
versal properties of many-body localized systems in one
dimension. Specifically, we argue that transport in iso-
lated disordered wires in the SILL regime is governed by
the small spin energy scale, since in the absence of the
thermalizing spin bath, the system is (many-body) lo-
calized. We consider a hierarchy of scales in which the
charge energy scale is the largest in the problem, followed
successively by the disorder strength, the temperature,
and the spin energy scale. In this regime, disorder lo-
calizes the low-energy charge excitations20. Thus, charge
excitations on their own do not give rise to transport in
the d.c. limit. However, the spin excitations act as a
slowly fluctuating thermal bath (which is protected from
localization by the SU(2) spin-rotation symmetry, pro-
vided that spin-orbit coupling is absent). Charge and
energy transport then take place through various forms
of variable-range hopping mediated by this slowly fluctu-
ating internal spin bath. The resulting energy transport
is parametrically faster than charge transport, but both
rates show a non-trivial power-law dependence on the
spin energy scale. We discuss how this spin-catalyzed
hopping conductivity can be tested in both cold-atom
and solid-state experiments as well as in numerical sim-
ulations.

Before proceeding, we place the present paper in the
context of other related work. Previous investigations
of transport in SILLs21 have focused on single-impurity
problems, rather than the case of a finite density of
quenched impurities that is pertinent to localization
physics. Hopping conductivity (both d.c. and a.c.) in
Luttinger liquids has been recast in terms of effective two-
level systems22,23 and pinned charge-density waves24–28,
but those prior works all assumed the existence of a “per-
fect bath” capable of placing any hopping process on-
shell; this is in marked contrast to the narrow-bandwidth
bath, natural in the SILL context, that we consider here.
In addition, the SILL is not a conventional Luttinger
liquid regime: although an effective Luttinger liquid de-
scription exists for the charge sector, the spin sector is
at very high temperatures and cannot be described as a
Luttinger liquid. The phenomenology of “narrow bath”
disordered systems was studied in Ref. 14 but there
the focus was on developing a mean-field approach to
the MBL transition, rather than on transport proper-
ties. Furthermore, in contrast to many analytical treat-
ments of MBL that work in the limit of a weakly in-
teracting Anderson (i.e., free-fermion) insulator, the ap-
proach here builds in strong interactions at the outset.
We focus on the case of relatively weak disorder; other
effects can emerge at strong disorder29,30. Finally, we
note that while variable-range hopping conductivity is
a well-known low-temperature transport phenomenon in
disordered semiconductors, the mechanism we discuss for
the thermal conductivity κ of the SILL (Sec. VI) has
no obvious parallels in other systems. We argue that κ

is dominated by the spin-mediated hopping of neutral
phonon-like bosonic excitations. The number of these
neutral bosons is not explicitly conserved; however, be-
cause their energy scale is much greater than the spin
energy scale, the neutral bosons cannot decay into spin
excitations except at very high orders in perturbation
theory. Thus their number is approximately conserved,
and they contribute to κ through incoherent hopping.

The rest of this paper is structured as follows. In Sec. II
we provide a heuristic discussion of the SILL within the
‘fluctuating Wigner solid model’, that allows us to review
standard results on the SILL regime and introduce some
key features relevant to the addition of quenched disorder
in this regime. In Sec. III we provide a more “universal”
Hamiltonian that captures key features of the disordered
SILL and comment on the energy scales and excitations
relevant to our discussion. We then discuss the special
features of these excitations in the isolated SILL at fi-
nite energy density in Sec. IV. In Sec. V we discuss both
a.c. and d.c. charge conductivity. In Sec. VI we esti-
mate the d.c. thermal conductivity, which we argue is
parametrically larger than the d.c. charge conductivity.
Finally, in Sec. VII we summarize our results and discuss
the effects of phonons and spin-orbit coupling, as well as
implications for experiment.

II. HEURISTIC DISCUSSION OF THE
DISORDERED SILL

In this section, we motivate our discussion of the phe-
nomenology of the SILL regime, for concreteness con-
sidering a specific microscopic model: the fluctuating
Wigner solid5 of spin-1/2 electrons. Many of the key fea-
tures of the clean, and the disordered, SILL regime are
manifest in this model, and can be explored in a tractable
semiclassical limit. We emphasize that the SILL regime is
generic in strongly interacting one-dimensional systems;
we shall turn to this general situation in subsequent sec-
tions.

A. Fluctuating Wigner-solid model

The fluctuating Wigner-solid or harmonic-crystal
model5 has the microscopic Hamiltonian

HWS =

N∑
i=1

p2
i

2M
+
Mω2

0

2
(xi − xi+1 − 1)2 (1)

where M is a particle mass, and (xi, pi) are position and
momentum coordinates of the ith particle. In two or
more dimensions, this model has a crystalline phase at
zero temperature; in one dimension, however, long-range
crystalline order is absent even at zero temperature for
finite M . (In the M → ∞ limit, of course, the ground
state is a classical charge density wave.) Nevertheless,
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in the limit of large M , the typical root-mean-squared
displacement of a particle (in the background potential
created by the other particles) is much less than the in-
terparticle spacing. Thus, if the particles comprising the
Wigner solid are spin-1/2 fermions, their exchange effects
(and thus the spin energy scale) are strongly suppressed.
The ratio of spin bandwidth Ws to charge bandwidth Wc

vanishes, at large M31, as Ws/Wc ∼ exp(−const.×√rs),
where rs is the interparticle spacing. At temperatures in
the intermediate regime Ws � T �Wc, the spin degrees
of freedom are effectively at infinite temperature, but the
charge degrees of freedom can be regarded as a spinless
Luttinger liquid5 with an effective Luttinger parameter
Keff that goes to zero algebraically with 1/M32. This is
the SILL regime of the fluctuating Wigner solid.

B. Effects of disorder in the classical limit

The disorder we consider consists of a random poten-
tial, of width D and correlation length much smaller than
the interparticle spacing, acting on the total fermion den-
sity, i.e.,

Hdis. = D

N∑
i=1

V (xi),

〈V (x)V (x′)〉 ∼ e−Λ|x−x′| (2)

where Λ is short compared with the other length scales
in the problem. The disorder couples directly only to the
charge degrees of freedom. Let us first consider the M →
∞ classical limit. In this limit the Imry-Ma argument33

suggests that long-range crystalline order is unstable for
arbitrarily weak disorder; instead, disorder locally “pins”
the charge-density wave24,26,27, and the pinning scale is
given26,27 by ξp ∼ 1/D1/3. On scales shorter than this,
the system looks crystalline; however, spatial correlations
on length scales large compared with ξp are exponentially
decaying.

C. Effects of disorder for large finite M

We now perturb away from the above classical limit,
which can be regarded as the Keff → 0 limit of a Lut-
tinger liquid. For Keff → 0 charges are arranged in
their lowest-energy classical configuration26. Low-energy
quantum fluctuations about this configuration for small
but nonzero K are of two kinds: (i) oscillations of
a particle about its classical position (the “Gaussian”
or “phonon” sector), and (ii) tunneling events between
nearly degenerate classical configurations (the “instan-
ton” sector25).

Low-energy excitations in both sectors are localized,
but as we now argue they have different characteristic lo-
calization lengths34. It is helpful to think of the system as

x

⇠p

ground state

Gaussian

instanton

Vimp(x)

losc

FIG. 1. Gaussian modes versus instantons. In the presence
of an impurity potential Vimp(x), near the classical (K → 0)
limit the ground state configuration of the SILL is a pinned
CDW (black dots), retaining short-range density-wave order
on scales of order the pinning length ξp. Excitations of this
pinned CDW, may be divided into (i) Gaussian (quantum or
thermal) fluctuations of the charges about their equilibrium
configuration (red dots) with amplitudes losc much smaller
than the inter-particle spacing, and (ii) instanton events (blue
dots) that describe quantum tunneling between nearly degen-
erate classical saddle points. The instantons involve large-
scale charge rearrangements, whereas the Gaussian modes can
transmit energy, but not charge, over long distances. All hop-
ping processes of relevance to transport occur on asymptoti-
cally longer scales, as discussed in the main text.

consisting of randomly coupled segments of clean CDW,
each of size ∼ ξp. Gaussian-sector excitations (which
involve oscillations with characteristic single-particle dis-
placements losc much smaller than the interparticle spac-
ing) are correlated over distances ∼ ξp; this is their
characteristic localization length. [As these are phonons
of the CDW and disorder explicitly breaks translational
symmetry, they are not protected against localization at
any energy — and hence the conclusions of 35 do not
apply here.] Instanton-sector excitations, by contrast,
involve charge motion over distances that are large com-
pared with a lattice spacing (and, in the regimes we shall
focus on, large compared with ξp as well). Consider an
instanton that moves charge between two nearly degen-
erate positions separated by a distance L. This process
involves tunneling through a barrier with a width ∼ L
and a height that depends on the interaction strength,
and its matrix element is thus suppressed exponentially
in L, with a coefficient that vanishes in the classical limit.
We define a “quantum length” ξq through the condition
that the instanton matrix element falls off as exp(−L/ξq).
In general, ξq � ξp whenever Keff � 136.

D. Induced exchange dynamics

The kinetic energy term at finite M not only induces
dynamics in the charge sector (viz. the excitations dis-
cussed above), but also gives rise to exchange processes
and thus spin dynamics. By symmetry, the effective in-
teraction between two spins is of the Heisenberg form.
In the semiclassical limit, the magnitude of this effec-
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tive interaction falls off as Ws ∼ Wc exp(−const.×√rs)
where rs is the typical interparticle spacing31. The ran-
domness in equilibrium charge positions implies that the
spin Hamiltonian is of the random-bond Heisenberg form.
Such random-bond Heisenberg models are believed not to
exhibit localization at high temperatures37. Moreover,
for weak pinning (ξp � 1, in units of the lattice spacing),
the exchange randomness is slowly varying (on a scale
ξp). The appropriate description for interacting spins at
high temperature in the presence of smoothly varying
randomness is hydrodynamic38: the spins achieve local
thermal equilibrium on a timescale of order 1/Ws and
on longer timescales their dynamics is diffusive, with a
diffusion constant set by Ds ∼ 1/Ws.

Thus, on timesales ∼ 1/Ws, the spins equilibrate in
a fixed charge background. On timescales that are long
compared with 1/Ws, the spins act as a bath allowing
for charge dynamics. Because the spin bath is slowly
fluctuating14, it can only act as a bath for charge rear-
rangements that change the energy of the charge sector
by .Ws. Such transitions, as we shall see in the follow-
ing sections, are typically sufficiently collective that the
associated matrix elements are much smaller than Ws.
This justifies treating spin-mediated charge transitions
using the Golden Rule, as noted, e.g., in Ref. 39.

III. UNIVERSAL MODEL OF THE
DISORDERED SILL

The discussion in the previous section focused on the
case of the fluctuating Wigner solid; however, the SILL
regime exists more generally in strongly interacting one-
dimensional systems5. Therefore, before turning to a
more quantitative discussion of transport in the disor-
dered SILL, we specify a general, “universal” Hamilto-
nian that captures the key general features of the disor-
dered SILL regime. This general Hamiltonian consists of
three parts, H = Hc + Hs + Hsc, respectively denoting
terms that act exclusively on the charge sector, terms
that act exclusively on the spin sector, and terms that
couple the two sectors. The charge sector Hamiltonian is
of the Luttinger liquid form,

Hc =
veff

2π

∫
dx

{
Keff [∂xθ(x)]2 +

1

Keff
[∂xφ(x)]2

}
+

∫
dxD(x)eiφ(x)+ikF x + h.c. (3)

where φ, θ are collective variables that parameterize den-
sity and phase fluctuations7, and the velocity veff and
Luttinger parameter Keff are what they would be for
a spinless system at the relevant density5. Note that
Keff = 2Kc, where Kc is the charge Luttinger parame-
ter of the conventional zero-temperature Luttinger-liquid
phase of the model (which sets in at temperatures much
lower than the spin exchange scale, and with which we
shall not be concerned in this work). The second line

of (3) represents the backscattering terms due to the dis-
order potential24,29; these produce an impurity scatter-
ing rate ∼ D2, which is the characteristic disorder scale
that we compare with Ws. Associated with this charge
Hamiltonian are two characteristic localization lengths,
ξp and ξq . ξp, as discussed in the previous section. An
important point is that the ratio ξq/ξp, while small in the
Wigner-crystal case, is not always small for other models
that have a SILL regime; for instance, in the Hubbard
and t− J models, the two lengths are of the same order
of magnitude. [Note that we have written (3) in vari-
ables appropriate to the SILL regime, so φ, kF represent
parameters of the effective spinless fermions. In order
to transform back to variables φc, k

c
F appropriate to the

(spinful) electrons we may use the relations φc =
√

2φ
and kF = 2kcF

21.]
The spin Hamiltonian Hs is taken to have some generic

local lattice form, in terms of local operators hi:

Hs 'Ws

∑
i

ĥi, (4)

where the ĥi are chosen so that Hs is invariant under
SU(2) rotations. In the SILL regime, the overall energy
scale Ws is small enough that exp(−Hs/T ) ≈ 1. Thus,
the spin Hamiltonian does not affect thermodynamics or
equilibrium properties in this regime—a feature known
as “super-universality”5. Since we are interested in dy-
namics as well as thermodynamics, we specify that the
long-time autocorrelation functions of the spin Hamilto-
nian follow linearized hydrodynamics. Thus, for example,

〈Sxi (t)Sxi (0)〉 ∼ 1/
√
Dt (5)

where D ∼ Ws is the spin diffusion constant. Addition-
ally, non-conserved operators will decay exponentially
with a rate that is similarly set by Ws. These assump-
tions would hold, in particular, if the high-temperature
dynamics of Hs were thermal and ergodic, as they gener-
ically will be, absent many-body localization — a pos-
sibility excluded in this work by assuming SU(2) spin-
rotation symmetry throughout.

The spin-charge coupling is given by a generic SU(2)-
symmetric form, such as

Hsc ' g
∑
i

∫
dx ĥi[∂xφc(x)]2δ(x− xi), (6)

where xi is the position of the ith lattice site. The origin
of the spin-charge coupling is, as discussed above, that
the spin exchange scale is sensitive to the charge posi-
tions. We emphasize that there is no general reason that
the spin-charge coupling constant g should be small com-
pared with the spin energy scale Ws. In this respect the
SILL is distinct from the conventional Luttinger liquid:
the conventional Luttinger liquid is a renormalization-
group fixed point at which charge and spin decouple7, be-
cause all spin-charge couplings are irrelevant in the renor-
malization group sense. By contrast, the SILL regime is
not a fixed point so this argument does not apply to it. As
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a corollary, it also follows that higher-order spin-charge
couplings may also be present with significant strength.
Our conclusions are unchanged as long as (1) these do not
break SU(2) symmetry and thereby provide a route for
the spins to localizes due to ‘feedback’ from the charge;
and (2) the spin degrees of freedom always have a very
narrow bandwidth, that limits their capacity to thermal-
ize the charges despite the potentially large terms cou-
pling the two sectors (as illustrated in Sec. II D above).
In this regime, despite the strong coupling, it is permis-
sible to treat the effect of the spin bath using Fermi’s
Golden Rule. A detailed analysis of the validity of this
approximation is given in Ref. 14.

IV. ISOLATED DISORDERED SILL AT FINITE
ENERGY DENSITY

In previous sections we introduced the two kinds of
low-energy excitations of the pinned CDW: approxi-
mately Gaussian phonons with a localization length ξp
and instantons (which are non-local two level systems
that one can regard as fermions) that have a localization
length ξq. We now consider how the properties of these
different excitations are affected at low but finite energy
density.

Gaussian sector. The Gaussian sector consists of
bosonic modes at frequency ωp, generically with anhar-
monicities; at finite temperature these modes will be
thermally occupied. One can partition these bosonic
modes into “classical” modes (for which T � ωp, with
occupation40 ∼ T/ωp), and “quantum” modes, which
are close to their ground state, and have occupancy
∼ exp(−ωp/T ). The density of states goes as ω3

p at low

frequencies41; we assume that the temperature is such
that all relevant modes are in this low-frequency tail.

Instanton sector. Instantons with a splitting much
smaller than T are essentially at infinite temperature,
whereas those with splitting much larger than T are in
their ground state. Our interest is mainly in the low-
frequency limit ωi � T , so the instantons with splitting
ωi & T will be mostly irrelevant to our analysis.

When interaction effects are absent, therefore, the
relevant degrees of freedom are a thermally occupied
ensemble of localized bosonic modes (with localization
length ξp) and localized fermionic modes (with localiza-
tion length ξq � ξp). Adding interactions at finite tem-
perature alters this picture in three ways. First, inter-
actions couple the localized low-energy excitations of the
CDW to high-energy charge modes (with energies ∼Wc),
which are presumably delocalized in the weakly disor-
dered, strongly interacting limit of interest to us (but see
Refs. 42 and 43). These delocalized modes can trans-
port charge and act as a bath for the low-energy sec-
tor. However, their effects are suppressed by the Boltz-
mann factor exp(−Wc/T ), and will be subleading in the
Wc � T regime of interest to us. Second, interactions
permit many-body resonances, involving the simultane-

ous rearrangement of several particles44–47; such pro-
cesses (that we describe in more detail below) are ab-
sent in the ground state (which is unique) but possible in
thermal states (which have a finite entropy), and will be
relevant to our discussion of transport below. This fea-
ture is absent in the ground-state, finite-frequency case
studied in Ref. 41, and is responsible for the qualita-
tive difference between our results and those of Ref. 41.
Third, it is in principle possible for very low frequency
“classical” modes from the Gaussian sector to delocalize
the system, because they may act as local low-frequency
drives. Before proceeding, we must ensure that this situ-
ation does not arise in the SILL in the dynamical regimes
of interest to us.
Stability against Gaussian-sector driving. That

these spatially sparse classical modes do not delocalize
the rest of the system can be seen by the following heuris-
tic argument. The criterion for a drive at strength A and
frequency ω to cause delocalization48 is that

(
A

ω

)(
A

Wc

)2/(ξp ln 2)

& 1. (7)

Because the classical modes are themselves localized, at
a distance x from such a classical mode, the amplitude
of its coupling to other modes (and thus the effective

drive amplitude) is A ∼ Wc exp(−x/ξp)
√
T/ω (the fac-

tor of
√
T/ω is due to Bose enhancement). The spac-

ing between classical modes of frequency ω is set by
x(ω) ∼ (Wc/ω)3, using the estimate for the tail density-
of-states. In order for the rare localized modes at fre-
quency ω to delocalize the entire system, the criterion (7)
would have to be satisfied at distances of order x(ω), so
that each mode can localize the region around it. This
would require that

Wc

T

(
T

ω

) 3
2 + 1

ξp ln 2

exp

[
−
(
Wc

ω

)3(
1

ξp
+

2

ξ2
p ln 2

)]
& 1,

(8)
which is clearly not the case for sufficiently small ω.
Thus, rare classical modes might cause some degree of
delocalization in their immediate surroundings, but do
not delocalize the entire system. (We emphasize that
(8), which does not consider anharmonicity and treats
the modes as purely classical, overestimates the extent
of delocalization due to these modes.)

A. Delocalization via spin bath

So far, we have ignored the spin degree of freedom
completely, and have found that under this assumption
the system is effectively localized at finite temperature
(up to timescales of order exp(−Wc/T )). As discussed
in Secs. II D and III, the effective coupling between spin
and charge is weak enough to permit treating the spin
bath at the Golden Rule level (but keeping in mind that
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it is narrow-bandwidth). We emphasize, however, that
because of the SU(2) symmetry of the spin sector, spin
excitations do not freeze out at high temperature, and
some transport is present even in the limit of g � Ws.
[Note that this conclusion will be altered if SU(2) symme-
try is broken, e.g. by spin-orbit coupling: in this case, the
localized charge distribution can induce a site-dependent
random field on the spin sector, and such back-action
may localize the bath — a so-called “MBL proximity ef-
fect”49. In the SU(2) symmetric case, only bond disorder
is induced on the spins, and this is believed to be robust
against MBL37.]

Owing to the scale hierarchy Ws � T , the manner
in which the spin bath delocalizes the charge sector is
an unusual form of variable-range hopping. Because the
spin sector can only absorb energies smaller than Ws,
the transitions that it mediates involve pairs of states
that are within Ws of one another in energy. The effects
of such coupling on relaxation in the instanton sector
were previously addressed in Ref. 14; below, we general-
ize these results to transport. The effects of Ws � T on
the Gaussian sector, however, are more unusual. Here,
the combination of localization and the narrow spin bath
gives rise to an approximate boson number conservation:
although bosons can be created or destroyed, it takes
an energy ∼ T to create and destroy them, so the rele-
vant process only takes place at order T/Ws � 1 in the
spin-charge coupling. The dominant channel by which
phonons equilibrate, instead, is by hopping between ap-
proximately degenerate modes. This is related to a pe-
culiar feature of the spin “bath”: namely, that its heat
capacity is far lower than that of the charge sector. As
a consequence, the relaxation of a nonequilibrium charge
configuration does not appreciably change the energy of
the spin sector: rather, the spin sector primarily “cat-
alyzes” the spreading of energy within the charge sector,
by permitting charge transitions that would not other-
wise be on shell.

We have now set the stage for our main discussion: in
the next two sections, we will consider charge and en-
ergy transport through hopping processes of the Gaus-
sian and/or instanton sectors of the charge modes, that
are placed on-shell by rearrangements of the thermalizing
spin bath.

V. CHARGE TRANSPORT

In this section we discuss charge transport in the disor-
dered SILL. We begin by discussing the isolated-system
result for linear-response charge conductivity due to the
instanton sector. We then turn to saturation effects in-
duced by the spin bath, and then finally to conductivity
in the d.c. limit. Our discussion of a.c. response—which
does not involve the spin bath—is similar in spirit to
previous work23,44; however, in the d.c. limit the narrow-
band nature of the spin bath leads to striking deviations
from the standard hopping-transport predictions50,51.

A. Optical conductivity in the isolated system

We begin by considering the optical charge conductiv-
ity (ignoring the spin degree of freedom). For this pur-
pose, it is convenient to begin with the Kubo formula,

σ(ω) =
1− e−ω/T
ωZN

∑
m,n

e−Em/T |〈m| j |n〉|2 δ(ω − ωmn),

where Z is the partition function, N the number of sites
in the system, the indices m,n run over all the many-
particle eigenstates, whose splitting is given by ωmn, and
the current j is the sum over local currents, j =

∑
i ji.

We are interested in the frequency regime Ws � ω �
T � Wc. Thus, we can approximate 1 − e−ω/T ≈ ω/T .
The Boltzmann factors e−Em/T /Z determine a density
per site ∼ T/Wc of relevant initial states. In this regime,
and in the absence of interactions, the dominant contri-
bution to the optical conductivity comes from two-level
systems (TLSs) consisting of two-site resonances with a
splitting that matches the drive at frequency ω. The op-
tical conductivity due to these was derived by Mott52,
whose argument we briefly review for completeness. The
characteristic size of resonant pairs with splitting ω is
rω, determined by the condition Wce

−rω/ξq ∼ ω; the cur-
rent matrix element of the drive coupling these pairs is
j ∼ ωrω52. Finally, the phase space of final states goes as
rd−1
ω ξq/Wc in d dimensions (and is therefore constant in

one dimension). Combining these expressions, we recover
the standard expression

σsp(ω) ∼
(
ω

Wc

)2

ξ3
q log2

(
Wc

ω

)
. (9)

At finite temperature, in the presence of interactions, this
expression is modified because multiparticle rearrange-
ments become possible44. The low-temperature Hamil-
tonian of the spinless CDW can be written schematically
in terms of instanton configurations τα (which are two-

level systems) as H =
∑
α hατ

z
α +

∑
Vαβτ

i
ατ

j
β + . . .; here,

i, j run through the Pauli indices x, y, z and α, β denote
the location of the instanton. Higher-order interactions
fall off with the order of the interaction and also fall off
exponentially with the distance between the instantons
involved, with a characteristic localization length ξp (It
might naively seem that the falloff should be governed
by the instanton size ∼ ξq. However, instantons can ex-
perience interactions that are mediated by the Gaussian
sector, which is less tightly localized.). At low temper-
atures, thermally occupied instantons are sparse, so we
can use perturbation theory in the instanton-instanton
interaction Vαβ to argue that n-particle rearrangements
have a matrix element that falls off exponentially with
n.

Following Ref. 44, we can then generalize Mott’s ar-
gument as follows. Given a drive frequency ω, we seek
n-particle rearrangements with a rate ∼ ω. The phase
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space is much greater than in Mott’s estimate: specifi-
cally, the number of possible n-particle rearrangements
involving a particular particle goes as esn where s '
T/Wc is an entropy density per site (one can also think
of s as the density of excited sites). Since the excitation
density is low (∼ s) the interactions between excitations
are also weak in the low-temperature limit: the tunneling
matrix element for a two-particle rearrangement will fall
off as the wavefunction overlap between the two local-
ized orbitals at a distance 1/s, which is exp(−1/(sξp)).
Thus an n-particle rearrangement has tunneling matrix
element Wc exp(−n/(sξp)) (replacing the single-particle

result Wce
−r/ξq ). This highlights an important but sub-

tle aspect of the many-body Mott argument: namely, the
size of the matrix elements involved in the Mott resonant
transitions (and thus the size of optimal rearrangements)
is set solely by the external frequency; the amount of con-
ductivity due to these thus depends mostly on the phase
space of available rearrangements with a particular ma-
trix element. Therefore, even though the matrix element
between initial and final many-body states is smaller for
a multiparticle rearrangement this is compensated by the
much larger phase space for such processes and thus these
rearrangements dominate the conductivity.

Using the Mott criterion, the optimal rearrangements
at frequency ω involve nω ' sξp log(Wc/ω). The cur-
rent matrix elements that enter the Kubo formula retain
their dependence on ω (upto logarithmic factors), so that,
upon including the many-body phase space factor for the
optimal rearrangements, we find

σint(ω) ∼
(
ω

Wc

)2−γξp(T/Wc)

, (10)

where γ is a numerical factor of order unity. Note that
these interaction effects are only relevant at sufficiently
low frequencies, ω . Wce

−Wc/(Tξp). At higher frequen-
cies, the many-body resonances giving rise to Mott-type
conductivity are absent, and the single-particle result (9)
applies.

Coupling to the spin bath does not appreciably change
this linear-response result in the regime Ws � ω � T .
However, it does affect the nature of the steady-state re-
sponse23. When dissipation is absent, linear response
only occurs as a transient, on timescales short com-
pared with the field amplitude t . 1/(ξqE). On longer
timescales, all the instantons are saturated and there is
no further response53–55. However, in the presence of a
relaxation timescale τ (which we will estimate below),
the steady-state conductivity is given by23

σss(ω) ' σint(ω)

[
1−

(
Eξq log(Wc/ω)

1/τ

)2
]

(11)

B. Relaxation in the presence of the spin bath

Before turning to the dc conductivity (which is gov-
erned by hopping processes mediated by the spin bath),

we briefly discuss the rate at which a particular local con-
figuration of charge is excited or de-excited by means of
the spin bath. (This is a straightforward application of
the ideas in Ref. 14.) Because the spin bath has band-
width ∼ Ws, only transitions that change the energy of
the charge sector by .Ws are permitted. This rules out
most local charge rearrangements, which change the en-
ergy by ∼ Wc. The lowest-order processes with energy
denominator .Ws are therefore:

(i) single-charge tunneling: assuming a constant
density of states ρ0, the range over which a single
charge can hop while remaining on-shell is estimated
by demanding that we find within an energy window
of order Ws over scale l: in other words, we require
that ρ0Wsl

d ∼ 1. Using d = 1 and ρ0 ∼ 1/Wc,
we find that this process must occur over a distance
l ∼ Wc/Ws. The matrix element for single-charge
tunneling is therefore ge−l/ξq ∼ g exp[−Wc/(ξqWs)]
where g is the spin-charge coupling. Recalling that
the density of final states is set by the spin bath and
is therefore ∼ 1/Ws and applying the Golden rule,
we find an associated rate

Γsp '
g2

Ws
e−2Wc/(ξqWs). (12)

Note that this is temperature-independent, so one
might expect it to dominate in some temperature
regimes over the temperature-dependent processes.

(ii) multiparticle rearrangements: with interac-
tions, we may simultaneously rearrange an appre-
ciable fraction of particles in some region while re-
maining on shell. The estimate for this closely par-
allels the many-body Mott conductivity discussion
above: we consider a region of size l, so that the mul-
tiparticle charge rearrangements of this region ac-
cessible with an entropy density per site s ∼ T/Wc

have an effective energy level spacing δ(l) ∼Wce
−sl.

Requiring that such processes can be placed on shell
by the spin bath (i.e., setting δ(l) ∼ Ws) yields
l ∼ 1/s logWc/Ws. The matrix element for such
a transition is g exp(−l/ξp), where g is again the
spin-charge coupling (ξp enters, rather than ξq as
it is the relevant scale for multiparticle rearrange-
ments); again applying the Golden rule with final
density of states ∼ 1/Ws, we find

Γint '
g2

Ws

(
Ws

Wc

)2Wc/(ξpT )

. (13)

Note that the temperature-dependence is activated.

Comparing Eqs. (12) and (13) one finds that interact-
ing processes dominate when

T &Ws log(Wc/Ws) (14)

while single-particle hops dominate relaxation (and
the relaxation rate thereby becomes temperature-
independent) in the window Ws � T �Ws log(Wc/Ws).
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C. Hopping conductivity

It is straightforward to extend the previous analysis
from relaxation to hopping transport. Because Ws � T ,
any pair of states or configurations within Ws in energy
automatically have an energy separation much less than
T . It is therefore unnecessary to optimize over activation
barriers (as in the standard variable-range hopping anal-
ysis50). Rather, the range over which hopping takes place
is determined by the spacing between sites (or configura-
tions) that are within Ws in energy; the associated rates
were computed in the previous section. Accordingly the
d.c. conductivity is given, up to logarithmic corrections,
by

σd.c. '
1

T
(Γsp + Γint), (15)

and its overall temperature-dependence is nonmono-
tonic: it transitions from activated behavior at T &
Ws log(Wc/Ws) to a 1/T growth at lower temperatures
down to T ∼ Ws. At still lower temperatures, presum-
ably the d.c. conductivity vanishes again, but this is
outside the regime of validity of our analysis (this regime
is explored, e.g., in Ref. 56). The various regimes are
plotted in Fig. 2.

VI. ENERGY TRANSPORT

Three separate channels exist for energy transport: the
charge carriers (instantons) discussed in the previous sec-
tion; spins; and neutral phonon-like excitations. The en-
ergy carried by spin and charge carriers is straightfor-
ward to estimate, but the contribution due to phonons is
more nontrivial. In this section, we discuss the first two
of these, then estimate the phonon contribution. Com-
paring the three then permits us to establish regimes in
which each is dominant.

A. Spin- and charge-based contributions

Spin excitations diffuse with a diffusion constant
D ∼ Ws; since their energy is bandwidth-limited, for
T � Ws each such excitation carries Q ∼ Ws of energy.
The typical thermal density of states for a spin excita-
tion is ns(T ) ∼ e−Ws/T ; using the Einstein relation for a
thermal gradient, we find

κs(T ) ∼ Q2D∂ns
∂T

∼
T�Ws

W 3
s

T 2
. (16)

The charge-transport contribution to the energy con-
ductivity is related to the charge conductivity (15) by a
Wiedemann-Franz law

κinst ' σd.c.T ; (17)

single-particle collective

Ws
Gsp/T

Gint/T

0.000 0.005 0.010 0.015 0.020 0.025 0.030

T�Wc

Σ
HT

L

FIG. 2. Low-temperature d.c. charge conductivity σ(T )
(in arbitrary units) of strongly interacting spinful chains,
plotted for parameters Ws = 0.01Wc, ξp = 10, ξq = 5.
At relatively high temperatures in the SILL regime (i.e.,
Ws log(Wc/Ws) . T . Wc), the dominant contribution to
σ(T ) comes from collective rearrangements, and is activated
(beige region). At relatively low temperatures in the SILL
regime (i.e., Ws . T . Ws log(Wc/Ws), single-particle hops
dominate, and σ(T ) ∼ 1/T (blue region). The thick line
shows the total d.c. conductivity, (15); the single-particle and
collective contributions are plotted as dashed lines, given by
Γsp/T , Γint/T respectively, with the relevant relaxation rates
given by (12) and (13). The behavior of σ(T ) at still lower
temperatures, T < Ws (i.e., in the spinful Luttinger-liquid
regime rather than the SILL regime), is outside the scope of
this work. We expect that the conductivity here is due to
conventional hopping mechanisms and drops rapidly to zero.
An appreciable regime of non-monotonic behavior exists when
log(Wc/Ws) � 1, i.e., whenever there is a well-defined SILL
regime.

thus it is activated at high temperatures and constant
at low temperatures. (More precisely, this contribution
has a plateau for temperatures such that Ws . T .
Ws log(Wc/Ws). At still lower temperatures, our SILL-
based description does not apply, and on general grounds
we expect the thermal conductivity to decrease rapidly
to zero (Fig. 2).)

B. “Foliated” Variable-range hopping for phonons

Phonons are not conserved, so in most contexts it does
not make sense to talk about their hopping conductivity.
A peculiarity of the present system, which makes phonon
hopping a physically relevant channel, is the Ws � T
limit. In this limit, phonons with energy & Ws cannot
be created or destroyed at low order in the spin-charge
coupling. Such phonons are extremely rare due to the
vanishing phonon density of states at zero energy. In-
stead, the dominant phonons (which have energy ∼ T )
hop among modes that are separated by .Ws. Thus the
space of phonons is “foliated,” (Fig. 3): each phonon hop
transfers ∼ Ws of energy between the spin and phonon
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“classical”

spin modes
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FIG. 3. “Foliated” phonon density of states. Owing to
the narrow bandwidth Ws of the spin modes, spin-flip as-
sisted boson hopping can only occur within a narrow ‘shell’
of width Ws. This ‘foliation’ leads to an emergent approxi-
mate conservation law for phonons within a particular shell.
Phonons in shells centered at energy ε � T (ε � T ) are ef-
fectively classical (quantum), with occupancy nB(ε) ∼ T/ε

(nB(ε) ∼ e−ε/T .)

sectors, while moving a much larger amount of energy
∼ T between two spatially separated localized phonon
orbitals. To a good approximation (i.e. up to an energy
resolution ∼ Ws) we can consider each “foliation” sepa-
rately 57. The effective thermal conductance between two
localized bosonic states i, j located Ri, Rj and belonging
to the same foliation (i.e., for εi ∼ εj ∼ ε to precision
Ws) is given by (see Appendix A for details),

Kij(ε) ∼
g2

Ws

ε2

T 2
e
− 2|Ri−Rj |

ξp nB(ε)[1 + nB(ε)] (18)

where we have taken the spin-flip density of states (as-
sumed constant) to be ν0

s ∼ 1/Ws, g is again the spin-
charge coupling, ξeff(ε) is the effective localization length
at energy ε, and we drop prefactors of order one. As
noted above, the foliation of the energy spectrum leads
to an approximate conservation law: there is little energy
transfer between the different bands, so that we may sim-
ply consider a set of distinct hopping problems, and argue
that the one with the largest thermal conductance domi-
nates the rest. Within each energy window, the problem
thus reduces to determining the effective thermal conduc-
tance of the random thermal resistor network with resis-
tances K−1

ij . The broad distribution of the Kijs (even

at a fixed energy ε) permits us to argue that the scaling
of the effective phonon thermal conductivity κph is given
by the critical Kc at the percolation threshold; bonds
with Kij > Kc fail to percolate and cannot contribute to
the conductance across the whole sample, whereas those
with Kij < Kc are shorted out by the percolating back-
bone. This procedure can be implemented numerically
quite straightforwardly; however, we eschew this in favor
of an analytical estimate that is sufficient to obtain the
scaling of K with temperature.

Before proceeding, we must estimate the typical real-
space distance between bosonic modes at energy ε. The
density of states of these modes may be approximated as

ρ(ε) ≈ 1
cWc

(
ε
Wc

)3

where c is an O(1) constant; from this,

we see that the typical spacing between levels in the en-

ergy window (ε, ε+Ws) is given by Reff(ε) ∼ cWc

Ws

(
Wc

ε

)3
.

Thus, we may rewrite (18) as

Kij(ε) ∼
g2

Ws

ε2

T 2
e−c[Wc

4/(ε3Ws)]nB(ε)[1 + nB(ε)]

(19)

where we have absorbed all numerical factors in the ex-
ponent by redefining the constant c. The Bose factors
that enter the expression for Kij(ε) simplify in two lim-
its: the “classical” case when ε� T , and the “quantum”
case when ε� T . We now discuss each in turn.

1. Classical Regime

In the classical regime, we have nB(ε) ≈ T/ε � 1,
so that the typical thermal conductance of a foliation
around ε is

Kcl
ij(ε) ∼

g2

Ws
e−c[Wc

4/(ε3Wsξp)] (20)

and we assume this form is valid up to ε ∼ T , where the
classical-quantum crossover occurs. Clearly, the states
with ε� T will have extremely suppressed conductances,
so that the dominant classical channel is obtained right
at the crossover scale. Note that the classical processes
are not really ‘variable range’: there is no tradeoff be-
tween distance and energy, and hopping always occurs to
the nearest neighbor site within the same foliation. The
corresponding thermal conductivity is

κcl
ph ∼

g2

Ws
e−c[Wc

4/(ε3Wsξp)]. (21)

This is subleading relative to the contribution from the
quantum channels (see below).

2. Quantum Regime

In the quantum regime, we have nB(ε) ≈ e−ε/T � 1,
leading to a typical conductance

Kq
ij(ε) ∼

g2

Ws

ε2

T 2
e−c[Wc

4/(ε3Wsξp)]−ε/T . (22)

We optimize the exponent among the classical channels
with ε � T , and find that the dominant channel is at
the energy

εc = Wc

(
3cT

Wsξp

)1/4

. (23)
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The expression (23) is only meaningful if εc .Wc, which
is the case when cT . Wsξp (i.e., for relatively low tem-
peratures in systems with relatively weak disorder). In
this regime, the thermal conductivity from the dominant
channel is

κq
ph(T ) ∼ g2

Ws
a

W 2
c√

WsT 3
e−bWc/(ξpWsT

3)1/4 (24)

with a = (3c/4)1/2 and b = 7/3(3c/4)1/4. Note that
this dominates the classical contribution (21). In the
opposite limit of small ξp or high T , the dominant chan-
nels are those at the highest available energies ∼ Wc.
The temperature dependence in this limit is activated, al-
though the precise rate is outside the scope of the present
work (as the relevant modes are not in the SILL regime).
Therefore we conclude that the thermal conductance due
to phonons is given by Eq. (24), provided that the tem-
perature is low and ξp is large.

So far in this analysis, we have assumed that single-
phonon hops dominate over multi-phonon rearrange-
ments. This assumption holds because the dominant
phonon channels (as computed above) have energies that
are much higher than T . Therefore, such excitations are
sufficiently dilute that interaction effects are expected to
be subleading.

C. Evolution of κ with temperature

The three contributions to thermal conductivity at
temperature T are listed in Eqs. (??), (17), and (24). The
overall temperature-dependence of κ(T ) implied by these
is as follows. At temperatures that are not much larger
than Ws, the thermal conductivity is dominated by spin
excitations, which propagate fastest but carry the least
energy per excitation. At higher temperatures, i.e., at
temperatures close to Wc, the other channels can in prin-
ciple dominate because each excitation in these channels
(though slower-moving) carries more energy & T . In gen-
eral, there will be a crossover between spin and phonon
channels at a temperature set by

W 3
s

(T ∗)2
∼ g2

Ws
a

W 2
c√

Ws(T ∗)3
e−bWc/(ξpWs(T

∗)3)1/4 (25)

This equation has no solutions for Ws . T . Wc un-
less ξp is sufficiently large; however, for sufficiently large
ξp (i.e., weak disorder) there is a temperature regime
in which the phonons dominate over the spins. Analo-
gous estimates suggest that instantons never dominate
energy transport, as they are always subleading either to
spins or to phonons. The resulting crossover is shown in
Fig. 4: in general, the d.c. thermal conductivity has a
minimum at temperatures between Ws and Wc, because
at these temperatures the charge degrees of freedom are
essentially frozen out whereas the spin degrees of free-
dom contribute weakly to response because they are at
infinite temperature.

spin-

dominated

phonon-

dominated

Ws

0.00 0.05 0.10 0.15 0.20

T�Wc

Κ
HT

L

FIG. 4. Thermal conductivity (in arbitrary units) in the SILL
regime, plotted for parameters Ws = 0.01Wc, g = 0.1Ws,
ξp = 10. For these parameters, the instanton contribu-
tion is always subleading; instead, there is a crossover from
phonon-mediated energy transport (dash-dotted line, κq

ph(T )

in (24)) at relatively high temperatures to spin-mediated en-
ergy transport at relatively low temperatures (dashed line,
κs(T ) ∼ W 3

s /(W
2
s + T 2), as appropriate to spin diffusion

for T � Ws crossing over to low-temperature behavior as
T → 0). The thick line shows the behavior of the total ther-
mal conductivity κ = κq

ph + κs, that peaks at T ∼ Ws. At
temperatures below Ws, the thermal conductivity should de-
crease and κ(T → 0) = 0; we do not discuss the details of this
behavior here as it lies outside the SILL regime. For stronger
disorder or weaker spin-charge coupling, the crossover tem-
perature T ∗ (gray vertical line, given by (25)) increases.

D. Finite-frequency thermal conductivity

Finally, we briefly remark on the a.c. thermal conduc-
tivity at finite temperature. We expect this to be dom-
inated by phonons, because they are much more weakly
localized than instantons (assuming ξq � ξp). Let us
again assume that Ws � ω � T ; thus the spin sector
does not respond and can be neglected. The “foliated”
analysis of the previous sections can be reprised but with
ω playing the role of Ws. Thus ω determines a length-
scale xω = ξp log(Wc/ω). Consider a particular foliation
centered at energy ε. The spacing between states in this
foliation is rε ∼W 4

c /(Wsε
3), and the fraction of occupied

states is exp(−ε/T ). Thus the a.c. thermal conductivity
from a particular foliation is

κε(ω) = T (ωrω)2 exp(−ε/T )rω/(Wcrε). (26)

This is maximized for ε ∼ T , and so the a.c. thermal
conductivity goes (up to logs) as

κ(ω, T ) ∼ ω2T 4. (27)
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VII. DISCUSSION

We have argued that the concept of “super-
universality” breaks down for the dynamics of isolated
spin-incoherent Luttinger liquids in the presence of disor-
der. Instead, the spin exchange timescale governs charge
and energy dynamics. We have estimated the charge and
energy conductivities and shown that they exhibit mul-
tiple regimes: charge transport at relatively high tem-
peratures is due to many-body resonances, whereas at
low temperatures (but still in the SILL regime) it is due
to single-particle hops. Energy transport, meanwhile, is
due to spin excitations at low temperatures and (for suffi-
ciently weak disorder) due to phonons (collective charge
modes) at higher temperatures. Both transport coeffi-
cients evolve non-monotonically with temperature in the
SILL regime (Figs. 2, 4).

Our results generalize readily to interacting two-
component systems under the following conditions:

(i) one of the components has a much smaller intrinsic
energy scale (i.e., bandwidth) than the other, but is also
subject to much weaker disorder;

(ii) the coupling between the two components is weak
compared with the intrinsic energy scale of either.

In the case of the SILL, which we have focused on
so far, condition (i) is guaranteed by strong interactions
whereas condition (ii) is a consequence of spin-charge
separation. However, similar two-component systems
can also be implemented, e.g., using two-leg ladders58,59,
working with two or more species of particles with a large
mass ratio60, or using weak transverse hopping in lieu
of the “spin”13. Existing finite-size numerical studies of
such systems58,61 are qualitatively consistent with our
conclusions; however, these are reliable in the strongly
disordered limit, whereas our calculations are most con-
trolled in the complementary limit of weak disorder.

Our results apply directly to a number of spinful solid-
state systems, with predominantly short-range exchange
coupling, as well as to ultracold atomic gases.62 How-
ever, for experiments with semiconductor nanowires63–65,
some of our results will be modified because of the power-
law tail of the Coulomb interaction. In particular, rather
than being exponentially localized, phonons will only
be power-law localized (with tails falling off as66 1/x3).
One expects the d.c. conductivity in this regime to
go as a power-law of the temperature, with the expo-
nents depending on the observable as well as the power-
law of the interaction: for instance, for Coulomb in-
teracting electrons in 1D the d.c. charge conductivity
σd.c. ∼ T 2W 3

s /W
5
c . Since our predictions involve trans-

port, they can be tested by standard conductivity mea-
surements in solid-state settings63,64. Our predictions
are straightforward to test in transport experiments or
quench dynamics involving ultracold atoms44,67,68: the
predictions for energy transport can be explored in cold
atomic systems, e.g., using the local thermometry scheme
in Ref. 69. Using this method, the a.c. thermal con-
ductivity can also be extracted from the time-dependent
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FIG. 5. Evolution of the SILL regime (shaded), and the char-
acteristic bandwidth of the spin bath, for the disordered Hub-
bard model in one dimension. As interactions increase, the
spin and charge bandwidths Wc,Ws separate and an inter-
mediate temperature regime (i.e., the SILL regime) opens
up. The effective bandwidth of the spin bath, which medi-
ates charge relaxation, is governed by U at weak coupling
and by t2/U at strong coupling; thus it becomes narrow (and
the relaxation timescales diverge) in both limits.

autocorrelation function of the energy density.

We now briefly discuss how our results are modified
when conditions (i) and (ii) above fail. First, we con-
sider the failure of condition (ii): for instance, in the
two-leg ladders of Refs. 58 and 59, or in the SILL at rel-
atively strong disorder, where spin and charge are not
cleanly separated. In this case, a crucial distinction ex-
ists between systems in which the full Hamiltonian obeys
SU(2) symmetry and those in which it does not, e.g.,
generic two-component systems or spin-orbit coupled sys-
tems. In the absence of SU(2) symmetry, the charge
sector can localize the spin sector49, so that the full sys-
tem exhibits a form of asymptotic many-body localiza-
tion59,70 (although it is unclear at present whether such
asymptotic localization is stable against rare-region ef-
fects71,72). On the other hand, in the presence of SU(2)
symmetry, it appears37,73 that the spin sector is protected
against many-body localization. Thus, we expect our
analysis to extend to the case of intermediate or strong
spin-charge coupling for SU(2) symmetric systems, at
least qualitatively. However, our treatment of the spin
sector as being thermal but otherwise featureless might
fail here. For instance, equilibrium spatial fluctuations in
the charge density will lead to large spatial fluctuations
in Ws, and regions of anomalously small Ws might act as
bottlenecks for hopping transport as discussed in Ref. 74.

Finally we comment on the crossover between the
strongly interacting systems considered here and the
weakly interacting limit of Ref. 8 and 9 (note that Ref. 8,
like most of the extant literature, considered spinless
fermions). For concreteness we consider the Hubbard
model, and ignore spin-orbit coupling. In the noninter-
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acting disordered problem, all orbitals are localized; the
N -particle ground state (for even particle number) in-
volves doubly occupying the lowest N/2 orbitals, and
has no spin degeneracy. However, a state at finite en-
ergy density generically has a number of singly occupied
orbitals, each of which is spin degenerate. For weak in-
teractions, exchange interactions lift these spin degenera-
cies. If one imagines “freezing” the charges in a partic-
ular configuration of orbitals, the resulting spin Hamil-
tonian will have random exchange couplings (inherited
from the positional randomness of the orbitals) but will,
crucially, respect SU(2) symmetry. This symmetry pre-
vents localization in the spin sector. Thus, spins will
thermalize even in this putative fixed charge background,
and will thermalize the charges as well. In this low-
temperature limit, the density of singly occupied orbitals
goes as T/EF ∼ T/Wc; consequently the exchange cou-
pling between them (which sets the bandwidth of the
spin bath) will go as U exp(−(EF /T )/ξ) where ξ is the
single particle localization length. Thus the physics of re-
laxation through a narrow-bandwidth spin bath also ap-
plies in the weak-coupling regime. However, the charge
and spin temperatures are essentially the same at weak
coupling (as Wc ' Ws), so the unusual non-monotonic
transport signatures discussed in this work will not be
present there. Fig. 5 summarizes the various regimes.

In closing, we observe that, for reasons described in
Section III, the disordered, isolated SILL is not a many-
body localized system. It has two intrinsic channels for
thermalization, viz. the spin bath that we have focused
on, as well as the high-energy charge modes, which are
thermal in the strongly interacting, weakly disordered
limit where our calculations are controlled. Thus the
SILL is in fact an ergodic system — for instance, we ex-
pect that its eigenstates are volume-law entangled, and
that observables computed in single eigenstates at finite
energy density will exhibit thermal behavior. Neverthe-
less, we have shown that the transport and dynamics
show many features that are most easily understood by
beginning with an MBL system and adding perturba-
tions that thermalize it. In this sense, the SILL provides
a new example of a thermal system whose dynamics are
fruitfully addressed from the MBL perspective. We an-
ticipate that there are other situations where such phe-

nomenology emerges, and that similar “MBL-controlled”
crossovers may be surprisingly ubiquitous, particularly in
low-dimensional disordered systems.
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Appendix A: Phonon variable-range hopping

In this appendix, we provide details of of the Gaussian-
sector VRH calculation. As in the main text we con-
sider a set of localized bosonic modes at random posi-
tions i, with random energies εi > 0 (the positivity of
constraint is because the Gaussian sector describes exci-
tations above the pinned CDW ground state), distributed
according to the density of states ρ(ε).

- -+

"1

Eµ

"2

"1

"2

Eµ

"1

"2

Eµ

"1

"2

Eµ

FIG. 6. Diagrams for one-spin-flip absorption and emission
processes that contribute to the transition rate for localized
bosonic states.

The change in the distribution function of level 1 due
to transitions to and from level 2 is obtained from Fermi’s
golden rule as

∂tn(ε1) = 2πg2 e−2|Ri−Rj |/ξp
∑
µ

[δ(ε1 − ε2 − Eµ) {(1 + nB(ε1))nB(ε2)nB(Eµ)− nB(ε1)(1 + nB(ε2))(1 + nB(Eµ))}

+ δ(ε1 + ε2 − Eµ) {(1 + nB(ε1))nB(ε2)nB(−Eµ)− nB(ε1)(1 + nB(ε2))(1 + nB(−Eµ))}] (A1)

where µ indexes all the single-spin-flip processes in the
first expression we have approximated a common matrix
element |Hel-s|2 ≈ g2 e−2|Ri−Rj |/ξp for all single-spin-flip
processes involving bosons localized on sites i, j, where
ξp is the pinning length.

We may perform the sum over µ by converting into an
integral

∑
µ(. . .) →

∫∞
0
dενs(ε)(. . .) where νs(ε) is the

density of states of the spin-flip processes. From this,
we obtain a general formula for the transition rate from
state i to state j,
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Γ0
ij(εi, εj , Ri, Rj) = 2πg2 e−2|Ri−Rj |/ξpνs(|εi − εj |)nB(εi)(1 + nB(εj))

{
ñB(εj − εi), εi < εj

1 + ñB(εi − εj), εi > εj .

≡ nB(εi)(1 + nB(εj))γ
0
ij(εi, εj , Ri, Rj). (A2)

where we have separated out the occupancy factors from
the ‘intrinsic’ transition rate γ0

ij . The occupation factors
ñB for the spin-sector excitations are taken to be those of
strongly anharmonic bosonic modes, i.e., the thermal oc-
cupation of each spin mode is truncated at a number on
the order of unity. It is readily verified that these rates
satisfy the detailed balance condition Γ0

ij = Γ0
ji, required

to define equilibrium in the absence of temperature and
field gradients. As a next step, we need to relate the ther-
mal conductivity to the equilibrium hopping rate Γ0

ij . To
that end, we imagine imposing a temperature gradient
∇T , so that the sites i and j are at different tempera-
tures. While this shifts the occupancy factors by adjust-

ing the local temperature at sites i, j, there is no change
in the intrinsic transition rate γ0

ij . This is a consequence

of the Bose factors entering γ0
ij reflect the occupancy of

the spin-flip mode absorbed or emitted to make up the
energy difference between εi, εj ; since the characteristic
energy scale |εi − εj | is set by the maximal spin-flip en-
ergy ∼Ws and we have T �Ws, small variations in the
temperature over distance ∼ ξeff may be ignored, so that
we may simply compute γ0

ij at the average temperature
of sites i, j, namely T . Under these assumptions, the dif-
ferential rate for boson hopping between sites i and j is
obtained as (putting explicit temperature dependence in
the occupancy factors to reflect the thermal gradient)

∆Γij(∇T ) ≡ Γij(εi, εj , Ri, Rj)|∇T − Γji(εi, εj , Ri, Rj)|∇T
= γ0

ij(εi, εj , Ri, Rj)nB(εi, Ti)(1 + nB(εj , Tj))− γ0
ji(εi, εj , Ri, Rj)nB(εj , Tj)(1 + nB(εi, Ti))

= Γ0
ij

[
δni

n0
i (1 + n0

i )
− δnj
n0
j (1 + n0

j )

]
(A3)

where we have defined n0
i ≡ nB(εi, T ), and δni ≡

nB(εi, Ti) − n0
B . Assuming the linear-response regime,

we may take Ti,j ≈ T ± ~Rij
2 · ~∇T ≡ T ± δT

2 , where
~Rij ≡ Ri − Rj . With this parametrization, we have,
after a little work,

∆Γij(∇T ) =
εi + εj

2T 2
Γ0
ij ×

(
~Rij · ~∇T

)
. (A4)

In order to obtain the energy current, we must multiply
this number current by the typical energy transported in
the tunneling process, which we take to be the average
energy of sites i, j, yielding

I
(Q)
ij =

(εi + εj)
2

4T 2
Γ0
ij ×

(
~Rij · ~∇T

)
. (A5)

Note that the expression in parentheses is the net tem-
perature difference between the two sites; thus, the re-
mainder of the RHS of (A5) is the thermal conductance
between sites i, j,

Kij =
(εi + εj)

2

4T 2
Γ0
ij(εi, εj , Ri, Rj). (A6)

Two observations allow us to simplify the expression
above. First, in the usual electron variable-range-
hopping computation, the density of hopping levels ρ(ε)
is treated as roughly constant, in contrast to the scaling

ρ(ε) ∼ εγ appropriate to the quantized Gaussian fluctu-
ations of the CDW. Second, the phonon bath invoked in
those treatments is assumed to be able to absorb and emit
at any frequency: the “perfect bath” limit. In essence,
this allows us to take |εi − εj | � T when computing the
intrinsic rate. Here, in contrast, we have a narrow bath,
and therefore the spin-flip density of states vanishes for
large energy differences |εi− εj | &Ws, and we are work-
ing in the regime where Ws � T . As a consequence, Γ0

ij

vanishes unless |εi − εj | . Ws; since ρ(ε) ∼ εγ over a
range Wc � Ws, it follows that we must consider a se-
quence of VRH problems within energy bands of width
Ws and with a density of localized states given by ρs. In
other words, this is the ‘foliation’ discussed in the main
text: since νs(εi − εj) ≈ 1

Ws
Θ(Ws − |εi − εj |), both lev-

els εi, εj are at approximately the same energy (within
the resolution of the bath bandwidth) for all the factors
on the RHS. As a consequence, within the energy resolu-
tion Ws, we may approximate Γ0

ij by a hopping rate that
depends on a single energy ε ,

Γ0
ij ≈ 2πg2ν0

se
− 2|Ri−Rj |

ξp nB(ε)[1 + nB(ε)], (A7)

whence we find that the thermal conductance between
i, j is

Kij(ε) ≈ 2πg2ν0
s

ε2

T 2
e
− 2|Ri−Rj |

ξp nB(ε)[1 + nB(ε)].(A8)
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