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The linear and nonlinear phononic interactions between an optically excited infrared (IR) or
hyper-Raman mode and a driven Raman mode are computed for the d0 (CaTiO3) and d1 (LaTiO3)
titanates within a first-principles density functional framework. We calculate the potential energy
surface expanded in terms of the Ag or B1g mode amplitudes coupled to the Au or the B3u mode and
determine the coupling coefficients for these multimode interactions. We find that the linear-quadratic
coupling dominates the anharmonicities over the quadratic-quadratic interaction in the perovskite
titanates. The IR and Raman modes both modify the electronic structure with the former being more
significant but occurring on a different timescale; furthermore, the coupled-mode interactions lead to
sizable perturbations to the valence bandwidth (∼100 meV) and band gap (∼50 meV). By comparing
the coupling coefficients of undoped CaTiO3 and LaTiO3 to those for electron-doped (CaTiO3) and
hole-doped (LaTiO3) titanates, we isolate the role of orbital filling in the nonlinear coupling process.
We find that with increasing occupancy of the d manifold, the linear-quadratic interaction decreases
by approximately 30% with minor changes induced by the cation chemistry (that mainly affect
the phonon mode frequencies) or by electron correlation. We identify the importance of the Ti–O
bond stiffness, which depends on the orbital filling, in governing the lattice anharmonicitiy. This
microscopic understanding can be used to increase the nonlinear coupling coefficient to facilitate more
facile access of nonequilibrium structures and properties through ionic Raman scattering processes.

PACS numbers: 78.47.J, 63.20.Ry, 71.20.Be

I. INTRODUCTION

Sub-band gap optical excitations can be used to drive
materials into nonequilibrium excited states, which may
exhibit nontrivial properties that cannot be observed in
equilibrium structures defined by the chemistry of the
constituent atoms.1 Although ultrafast manipulation of
magnetization in metal alloys2,3 and oxides4–7 using fem-
tosecond pump-probe apparatuses have been studied for
more than a decade, recent advances in optical sources,8

make possible light-based control over matter within the
field of nonlinear phononics.9 The time scale for such pro-
cesses ranges from 0.1–100 picoseconds (ps), depending
on the relaxation (damping) of the phonon modes of the
crystal, and is of the same order as the electron response
time coupled to the ionic vibrations.1,4,10,11 Recently, the
phononic process has been shown experimentally12 and
subsequently theoretically13 to alter the effective electron
correlation strength (negative U), suggesting fascinating
new routes to manipulate the strongly correlated systems.

Direct excitation of a single phonon, through for ex-
ample, impulsive stimulated Raman scattering has been
proposed as a possible path towards dynamical band
gap control in correlated oxides.14 On the other hand,
nonlinear coupling between two phonons, e.g., an in-
frared (IR) active and induced Raman modes, has been
shown to melt orbital order and increase superconduct-
ing temperatures.1,15–19 Among these processes, the non-
linear phononic coupling is of particular interest be-
cause a transient room-temperature superconducting
state in Cu-based superconductors and K3C60 has been
demonstrated.20 A recent study has theoretically identi-
fied the relationship of the nonlinear phononic process and

melting of the bond-density wave order, and how the ex-
cited state enhances superconductivity.17 At the transient
state the low frequency Raman phonon is strongly driven
to a nonequilibrium amplitude, manifesting in a dynami-
cally modulated Cu-O interlayer distance. Juraschek et
al recently proposed the use of a two-laser-pump process
to control the phase of the driven Raman mode, which
is related to the sign of the coupling coefficient linking
the IR and Raman modes, as an additional control pa-
rameter to tune the transient state.21 A recent nonlinear
phononics study of PbTiO3 proposed selective phonon
pumping as a plausible route to optically reverse the di-
rection of the electric polarization in the ferroelectric,
although the driving amplitude required was determined
to be extremely high.22 In pursuit of reducing the critical
amplitudes necessary to realize light-induced transitions
based on nonlinear phononics, we are motivated to study
the microscopic origin of the size and sign of the anhar-
monic IR-Raman coupling interactions in complex oxides.

The mechanism of the nonlinear phonon pumping can
be understood within a linear-quadratic mode coupling
theory (see for example Ref. 23), between two normal
modes of a crystal obeying IR and Raman selection rules.
First a principal mode (usually an IR mode) is excited res-
onantly. That lattice excitation then applies a displacive
force to all coupled Raman (R) modes along the normal
mode coordinates. The response is nearly equivalent to
that obtained from ionic Raman scattering (IRS),24 in
which the Raman mode typically rings when the pulse driv-
ing the IR mode has an envelope that is short compared to
the frequency of the Raman mode;25,26 in cases where the
infrared mode is excited quasi-continuously, that is with
an envelope that raises slowly compared to the frequency
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of the Raman mode, then the Raman mode will displace
but will not oscillate. In this limit, ionic Raman scattering
is not strictly achieved and rather nonlinear phononics
is a better description of the process. According to the
theory of IRS, the coupling strength between the Raman

and IR modes is determined by the allowed high order
anharmonic term(s) present in the thermodynamic energy
expanded as a function of normal-coordinate Q. The
energy expansion in terms of the amplitude Q for coupled
QIR and QR phonons in a centrosymmetric material up
to forth-order is
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where νR,IR and QR,IR are the frequencies and ampli-
tudes of the Raman and IR modes, respectively. For a
noncentrosymmetric group, a phonon mode can be si-
multaneously Raman- and IR-active; Eq. 1 then should
be extended to include higher order interaction terms in
order to capture the anharmonic feature of the polarized
modes.22

According to group theory, the linear-quadratic inter-
action (g 6= 0) is allowed for the coupling between the
Ag and the Bu modes in the orthorhombic Pbnm per-
ovskites. On the other hand, the quadratic-quadratic
type interaction (h1 6= 0) rather than the linear-quadratic
term is allowed for the coupling between Bg and Bu
modes. The linear-quadratic (third-order) term leads to
pure displacive coupling dynamics, while the quadratic-
quadratic (fourth-order) term leads to four different dy-
namical regions.28 For the third-order Ag-Bu coupling,
the derivative of E with respect to the Raman amplitude
is expressed as ∂E/∂QR = ν2

RQR+a3Q
2
R+a4Q
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IR.
Neglecting the non-coupled cubic and quartic Raman
terms (a3, a4 ∼ 0), which is a good approximation for a
direct IR excitation, we find the energy minimum for the
excited state occurs at a nonequilibrium value

Q∗
R = −gQ

2
IR
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R
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We find from Eq. 2 that a larger displacive amplitude Q∗
R

can be obtained by (i) increasing the interaction strength
g that couples the active IR mode to the scattered Raman
mode, (ii) increasing the amplitude QIR of the stimulated
IR mode, and (iii) by decreasing the frequency of the
anharmonically coupled Raman mode, ν2

R. Similarly, for
the quadratic-quadratic coupling one can find two energy
minimums with restrictions on a4 and h1. The fourth
order coupling strength is in general much smaller than
that of the third order, which will be shown below. Thus
in the current work we mainly focus on the Q2

IRQR term.
With these different parameters available for nonlinear

phononic control, we seek to understand how to enhance
the coupling strength g to access the nonequilibrium state
more efficiently. We anticipate that varying the chem-
istry of the A- or B-site cations in perovskite oxides will
lead to differences in the IRS coupling strength through
changes to the atomic masses, ionic radii, and the metal-
oxygen bond stiffness (which is related to frequency of

the normal modes). Which factor is the more important
for controlling ‘g’ remains yet unknown.

Here we combine symmetry analyses with density func-
tional theory (DFT) calculations to systematically inves-
tigate the microscopic dependencies of the IRS coupling
strength in orthorhombic perovskites, focusing on vari-
ations in the A cation chemistry and band filling. We
use CaTiO3 (d0) and LaTiO3 (d1) titanates as proto-
typical compounds. We find that the linear phononic
properties are tuned by the A cation chemistry with the
phonon mode frequencies in CaTiO3 greater than those
of LaTiO3. We then obtain the linear-quadratic coupling
strength g by fitting first-principles energy surfaces with
respect to the mode amplitude and correlation strength
to isolate the d orbital filling effect. First, the nonlinear
coupling between IR and Raman modes is much larger
than that between hyper-Raman and Raman modes, in-
dicating IR modes to be more efficient driving modes.
Furthermore, we find that the contribution of the driven
IR mode to changes in the electronic structure cannot be
neglected, although such perturbations to the bandwidth
and band gap occur on different (shorter) timescale than
the Raman-induced changes. The change of the valence
bandwidth induced by the combined modes is equal to
the sum of that from each individual mode, indicating
that phonon-electron excitation remains in the pertur-
bation region during this process. The difference in the
nonlinear coupling g between CTO and LTO is more than
30%, which arises from a band filling effect and changes
in the Ti–O bond stiffness; g is also weakly dependent on
correlation strength.

The remainder of the article is organized as follows:
Section II describes the compounds and methodology
applied for calculating the nonlinear coupling strength.
The main results appear in Section III, which is subdivided
in to three parts: the linear lattice dynamical properties,
the nonlinear coupled phonon properties, and the changes
in electronic structures that occur due to the phononic
processes. In Section IV, we discuss the factors that
control the strength of the nonlinear interaction g and
summarize our main results in Section V.
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FIG. 1. (Color online) (a) Structure model of orthorhombic CaTiO3 and LaTiO3. The green spheres denote the A-site cations,
Ca or La. The blue and red spheres denote the Ti and oxygen atoms, respectively. The octahedra tilting (φ) and rotational (θ)
angles are defined as φ = (180◦ − ∠(Ti − O − Ti))/2, and θ = (90◦ − ∠(OOO))/2, where the Mn-O-Mn and interoctahedral
O–O–O (denoted OOO) angles are showed following the convention introduced in Ref. 27. (b) Illustration of the (upper panel)
three Raman mode displacements (directions indicated by gray arrows) that are anharmonically coupled through a nonlinear
interaction (black arrow) to the different symmetry (lower panel) hyper-Raman and IR modes explored in this work.

II. MATERIALS AND METHODS

A. Perovskite Oxide Titanates

Perovskite CaTiO3 (CTO) and LaTiO3 (LTO) are
isostructural, exhibiting the orthorhombic Pbnm space
group29,30 with the GdFeO3-type distortion. The TiO6

octahedra rotate about the c axis (cooperatively in-phase,
c+), and tilt (in an out-of-phase sense, a−a−) about the
pseudocubic [110] direction [Fig. 1(a)]. The lattice con-
stants and octahedral rotational angles for CTO and LTO
are given in Table I. The density functional calculated
lattice constants are within 2% (see below for DFT de-
tails). The larger lattice parameters and rotational angles
in LTO compared to CTO originate from the larger ionic
radius of La compared to Ca.

The structural similarity of these two oxides allows us
to isolate the intrinsic chemical effect on the nonlinear
interaction. To exclude the volume and mass contribu-
tion to the phonon frequencies and more clearly identify
the contribution from the change in orbital occupancy
to g, we also electronically dope the systems to obtain
hypothetical d0 LaTiO3, which we refer to as (LTO)1+,
and d1 CaTiO3, (CTO)1−. We find that the one-electron
difference has a significant effect on the cell volume and
in turn the tilting angle in CTO and the rotation angle
in LTO (Table I). Remarkably, the rotation angle in
(LTO)1+ is nearly suppressed manifests in the linear and
nonlinear dynamical properties discussed in detail below.

B. Density Functional Calculations

DFT calculations were performed with the Vienna Ab-
Initio Simulation Package (VASP)31,32 with the projector
augmented wave (PAW) method33 to treat the core and
valence electrons using the following electronic configu-
rations: 3p64s2 for Ca, 6s25s25p65d1 for La, 3s23p63d2

for Ti, and 2s22p4 for O. The revised Perdew-Burke-
Ernzerhof exchange-correlation functional for solids (PBE-
sol)34 was selected as it gives accurate oxide lattice pa-
rameters. The Brillouin zone is sampled using an 8×8×6
Γ-centered Monkhorst-Pack k-point mesh and integrations
are performed using Gaussian smearing with a width of
10 meV. All structures were restricted to the observed
Pbnm symmetry during structural optimization, whereby
the lattice constants and atomic positions are relaxed un-
til the stresses and forces on each atom are less than 3.5
kB and 0.1 meV Å−1, respectively. Owing to correlated
Ti-3d electrons, we used the plus Hubbard U method of
Dudarev et al35 with Ueff = 4.4 eV for LTO. Hereafter,

TABLE I. Structure parameters for bulk CaTiO3 and LaTiO3

and electronically doped [CaTiO3]1− and d1 [LaTiO3]1+ ob-
tained from experiment (Exp.) and calculated in this work.
Octahedral rotation (θ) and tilting (φ) are defined as in Fig. 1.

a (Å) b (Å) c (Å) θ (deg.) φ (deg.)

CaTiO3 (Exp.29) 5.388 5.447 7.654 8.6 11.5
CaTiO3 (this work) 5.370 5.497 7.661 9.7 14.0
(CaTiO3)1− 5.606 5.948 8.405 9.75 19.0

LaTiO3 (Exp.30) 5.630 5.584 7.901 9.20 12.7
LaTiO3 (this work) 5.655 5.673 7.921 10.6 15.4
(LaTiO3)1+ 5.367 5.270 7.433 0.10 10.6
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TABLE II. Similarity S of Raman modes between CaTiO3

and LaTiO3. The numbers and labels in the first column (row)
denote the phonon index and symmetry (sym.), respectively,
in CTO (LTO).

LTO index (sym.)

CTO index (sym.) 5 (B1g) 9 (Ag) 12 (Ag)

5 (Ag) 0 0.26 0.77
6 (Ag) 0 0.92 0.33
9 (B1g) 0.98 0 0

Ueff is referred to as U . For consistency purposes, we also
applied the same value of U to CTO despite it being a
band insulator.

C. Lattice Dynamics

The phonon properties are calculated using the frozen
phonon method implemented in PHONOPY.36 For the
orthorhombic structure with 20 atoms in the unit cell,
there are 60 zone-center normal modes (7Ag+8Au+7B1g+
8B1u+5B2g+10B2u+5B3g+10B3u).37 After calculating
the phonon spectrum for CTO and LTO, we selected three
Raman active phonon modes, two with Ag symmetry and
one with B1g symmetry, to couple with one IR-active
B3u and one hyper-Raman-active Au mode, respectively
[Fig. 1(b)], for reasons described below: The selected Ag
and B1g modes describe octahedral rotations with the
main rotation axes for the the Ag(1) and Ag(2) modes
occurring about the b and c crystal axes, respectively.
The octahedral rotation axis for the B1g mode is about
an axis parallel to the orthorhombic [011] direction.

The Au mode consists of two different types of dis-
tortions. First, oxygen displacements rumple the basal
TiO4-plane of the octahedron. The in-plane O-Ti-O bonds
bend and are no longer 180◦. The second distortion is a
scissor-type motion between nearest oxygen atoms within
an octahedron. In contrast, the B3u mode is polar and
results in an electric dipole along the a crystal axis owing
to two equatorial oxygen atoms shifting towards the Ti
cation while the other two equatorial oxygen atoms move
away.

With the quasi-static approximation, the energy surface
expanded in terms of coupled normal modes, E(Q1, Q2)
is obtained by distorting the equilibrium Pbnm crystal
structures along the eigen-displacement vectors of a cou-
pled Raman and IR mode set with varying amplitude
as determined from our DFT phonon calculations. In
this notation, Q1 is the Raman mode amplitude while Q2

corresponds to the driving IR or hyper-Raman mode am-
plitude. The displacement amplitudes are renormalized
in units of Å·amu1/2 to be consistent with the definition
introduced previously.28

FIG. 2. (Color online) Lattice dynamical properties of
CaTiO3 and LaTiO3 computed at the PBEsol+U level. (a)
Frequency for the Raman active modes. The black and red
points are for CTO and LTO, respectively. The selected Ag
and B1g Raman modes used to evaluate the the nonlinear cou-
pling strength correspond to the empty symbols. (b) Phonon
density of states (pDOS) for CTO and LTO. The black curve
is the total pDOS whereas the filled blue curve shows the
contribution from the Ti atoms. The Ti contribution to the
lattice dynamical properties of CTO and LTO largely spans
the frequency range from 150∼550 cm−1, with small mixing
from Ca/La at low frequency.

III. RESULTS

A. Linear Lattice Dynamical Properties

We first computed the zone-center phonon frequencies
for both CaTiO3 and LaTiO3. Although the frequency
and the ordering of modes in CTO and LTO are in general
different, we identify similar modes by examining the
irreducible representations (irrep) and the vibrational
patterns using a similarity S overlap defined as S =
ei(CTO) · ej(LTO), where ei,j are the eigenvectors of the
i-th normal mode,38 listed in Table II. One can see that
the mod character of LTO and CTO are not identical. The
changes in structure and chemistry affect the interactomic
forces and thus the eigenvectors. This behavior may be
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TABLE III. Frequency (in cm−1) for the selected lattice modes
in perovskite titanates.

Mode Activity ν (CTO) ν (LTO) ν (CTO1−) ν (LTO1+)

Ag(1) R 152 125 115 188
Ag(2) R 172 100 138 65
B1g R 187 94 125 40

Au hyper-R 440 364 310 510
B3u IR 552 545 478 757

quantified using the mode similarity, whereby a mixing
mixing of the modes wihtin the same irrep is permitted.
For example, mode index 5 (6) of CTO corresponds to
the mode 12 (9) of LTO, which we denote herein as the
Ag(1) [Ag(2)] modes.

Fig.2(a) shows the Raman frequencies for both titanates
differentiated by mode symmetry; generally the mode fre-
quencies for CTO (red symbols) are greater than those
for LTO. This uniform shift in frequencies can be under-
stood using a harmonic oscillator model with a frequency
proportional to

√
J/M , where J is the spring constant

and M is the normalized mass. Owing to the smaller
atomic mass of Ca and the shorter and more covalent
Ti-O bonds (J is larger in CTO than LTO) the CTO
phonon frequencies are harder.

In Fig.2(b) we plot the total and atom-resolved phonon
density of states (pDOS) to identify the contributions
from the Ti cations. The contributions from the A-site
ions and oxide anions are also denoted explicitly in the
figure. The effect from the A site mass difference on
the pDOS at low frequency is clearly discernible. The
Ti pDOS mainly spans the frequency range from 150
to 575 cm−1. The Ti peak positions show good one-to-
one correspondence between CTO and LTO, indicating
that the linear dynamical properties derived from Ti in
both phases should be rather similar despite the different
formal oxidation state of Ti4+ and Ti3+, respectively.

Finally at the high frequency end, we find a greater
discrepancy in the pDOS of CTO and LTO, which origi-
nates from the TiO6 octahedral breathing mode and the
Jahn-Teller modes. For CTO these peaks span the fre-
quency range from 700 to 810 cm−1, while for LTO the
corresponding modes occur in the range from 580 to 700
cm−1. This difference occurs because the breathing and
Jahn-Teller modes are very sensitive to the Ti-O bond
lengths, i.e., the TiO6 octahedral volume, which is largely
determined by the A cation radius in the perovskite ti-
tanates.

B. Nonlinear Anharmonic Coupling

Based on the IRS theory, when an IR mode is pumped
intensely the Raman modes are coupled nonlinearly, vi-
brating about a nonequilibrium position. The displacive
nonequilibrium position for a particular Raman mode
depends on the coupling constant between the IR and
the Raman modes.15 In principle all symmetry-allowed

Raman modes should be excited through this process,
however, a larger frequency difference between the IR
and the Raman mode leads to more efficient coupling,10

because the high frequency vibration of the IR mode can
then be viewed as a constant force that shifts the Raman
mode away from the original equilibrium value. A low
frequency Raman mode is then preferred owing to the
form of Eq. 1. Thus we focus on high frequency IR modes
and low frequency Raman modes (Table III): The three
Raman modes of lowest frequency include two Ag modes
and one B1g mode, which are coupled to a B3u IR mode.
An Au mode is also included in our consideration as a
driving mode for comparison. Although the Au mode is
not IR active, it can be excited through hyper-Raman
scattering processes.

Fig. 3 shows the calculated energy surfaces for CTO
and LTO with varying amplitude of the B3u and the Au
modes. First, we find that the excitation of the B3u mode
drives the Raman mode into a nonequilibrium position for
both titanates that depends on the excited IR mode am-
plitude according to Eq. 1. For example, with an excited
B3u mode ampltidue of 1.6 Å amu1/2, the equilibrium
Ag(1) position shifts by ∼ 0.8 Å amu1/2 in CaTiO3, cor-
responding to a maximum net atomic displacement of
∼0.03 Å obtained by summing the displacements made
by the four apical O atoms.

Next using our DFT energy surfaces, we parameterize
Eq.1 to obtain the coupling coefficients listed in Table IV.
One can see that the coupling coefficients h1 are very small
compared to the lower-order leading terms in the energy
expansion. The linear-quadratic couplings (g) dominate
the nonlinear phononic coupling in these titanate systems
and therefore we neglect the quadratic-quadratic inter-
actions in the following discussion. With the coupling
coefficients, we can predict the nonequilibrium energy min-
imum with Eq. 2, plotted as the inset in the left panel of
Fig. 3. For LTO the energy minimum of both Ag modes
is well predicted, while for CTO the energy minimum
is underestimated by Eq. 2 for the Ag(1) mode. This
indicates higher order terms might be necessary for CTO.

The ability of the hyper-Raman Au mode to drive the
IRS coupling is much smaller. The largest coupling is to
the Ag(1) mode, with g = 0.003 for CTO and g = 0.007
for LTO, an order of magnitude smaller than that obtained
by the B3u mode. Under an Au mode driving amplitude
of 1.6 Å amu1/2, the Ag(1) mode is only driven 0.2 Å

amu1/2 from its equilibrium position, i.e. only one-forth
of that achieved by the IR-active B3u excitation. We
find similar results for LaTiO3. Our calculations show
that the Au mode is very inefficient for the purpose of
nonlinear driving of Raman mode through IRS coupling.

C. Phonon-Induced Electronic Structure Changes

The objective of using nonlinear phononic coupling to
induce a transient structure exhibiting nonequilibrium
electronic and magnetic properties relies on a low fre-
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FIG. 3. (Color online) Energy profiles for the nonlinear coupling between two phonon modes. Left panels: (a-d) Energy profiles
for the two Ag modes under the excitation of the IR B3u mode in CTO and LTO. Right panels: (e-h) Energy profiles for the
B1g mode and the two Ag modes under the excitation of the hyper-Raman Au mode. Note that in the upper panels all curves
are overlapping, indicating that the B1g mode is decoupled from the Au mode by symmetry. Note that here we show Ag(1)
mode for CTO and Ag(2) mode for LTO, because the corresponding couplings are stronger. The inset in the left panel shows
the predicted Q∗

R dependence on the IR mode amplitude from Eq. 2 (curves) and the DFT computed data (symbols).

TABLE IV. Coupling coefficients for pairs of interacting
phonons in CaTiO3 (CTO) and LaTiO3 (LTO) obtained from
the DFT computed energy surfaces fit to the polynomial
phononic coupling expression given in Eq. 1.

Coupled modes (Q1, Q2) a3 b4 g h1

(Ag(1), B3u) -0.002 0.029 0.018 -
(Ag(2), B3u) -0.013 0.029 0.014 -

CTO (Ag(1), Au) -0.001 0.003 0.003 -

(B1g, B3u) -0.004 -5×10−5 - -3.4×10−4

(B1g, Au) -4.7×10−4 5.2×10−4 - -4.1×10−4

(Ag(1), B3u) -0.001 0.032 0.010 -
(Ag(2), B3u) -0.002 0.032 0.011 -

LTO (Ag(1), Au) -0.003 0 0.007 -

(B1g, B3u) -0.001 0 - -6.1×10−5

(B1g, Au) -0.002 9.2×10−5 - -8.1×10−4

quency Raman mode vibrating about a position displaced
from equilibrium. For example, in YBa2Cu3O6.5 the dis-
torted Raman mode leads to the reduction in the Cu-O
bond distance which could favor the superconducting
state,15 while in PrMnO3 the nonequilibrium amplitude
of the Raman mode reduces the octrahedra rotation an-
gles towards a psudocubic phase and therefore is supposed
to tend to drive the system to a metallic phase.28 The
hypothesis in all of these scenarios is that after the non-
linear excitation any observed changes in the material
properties are mainly due to the nonequilibrium Raman
mode amplitude with the driven IR mode playing a minor
in dictating the properties (albeit it provides a route to

active them). We now examine this idea for the driven
IR-active B3u mode coupled to the Ag(1) Raman mode.

First, we note that CTO and LTO exhibit distinct
electronic structures from each other owing to the differ-
ence in band filling. In our PBEsol+U calculations, the
d0 band insulator CTO has a large band gap, ∼2.8 eV
while d1 LTO is a Mott insulator with a small gap of
∼1.7 eV.39,40 The electronic density of states (DOS) are
plotted in Fig. 4. The size of band gap in LTO highly
depends on the correlation strength, U , and the experi-
mental optical gap is 0.1∼0.2 eV. In terms of the band gap,
our DFT calculations more accurately describe CTO than
LTO; however, because the main effect of the DFT+U
formalism for the titanates is to provide a rigid shift of
the conduction band, the trends we observe in phonon-
driven band gap changes is reliable and can be used as a
reference for the future experiments.

We find that neither the excited Ag(1) nor B3u mode
produce any significant changes in the electronic band gap
in CTO [Fig. 4(b,c)]. Instead, we find that the main effect
is to increase the valence bandwidth with the Ag(1) mode
less effective (increase of ∼30 meV) than the B3u mode
(increase of ∼170 meV). Next, when the two modes are
coupled together through the nonlinear interaction with
amplitudes corresponding to the optimal nonequilibrium
structure [Fig.4(d)], the increase in the valence bandwidth
is greater (∼200 meV), and the bandgap is reduced by
∼60 meV. The change of the valance bandwidth W for
the combined modes is equal to the sum of the individual
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FIG. 4. (Color online) Electronic densities of states (DOS) for the (a) and (e) equilibrium CaTiO3 and LaTiO3 structure, (b,c)
and (f,g) singly excited B3u mode, and (d,h) couped excited modes with corresponding amplitudes given in parentheses for each

mode as (Q(Ag(1)), Q(B3u)) in units of Å amu1/2 for CTO (panels b-d) and LTO (panels (f-h). In panels (a) and (e), the total
and the atom-projected DOS are provided. The equilibrium DOS is also shown in the gray shaded region.

modes, i.e. ∆W (∆Q1,∆Q2) = ∆W (∆Q1) + ∆W (∆Q2),
which indicates that both phonon excitations can be re-
garded as independent perturbations to the electronic
energy levels. This ‘sum rule’ can be used to identify the
contribution to the experimental spectrum shift from the
coupled modes.

In LTO, the nonequilibrium Raman mode itself does not
show any obvious effect on the electronic structure, while
the IR mode lowers the energy of all the states except
the lower Hubbard band by ∼0.13 eV, including at the
valence band (−6.1 eV ∼ −2.2 eV) and conduction band
(> 1.8 eV). The lower Hubbard band, ranging from −0.3
eV ∼ 0 eV and consisting of the non-bonding Ti-t2g states,
largely remains unchanged under the modulation of both
modes. Since the x-axis in Fig. 4 is the relative energy
with respect to the Fermi level, which is determined by
the lower Hubbard band, the down-shift of all the bands
except the lower Hubbard band should be understood as

a shift of the lower Hubbard band to higher energy.
To understand why the IR mode increases the energy of

the lower Hubbard band we examine the local distortion
to the TiO6 octahedra by this mode, illustrated in the
inset of Fig. 4. The lower Hubbard band is constructed
from one electron occupying the t2g orbital, which forms
a nonbonding interaction with the oxide anions. The
angular component of this orbital makes it sensitive to the
Coulomb repulsion induced by the octahedral distortion.
The IR mode induced acentric distortion affects all three
t2g orbitals in a similar manner by bending the O-Ti-
O bonds. The increased electrostatic energy cannot be
reduced by redistributing the electron through a change
in orbital polarization,14 resulting in a shift of the t2g
energy to higher energy.

Based on the above comparison, we find that the con-
tribution from the IR mode in changing the electronic
structure is significant. During the IRS process, the IR
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mode vibrates at a much higher frequency compared to
the Raman mode. Therefore its induced electronic struc-
ture modulation occurs on a shorter time scale compared
to that obtained from the Raman mode. Also, the IR-
active mode induced changes should appear as a periodic
vibrational modulation rather than a stationary one in-
duced by the displacive Raman mode. However since
its effect to the DOS is much prominent, one should be
careful when assigning mode contributions to macroscopic
electronic-related properties.

D. Role of Orbital Filling

In order to examine the effect of band filling, we com-
puted the dynamical responses for electron doped and
hole doped CaTiO3 and LaTiO3, by artificially adding
electrons/holes to each material, effectively shifting the
chemical potential, in the DFT calculation. In this way
the 3d band occupancies n range from n = 0 to 1, which
allows us to isolate the orbital filling effect from those
due to explicit changes to the structure from the Ca or
La chemistry. The results are shown in Fig. 5. Upon in-
creasing the orbital occupancy from d0 to d1, the volume,
orthorhombicity b/a, and both rotation and tilt angles
increase. The most significant effect is on the LaTiO3

tilt angle, which is completely suppressed when the hole
concentration exceeds 50% (Fig. 5(c)).

Furthermore, the change in linear phonon properties is
reflected in the frequencies of the normal modes, which
shift to lower wavenumber upon filling the orbital, see
Fig. 5(e) and Fig. 5(f). The Ag and B1g frequencies of
[CTO]1− are close to that of LTO. This effect is a conse-
quence of electrons filling the antibonding t2g manifold,
which reduces the Ti-O bond stiffness and hence the rel-
evant force constants. This is also consistent with the
increase in the Ti-O bond length as electrons occupy this
manifold.

Finally, the nonlinear coupling coefficient g between the
Ag(1) and the B3u modes with orbital filling is shown in
Fig. 5(g). Compared to the pristine compound, [LTO]1+

shows a 29% increase in g while for [CTO]1− g decreases
by 35%, both of which become closer to the counterpart
undoped system, respectively. Therefore, we deduce that
the variation in nonlinear coupling strength between these
two systems are mainly governed by the orbital filling.
Fig. 5 shows that generally both the phonon mode fre-
quencies and the nonlinear coupling coefficients decrease
as the number of electrons in the t2g orbital increases.
Furthermore, the higher the frequencies of the coupled
phonon modes, then the larger the coupling coefficient
that can be achieved. Such interdependence between the
nonlinear coupling coefficient g and the linear phonon
properties will be explained in the following discussion.
Last, a linear interpolation between the two end members
provides an adequate estimate of the effect of electronic
doping the dn system.

FIG. 5. (Color online) (a-d) Structural parameters and (e-g)
lattice dynamical properties with respect to the number of
electrons in the Ti 3d manifold. d0 corresponds to undoped
CaTiO3 (black, squares) and holed doped [LTO]1+ (red, cir-
cles) whereas d1 corresponds to undoped LaTiO3 and electron
doped [CTO]1−. A quantitative measure of changes in these
parameters with the orbital filling is given as a percentage
relative to the original bulk values of CTO. Panel (g) clearly
shows that the additional one electron quantitatively reduces
the nonlinear coupling strength g by ∼32%.

IV. DISCUSSION

A. Nonlinearity Between Modes

To further understand the presented results, we now
explore the atomistic origin of the coupling coefficient
g describing the nonlinear interaction between phonons.
First, recall that the change in potential energy induced
by a phonon mode can originate from two parts: changes
in bond lengths and/or bond angles. The second contri-
bution, which is proportional to the cosine of the bond
angle, is often minor compared to variations in the bond
length. Here we focus on the bond length contribution.

The potential energy as a function of interatomic dis-
tance is not parabolic in the anharmonic regime. The
parabolic approximation is only valid near equilibrium.
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FIG. 6. (Color online) CaTiO3 and LaTiO3 equations of
state. The third through fifth order terms of CTO are more
than one order-of-magnitude larger than those of LTO.

The more the bond length deviates away from the equilib-
rium position, the greater the anharmonic contributions
to the energy surface. For a family of compounds with
the same local chemistry (Ti and O) in the titanate ox-
ides explored, if a given mode amplitude can drive one
compound further away from the equilibrium than the
other, then the anharmonic coupling should be larger in
the former material. This behavior is indicative of a larger
bond stiffness, which provides for the larger nonlinear cou-
pling coefficient and explains why in Fig. 5 the coupling
coefficient g is correlated to the phonon mode frequency.
Indeed, the equation of state for both materials shows
that the higher order terms are more significant in CTO
compared to LTO (Fig. 6), together with a larger Ti–O
bond stiffness. In an octahedral ligand field, the filling of
the t2g in general increases the Ti-O bond lengths through
electrostatic Coulomb repulsion, and weakens the bond
stiffness. Therefore as the orbital filling increases, both
the phonon mode frequency and the nonlinear phononic
coupling coefficient decrease. This conceptual picture clar-
ifies the observation that g(CTO) > g(LTO). Such effect
is similar to the mechanism of phononic anharmonicity
in one-dimensional diatomic chains.41–43

B. Electron Correlation Effects

Here we examine the effect of correlation strength, in-
cluded in our PBEsol+U DFT calculations through the
Hubbard U corrections, on the linear and nonlinear lat-
tice dynamical properties. Using LaTiO3 as an example,
Fig. 7(a) shows the phonon normal mode frequencies with
respect to U . The U -dependence for all selected Raman
modes is weak. This is because these modes mainly corre-
spond to octahedra rotations, which are largely insensitive
to the on-site electron localization at metal center.44 On
the other hand, electron correlation localizes the electron

in the t2g orbitals, reducing the Ti–O bond length, and
can harden those IR modes that directly alter the Ti–O
bond length [Fig.7(b)]. For example, the resulting change
in the B3u frequency with respect to U is 5.68 (cm·eV)−1

for CTO and 5.22 (cm·eV)−1 for LTO.
Interestingly, there is a high frequency Raman mode

in LTO which has a frequency rapidly decreases with
an increasing U [Fig. 7(a), red data]. By examining the
atomic displacement pattern for this mode, we identified
it as a Q3 Jahn-Teller mode. This mode alternatively
increases/decreases the amplitude of the Q3 Jahn-Teller
distortion (two-out–four-in bond stretching) of neighbor-
ing TiO6 octahedra, further lifting the degeneracy of the
t2g orbitals and producing an orbital polarization.14,45

The electron correlation localizes the t2g electron on one
orbital and therefore softens the Q3 phonon.14

The energy surfaces under different value of U and the
coupling constant were computed (not shown here). We
find that the correlation strength U is not a principal fac-
tor in determining the strength of the nonlinear coupling
[Fig. 7(c)]. The variation of the coupling constant ∆g
over 0 < U < 4.4 eV is less then 6×10−4 eV Å−3 amu−3/2,
which is essentially negligible. In fact, in the explored
titanates electron correlation only weakly alters the Ti-
O-Ti bond angle and bond length.46 Thus correlation
effects act as a higher order perturbation to the energy
surface. In summary, the electron correlation is negligible
for the nonlinear phononic coupling and does not change
the conclusions on our comparative study in perovskite
titanates.

V. CONCLUSIONS

We performed DFT calculations on the d0 CaTiO3

(CTO) and d1 LaTiO3 (LTO) titanates to understand
the microscopic origin of the nonlinear phononic coupling
coefficients. First, we found that the third-order linear-
quadratic coupling is more important than the quadratic-
quadratic interactions in perovskite titanates. The linear-
quadratic coupling of CTO is larger than that for LTO
by as much as ∼30 %, which we attribute mainly to the
difference in electron filling. The electrostatic repulsion
induced by increasing the filling within the t2g manifold
elongates the Ti-O bond lengths, resulting in reduced
bond stiffness and lattice anharmonicity which act to
reduce the coupling coefficients. This correlation between
the bond stiffness and the nonlinear coupling coefficients
appears to be general, at least for t2g systems, but requires
further investigation in eg active compounds. This un-
derstanding can be used as guide to select materials with
large anharmonicities to more readily explore nonequilib-
rium phases with experimentally accessible ionic Raman
scattering approaches.
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FIG. 7. (Color online) Effect of electron correlation to the
linear (a-b) and nonlinear (c) phonon properties of LaTiO3.
There is no clear trend for the changes in nonlinear coupling
strength with correlation strength; the variation over the U
range explored is within 5%.
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