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Recent experiments performed in current-driven nano-contacts with strong perpendicular anisotropy have
shown that spin-transfer torque can drive self-localized spin waves [1, 2], that, above a certain intensity threshold
can condense into a nano-sized and highly nonlinear dynamic state known as a magnetic droplet soliton [3]. Here
we demonstrate analytically, numerically, and experimentally that at sufficiently large driving currents and for a
spin polarization direction tilted away from the normal to a nano-contact plane, the circular droplet soliton can
become unstable against the excitations in the form of periodic deformations of its perimeter. We also show, that
these perimeter excitation modes (PEMs) can be excited parametrically when the fundamental droplet soliton
precession frequency is close to the double frequency of one of the PEMs. As a consequence, with increasing
magnitude of a bias magnetic field the PEMs with progressively higher indices and frequencies can be excited.
Full qualitative and partly quantitative agreement with experiment confirm the presented theoretical picture.

I. INTRODUCTION

The theoretical, numerical, and experimental study of non-
trivial nanoscale spin structures, such as domain walls, vor-
tices, anti-vortices, skyrmions, merons, magnetic bubbles, and
spin wave "bullets", has recently attracted a lot of interest [3—
23]. The control and manipulation of these static or dynamic
spin structures are important both from the point of view of
fundamental understanding of nanoscale magnetism, and the
possible applications of some of them as information carriers
or microwave signal generators in future spin-based devices
[6, 24]. The recent experimental observation of magnetic
droplet solitons [3, 25-32] (droplets from hereon) in nanocon-
tact (NC) spin torque oscillators based on a material with large
perpendicular magnetic anisotropy (PMA) [1, 2], adds a new
member to this family of distinct and useful nanoscale mag-
netic objects. In contrast to the bullet [4], which is formed in
in-plane [33, 34], or close to in-plane [35-37], magnetized
films, the droplet appears in out-of-plane magnetized films
with strong perpendicular anisotropy [38]. The existence of
its conservative sibling, the magnon drop, was predicted in
lossless materials with PMA [39, 41], and the droplet, driven
by spin transfer torque (STT) underneath a NC, inherits most
of its dynamics [38, 42—44].

The droplet can be described as a partially inverted
magnetic domain with all its spins precessing in phase at
a frequency lying inside the spin-wave gap of the film. In
addition to the fundamental uniform precession, droplets
can exhibit internal dynamics observed experimentally as
additional microwave signals appearing at lower frequencies
[3, 28, 30]. In this work, we consider one particular type
of such internal dynamics - the perimeter excitation modes
(PEMs) associated with periodic spatial deformations of the
droplet perimeter. We begin by analytically deriving the

PEM eigen-frequencies and spatial profiles for a conservative
magnon drop (hence ignoring damping and STT) and study
their dynamics numerically. We then show that PEMs can
also be spontaneously excited in STT driven droplets and
identify the excitation mechanism as parametric, i.e. a
PEM is predominantly excited when the fundamental droplet
frequency is twice that of the PEM. Finally, we compare our
model and simulations with experimental results and find an
excellent agreement.

II. PERIMETER MODE DERIVATION

The Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equa-
tion describing dissipative and current-driven magnetization
dynamics in a thin ferromagnetic film with perpendicular
anisotropy has the form [45]:

dm/dt:fmxhefffozmx(mxheff) (1)

+om x (m x my)

where m = m(t,r) = M/M; is the unit magnetization vec-
tor and My the saturation magnetization. The first term on
the right-hand side describes the magnetization precession in
an effective field h.y s, which includes the contributions from
the inhomogeneous exchange, easy z-axis anisotropy charac-
terized by the magnetic induction B4 and an external perpen-
dicular bias magnetic field . The second term is the Gilbert
damping with a being the dimensionless Gilbert damping pa-
rameter. The third term describes the STT, where o is the
parameter characterizing the magnitude of the driving spin-
polarized current, and my is a unit vector defining the direc-
tion of the spin polarization in the driving current. This direc-
tion coincides with the magnetization direction in the "fixed"
magnetic layer of the NC spin torque oscillator trilayer.



For our initial analytical treatment, we ignore both damping
and STT and derive the perimeter dynamics of a conservative
magnon drop with the fundamental precession frequency w
given by the following approximate expression [38—40]:

woH) = wpy + 26z @)

Po

where wy = YH, wyr = YuoMs, H is the magnitude of
the perpendicular bias magnetic field, pg is the effective ra-
dius of the drop, ~y is the modulus of the gyromagnetic ratio
for electron spin, ug is the magnetic permeability of vacuum,
Aew = v/ Aex /K is the exchange length, A, is the exchange
constant.

In the cylindrical coordinate system (p, ) the spatial profile
of the drop can be written as [38, 39]

mo(p, p,t) =[sinf(p) cos D(t),sin O(p) sin ®(t),

cos 0(p)]. @

where the phase ® = arctan(m,/m,) is the same at all the
points in space, and evolves linearly in time:

(b(p7<p7t) :w0t+¢)0 (4)

Here 0(p) gives the shape of the drop, which satisfies 6(0) <
7 and f(occ) = 0. The in-plane component of the magne-
tization in the drop points in the same direction in the whole
plane, and precesses at the fundamental frequency wy (see Fig.
1). In the fundamental dynamics, the the z-component of the
magnetization does not change with time at any point. For an
almost fully reversed droplet, the magnetization both in the
center and far away from the drop is also practically static, as
is clear from Eq.(3) and Eq.(4). The most interesting dynami-
cal region is hence the perimeter, which we define as a line of
zero perpendicular magnetization (f = 7 /2), and a surround-
ing region with a width approximately given by the exchange
length.

A convenient way to describe the PEMs is to introduce the
dimensionless dilatation factor

a((p7 t) = P(% t)/po -1, )]
and expand a(ip, t) into a Fourier series,

+oo

a(p,t) = Y an(t) exp(ing). 6)

Each component a,, (t) varies with time as
an(t) o< cos(Qpt) exp(—Tyt) @)

where (2, is the PEM eigen-frequency and T',, is the mode
dissipation parameter.

In a general case, the position of the perimeter can be
parametrized by a certain radial function p,(p,t) = [1 +
a(p, t)]po, while the phase of the in-plane magnetization com-
ponents at the perimeter can be parametrized by the phase

@, (p,t). A perfect drop has a circular static perimeter with
vanishing dilatation factor, a(p,t) = 0, and a uniform phase
Eq.(4). To describe the dynamics of a slightly deformed drop
we represent the phase (i, t) as

q)(QO, t) = th + 1/)(90’ t) (8)

and assume that both the dilatation factor a(y,t) and phase
deformation (¢, t) are small quantities. Using the method
developed in Ref. [46 and 47] we find the small-amplitude
equations for a(p, t) and ¥ (¢, t):

da(p,t)/0t = Q0> /0%, (9a)
oot = —Q(a + 0%a/0p?), (9b)

where
Q0 =y (2K/Ms — poMy) - (Aew/po)? (10)

is the characteristic frequency of the perimeter excitation
modes (PEMs).

The eigen-solutions of Eq.(9) describe possible low-
amplitude oscillations of the perimeter. There is an infinite
number of perimeter oscillations which can be enumerated by
an integer n describing the angular dependence of the ampli-
tude a(p, t):

an(p,t) = Ay, exp(—iQnt + inp) a1

where the PEM eigen-frequency (2, is given by:

Q, = nv/n2 — 1Q. (12)

From our derivation of the PEMs of conservative drops, we
can draw several important conclusions. First, the PEMs
with positive and negative indices +n are degenerate, i.e.
one may expect to observe PEMs in the form of standing
waves. In addition, the frequencies forn = 0 and n = +£1
vanish, which means that these PEMs correspond to unstable
deformations of the perimeter. The circularly-symmetric
mode n = 0 describes the expansion/contraction of the
drop as a whole. Since the conservative drop radius pg can
take any value, there is no restoring force for such uniform
dilatation, and the mode frequency vanishes. Note, however,
that the dissipative droplet radius is always of the order of
the NC radius [38], set by the balance between damping and
the locally supplied STT [both ignored in Eq. (11)], and will
experience a restoring force; the n = 0 mode for the droplet
hence has a non-vanishing frequency (see below). Similarly,
the two modes n = =1 describe the lateral shift of the drop
without changes in its profile and are again marginally stable
in a conservative case. Since the droplet, on the other hand,
is confined to the NC region, it again experiences a restoring
force, which leads to a finite frequency also for the two
n = =1 modes.



III. MICROMAGNETIC SIMULATIONS

To check these analytical predictions we carried out micro-
magnetic simulations of magnon drops, where a PEM pertur-
bation of the perimeter was introduced as an initial condition.
At selected time steps, we recorded the configuration of the
z-component of the magnetization and used numerical inter-
polation to find the perimeter function p,(,t), with ¢ being
the azimuthal angle. The radius of the unperturbered drop was
po =58 nm, which in the case of a Co/Ni multilayer free layer
(M = 300 kA/m [48]) corresponds to a characteristic PEM
frequency of Q = 9.4/27 GHz. The magnetic field was set
to zero and a magnetic damping of o = 0.01 was added. Mi-
cromagnetic simulations are performed using Mumax3 [52].
We consider a 256x256 square lattice with a unit cell size
of 2 nmx2 nmx2 nm. In Fig. 1-3, the material parameter-
s adopted in the simulations for Co/Ni free layer based NC-
STO are as follows: thickness = 2 nm, NC radius R, = 50 nm,
exchange stiffness A., =30 pJ/m, and fixed layer spin polar-
ization ratio P = 0.5. In Fig. 4, the material parameters used
in our simulations are the similar to those of the experiment
[3, 44]: R. =60 nm, A., =30 pJ/m, K = 447 kJ/m3, P =
0.5 and M, =716 kA/m. All simulations are performed at ze-
ro temperature. The current-induced Oersted field is included
assuming a current flow through an infinite cylinder.
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Figure 1. Perimeter excitation modes (PEM). (a-e) Two-dimensional
snapshots of the magnon drop PEM mode n = 3 during one half-
period of oscillations. The color code shows the magnitude of the
out-of-plane m, component of the magnetization, with the arrows
indicating the in-plane component. (f) Overlayed snapshots from the
time evolution of the shape of the drop. (g) The numerically simu-
lated PEM amplitude a,, (t) for n = 3. Dots in the frames (h) and (i)
show the numerically calculated magnitudes of the PEM frequencies
),, and damping rates I';, as functions of the PEM index n. Solid
lines in these frames are showing the results of analytical calculations
of the same quantities using Eq. (12) and Eq. (13), respectively, for
Q/27 = 1.5 GHz [see Eq. (10)] and a, = 0.031.

Snapshots of the magnetization for a PEM with mode index
n =3, amplitude A3 = 0.4, and uniform phase, are shown in
Fig. 1 (a)-(e) during half a period of perimeter oscillation; red
(blue) color corresponds to a positive (negative) z-component
of the magnetization. The initial state first evolves through a
rapid increase in the non-uniformity of the perimeter phase,
nucleated at the three points of maximum curvature, where

the in-plane component of the magnetization rapidly changes
sign. This is followed by a gradual reduction of the distortions
of the perimeter function p, (¢, t), which makes the perime-
ter essentially regain its non-perturbed circular shape after a
quarter period (¢ = 27 ps), however with a maximum degree
of phase inhomogeneity. Past this point, the perimeter rede-
velops radial deformations while the phase gradient decreas-
es. After half a period (f = 54 ps) the phase again becomes
uniform, and the radial dilatation again reaches a maximum,
now with opposite sign of the in-plane magnetization com-
pared to the initial condition. This coupled evolution of radius
and phase deformations proves their connection described an-
alytically by Eq. (9).

The time evolution of the real part [49] of a.,(¢) (Fig. 1(g))
is adequately described by (7) with Q3 = 79.8/2m GHz, and
I's = 2.35/2m GHz. Fig. 1(h) shows €2, for PEMs with in-
dices n = 2-4, together with a solid line calculated analytically
using Eq. (12) with /27 = 1.5 GHz, which corresponds to
the parameters of our numerical simulations. It is clear that
the simple analytic expression describes the numerically cal-
culated PEM frequencies very well. Fig. 1(i) shows the corre-
sponding I';,; with a solid line calculated analytically assuming
that the PEM damping is proportional to the PEM frequency
Qy,

T, = a,Qn (13)

with an "effective Gilbert damping" constant equal to ¢, =
0.031.

As seen in Fig. 2(a)-(c) the circular droplet remains sta-
ble for all values of the bias magnetic field when the current
density is small (j = 0.2 x 10'2 A/m?). However, if the cur-
rent density is increased an order of magnitude, the droplet
perimeter loses its stability through the excitation of one of
the PEMs (Fig. 2 (d)-(e)), and when the magnetic field is in-
creased, PEMs having progressively higher indices n are ex-
cited. In Fig. 3(a) we vary both the applied field strength and
the spin polarization angle ¢,, of the NC current (i.e. the tilt
angle of the fixed layer). It is clear that PEMs only appear
above a certain threshold G;h and that the field intervals where
PEMs are observed increase with increasing 0,,.

In Fig. 3(b) we show the Fourier spectrum of the droplet
precession as a function of magnetic field for §, = 7/4. The
dashed line indicates the approximate analytical expression
for the fundamental precession [see Eq. (2)]. The PEM re-
gions with n = 3, 4, 5 are shown by colored boxes and with-
in each box we have highlighted 22, i.e. twice the PEM
frequency for each mode. We conclude that PEMs are on-
ly excited when the droplet precession frequency is close to
twice that of the PEM, which strongly indicates that the lat-
ter is parametrically excited by the former. This parametric
process has the energy conservation law [50, 51]:

wo(H) = Qn + Q_p, = 20, (14)

and at the threshold value of the polarization angle Gf,h =125
deg., the excitation takes place only when the parametric reso-
nance condition is fulfilled exactly. For larger 6,,, where PEMs
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Figure 2. Spin transfer torque driven magnetic droplet solitons and
the perimeter excitation modes. (a) - (¢c) Snapshots of the free lay-
er magnetization in a micromagnetically simulated NC spin torque
oscillator at a low current density (j = 0.2x 10'2 A/m?). @) - ():
Same simulation as in panels (a) - (c), however at a much higher cur-
rent density (j = 2.5x 102 A/m?). High amplitude PEM excitations
are observed at progressively higher mode numbers when the applied
field is increased. The color indicates the perpendicular component
m with red (positive m) corresponding to spins aligned with the
applied field, and blue (negative m ) to spins pointing away from the
applied field. The black arrows provide the corresponding in-plane
direction and magnitude of the magnetization. The white circle out-
lines the NC.

are excited over a wider field interval, a larger frequency mis-
match is allowed (for details see Eq. (2) in [50]). It is also
clear that the parametric process leads to the mode hybridiza-
tion which results in both a slight reduction of the droplet fre-
quency and to the formation of higher harmonics.

IV. DEVICE FABRICATION AND EXPERIMENTS

To check the above presented ideas experimentally we fab-
ricated orthogonal pseudo-spin-valve stacks consisting of Co
(6 nm)/ Cu (6 nm) / Co (0.2 nm)[Ni (0.6 nm)/Co (0.25 nm)] » 4
with a Ta (4 nm) /Cu (10 nm) / Ta (4 nm) seed layer and a Cu
(2 nm) / Pd (2 nm) cap layer were magnetron sputter deposit-
ed on thermally oxidized Si wafers. The stacks was patterned
into 8 x 16 um? mesas using optical lithography, and then
coated with a 30 nm SiOs interlayer dielectric deposited by
chemical vapor deposition. Nanocontacts (NCs) were fabri-
cated using electron beam-lithography and reactive ion etch-
ing through the SiOy. Finally, 1.1 pm Cu top contacts in the
shape of microwave wave guides were made by optical lithog-
raphy, sputter deposition, and lift-off. The microwave signal
properties of the fabricated experimental devices were charac-
terized in our custom probe station where fields up to 2 T can
be applied, while the field angle can be varied by tilting the
sample using mechanical rotation. The device under test was
driven by a direct current provided by a Keithley 6221 current
source, and the device resistance was monitored using a Keith-
ley 2182A nanovoltmeter. The generated microwave voltage
was decoupled from the dc bias using a 40 GHz bias-T. The
microwave signal was, then, amplified with a 0.1-30 GHz low
noise +26 dB amplifier, and analyzed in the frequency domain
using a R&S FSU spectrum analyzer.
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Figure 3. Phase diagrams of the droplet PEMs parametrically ex-
cited by the uniform droplet self-oscillation mode: (a) on the plane
"spin polarization angle 6, vs. bias magnetic field H"; (b) on the
plane "droplet frequency wo vs. bias magnetic field H". The driving
DC current density is j = 2.5x 10** A/m*. High-amplitude PEMs are
observed at progressively higher mode indices n when the bias mag-
netic field H (and, therefore, the droplet self-oscillation frequency
wo ) is increased.

The results of our experiments are presented in Figs.4 (a)
and (b), while the results of the corresponding numerical sim-
ulations are presented in Figs.4 (c) and (d). These Figures
show the experimental and numerically calculated microwave
power of a nanocontact spin torque oscillator (NC-STO) based
on a Co/Cu/Co-[Ni/Co]«4 orthogonal spin-valve obtained at
different applied magnetic field strengths and tilt angles. In
the experiment, the PEM is excited in a field of 0.9 T tilt-
ed 7.5° from the film normal. These parameters are reason-
ably close to the parameters used in our numerical simulations
which were performed at the bias field of 0.8 T tilted 3°, with
all the other material parameters being similar to the corre-
sponding parameters in our experiments [3].

The experimental data presented in Fig.4 demonstrate that
the above presented analytical and numerical description of
the internal nonlinear dynamics of a magnetic droplet soli-
ton is qualitatively correct. At a sufficiently large driving DC



current the main auto-oscillation mode, corresponding to the
formation of a magnetic droplet soliton, appears at the fre-
quency of around 24 GHz, and continues to exist at the same
frequency with the further increase of the driving DC current
(see Figs.4 (a) and (c)).

When, with the increase of the bias magnetic field, the fre-
quency of the magnetic droplet soliton of 28 GHz (see Eq.(2))
coincides with the double frequency of the PEM with the in-
dex n =5 equal to 14 GHz (see Eq.(14)), in both experimen-
t and numerical simulations the parametric excitation of this
PEM takes place ((see Figs.4 (b) and (d)). With the further
increase of the driving DC current in experiment the PEM dis-
appears at j > 5.65x10'! A/m?)(see Fig.4 (d)), while in the
numerical modeling it also disappears, but at a larger magni-
tude of the bias current density j > 6.3x 10! A/m? (not shown
in Fig.4 (d)).

The comparison of the theory and experiment presented in
Fig.4 demonstrates that our theoretical model gives a full qual-
itative and partly quantitative description of the internal non-
linear dynamics of the self-oscillating magnetic droplet soli-
tons. This dynamics is caused by the resonance parametric
excitation of PEMs, taking place when the magnetic-field-
dependent self-oscillation frequency of a droplet soliton co-
incides with the double frequency of one of the PEMs, and
the theory allows one to predict which PEM (if any) will be
parametrically excited at a particular value of the bias mag-
netic field (see Fig.3). This ability is rather important for the
possible future applications of magnetic droplet solitons and
PEMs.

V. CONCLUSION

We have studied perimeter excitation modes (PEMs) of
magnon drops and magnetic droplet solitons. We have shown
that there exists a family of such PEMs, that can be described
as standing waves of periodic deformation of the droplet
perimeter. The frequency of these PEMs is described by a
simple analytical equation [Eq. (12)], and the damping rate
of PEMs, for sufficiently small mode indices n, follows a
Gilbert relation with an effective damping constant «v;, several
times larger than the Gilbert constant of the magnetic material,
where the droplet soliton is excited.

We have demonstrated that PEMs can be parametrically ex-
cited by the main self-oscillation mode of the droplet soliton
in the limited intervals of the bias magnetic field, where the
field-dependent frequency of the droplet self-oscillation mod-
e is reasonably close to the double frequency of a particular
PEM (i.e. where the approximate conditions of the paramet-
ric resonance between the droplet self-oscillation mode and
PEMs exist (see Eq.(14)). In these field intervals the PEMs
are parametrically excited only at a sufficiently large values
of the driving DC current density and at a sufficiently large
values of the angle describing the tilt of the spin-polarization
direction in the driving DC current in respect to the plane of
the free magnetic layer in which the droplet-supporting nano-
contact is formed. Also, the parametrically excited PEMs ex-
istin a limited interval of the driving DC current densities, and
disappear at large magnitudes of this current density in both
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Figure 4. Comparison of micromagnetic simulations with experi-
mental data on droplet PEM. Experimental measured phase diagram
of NC-STO on Co/Cu/Co-[Ni/Co] x4 orthogonal spin-valve with an
applied magnetic field of (a) 0.8 T and (b) 0.9 T with a tilt angle of
7.5 deg. Simulated phase diagram of the same device with slightly
different field strengths and tilt angle as compared to the experimen-
tal data: (¢) H =0.7T, (d) H =0.8 T at a tilt angle of 3 deg. Other
material parameters used in the simulation include: R. =60 nm, A,
=30 pJ/m, K =447 kJ/m® and M, = 716 kA/m.

experiment and numerical simulations.

These findings not only provide new information about
the structure, the properties of the internal excitations of
magnetic droplet solitons, but are also important for the
practical use of the droplet-based spin-torque nano-oscillators
for microwave-frequency signal generation and processing.
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