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Abstract: The atomic-level structures of liquids and glasses are amorphous, lacking long-range 

order. We characterize the atomic structures by integrating radial distribution functions (RDF) 

from molecular dynamics (MD) simulations for several metallic liquids and glasses: Cu46Zr54, 

Ni80Al20, Ni33.3Zr66.7, and Pd82Si18. Resulting cumulative coordination numbers (CN) show that 

metallic liquids have a dimension of d  = 2.55 ± 0.06 from the center atom to the first 

coordination shell and metallic glasses have d  = 2.71 ± 0.04, both less than 3. Between the first 

and second coordination shells, both phases crossover to a dimension of d = 3, as for a crystal. 

Observations from discrete atom center-of-mass position counting are corroborated by 

continuously counting Cu glass- and liquid-phase atoms on an artificial grid, which accounts for 

the occupied atomic volume. Results from Cu grid analysis show short-range d = 2.65 for Cu 

liquid and d = 2.76 for Cu glass. Cu grid structures crossover to d = 3 at ξ~8 Å (~3 atomic 

diameters). We study the evolution of local structural dimensions during quenching and discuss 

its correlation with the glass transition phenomenon. 

KEYWORDS: Molecular dynamics, dimension, metallic glass, percolation, glass transition, 

jamming 
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I. INTRODUCTION 

The viscosities and relaxation times of glasses and liquids across the glass transition 

temperature (Tg) are separated by many orders of magnitude.1 This large increase in viscosity 

over a short temperature range is not accompanied by significant changes in the long-range 

atomic structure, which remains amorphous. Metallic glasses are locally more ordered in the 

short- and medium-range than their liquid counterparts,2, 3 but this ordering plays an ambiguous 

role in the glass transition.4 A structural model that captures both liquids and glasses is useful for 

understanding the amorphous structure and the subtle changes, if any, that occur across Tg and 

their potential connection to the glass transition phenomenon. 

The local dimension, d, describes how, on average, the mass of atoms within a spherical 

section of material with radius r scales, M(r) ∝ rd.5 In relating the positions of the first sharp X-

ray diffraction peaks (q1) to sample volume (V), several groups have reported a scaling 

relationship in metallic glasses, with exponent, d~2.31-2.5, which deviates from the d = 3 

expected under the assumption that q1 ∝ 1/a, where a is the interatomic spacing.6-9 Experiments 

on electrostatically levitated metallic liquids also show a non-cubic power law exponent of 

d~2.28,10 albeit with a limited range in data and a significant amount of scatter.11 Without 

translational symmetry, the connection between diffraction peak positions and interatomic 

distances in amorphous materials is not simple.11 Nonetheless, the estimated power law 

exponents are related to the local dimension of the atomic structure, and observations of an 

exponent/dimension less than 3 have led to suggestions of an underlying fractal structure in 

metallic glasses.6, 8 However, the long-range scaling relationship in metallic glass structure is not 

fractal over all length scales because macroscopic pores or voids are absent in their 

microstructure, and such pores are a defining characteristic of fractals that maintain their scaling 

relationships over long ranges (e.g. the Sierpinski triangle). 

In response to this inconsistency, Chen et al. proposed that metallic glasses at the atomic-level 

can be described using percolation,8 a model that captures the interconnectivity of sites on a 

lattice or spheres in a continuum.5 Three-dimensional percolation models, such as hard sphere 

and overlapping sphere continuum models, exhibit a fractal dimension of d~2.52 at lengths 

below a correlation length, ξ, and a crossover to a dimension d~3 above ξ, where ξ is roughly the 

diameter/length of finite, non-percolating clusters.5 Using molecular dynamics (MD) 
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simulations, Chen et al. found that two distinct metallic glasses have short-range dimensions of 

d~2.5 below ξ~2 atomic diameters and a dimension of 3 occurs over longer lengths. This 

suggested that metallic glasses are structurally similar to a continuum percolation (i.e. spatially-

random coalescence) of spherical particles.8 This crossover at ξ may explain the anomalous non-

cubic scaling exponents in q1 vs. V observed experimentally in macroscopically homogeneous 

and fully dense metallic glasses and liquids.6-8, 10 Such a connection between percolation 

structure and glasses has also been suggested by Orbach, who applied percolation theory to 

describe high frequency (short wavelength) vibrational states in glassy systems and also 

suggested that amorphous materials may exhibit fractal properties at short length scales.12 

The question remains whether liquids exhibit a crossover in dimension from d < 3 to d = 3. 

Percolation structure has been studied in hard spheres,13, 14 overlapping spheres,15, 16 and recently 

metallic glasses,8 suggesting a possible connection to metallic liquids, which share structural 

similarities with both metallic glasses and hard sphere systems17. It would be interesting to study 

the development of this ordering as a function of temperature, across the glass transition. One 

previous method to measure dimension utilized hydrostatic pressures to induce peak shifts in 

radial distribution functions (RDF) that were compared to corresponding volume changes.8 

However, this pressure-induced peak shift method is not well suited for studying liquids, in 

which atomic rearrangement and exchange of neighbors leads to significant structural changes 

under pressure. The correlation lengths, ξ, can only be inferred based on the scaling of various 

peaks. Moreover, the broadness of the RDF peaks leads to results that are sensitive to the specific 

method of generating and measuring the RDF.18 To overcome these challenges, we integrated the 

RDFs to obtain cumulative coordination numbers (CN). This integral method estimates the local 

dimension of the structure without the need for applying hydrostatic pressures or measuring 

small shifts in broad amorphous peak positions, which are methods that were used previously.8 

With this CN analysis, we observe a crossover in dimension from d  = 2.55 ± 0.06 in metallic 

liquids and d = 2.71 ± 0.04 in metallic glasses, to d = 3 for the second coordination shell and 

beyond, suggesting that ξ~3 atomic diameters. 

 

II. DIMENSION AND CROSSOVER 
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One measure of dimension comes from the scaling of extensive properties with size such as 

mass, i.e. M(r) ∝ rd, where M(r) is the mass contained in a sphere of radius r. M(r) is calculated 

as an average over the entire system by choosing different atoms as the center of the sphere.5 In 

our analysis, we use the value CN+1 to represent the average number of atoms within a sphere of 

radius r (1 added to account for the center atom), an extensive property that is proportional to 

average mass. In percolation, the scaling relationship for a system above the percolation 

threshold, ϕୡ, exhibits a crossover in dimension from d~2.52 to d~3 at ξ, where ξ ∝ ሺϕ −ϕc)−ν.5 The parameter definitions are: ϕ is the packing fraction, ν = 0.8764 is the critical 

exponent for the correlation length,19 and ϕୡ is the percolation threshold in 3-dimensional 

continuum percolation.5 From percolation theory, the expected crossover point for several of the 

metallic systems studied here has been roughly estimated to be ξ~2.8 This value represents the 

average size of non-percolating clusters in units of atomic diameters, and suggests that the 

crossover occurs around the first atomic coordination shell. To avoid inaccuracies that may arise 

from determining precise peak shifts in broad amorphous peaks, we obtain the dimension of each 

atomic structure by measuring d(ln(CNgrid))/d(ln(r)) for Cu46Zr54, Ni80Al20, Ni33.3Zr66.7, and 

Pd82Si18 metallic liquids and glasses. We find that a crossover from d < 3 to d = 3 occurs in all 

cases beyond the first to second coordination shell. We compare these results to those for pure 

Cu and Zr (SI) in liquid and crystalline phases. 

 

A. Metallic glasses 

We measure d by performing a linear fit between the radius of the center atom, ravg, and the 

outer radius of the first coordination shell, r1s. The ravg is defined as the average radii of the atoms 

in the binary systems (i.e. for Cu46Zr54, ravg = 0.46rCu + 0.54rZr, refer to SI). There is on average 

one atom (i.e. the center atom) within this radius, making it an appropriate first point in the 

analysis of the dimension. Using this approach, we establish the following estimates of 

dimensions: d = 2.68 for Ni80Al20, d = 2.73 for Ni33.3Zr66.7, d = 2.66 for Pd82Si18, and d = 2.74 or 

2.73 for Cu46Zr54 using FF1
20 or FF2

21, respectively (Figure 2), all at 300 K. The average 

dimension for metallic glasses of d = 2.71 ± 0.04 is ~0.19 higher than what would be expected 

from percolation theory, where d~2.52,5 and is higher than previous estimates of ~2.3-2.56, 7 

(diffraction experiments) and ~2.58 (molecular dynamics with hydrostatic pressure). In the 
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region between the center atom and first coordination shell, ravg-r1s, CN rises sharply due to the 

discrete nature of the atom counting procedure, which bins the atoms according to their center of 

mass position, providing no information on their physical volume (i.e. from excluded volume 

interaction) and precluding the counting of fractions of atoms. A continuous measure of the CN 

that captures this missing structural information might give a smooth, filled-in curve between the 

center atom and first coordination shell and a more accurate estimate of short-range dimension 

(refer to Section C).  Between the outer radii of the first and second coordination shells, r1s-r2s, 

the dimension crosses over to 3 for all cases, suggesting that these metallic glasses have a 

correlation length of ξ~3.56 atom diameters, which is slightly higher than previous estimates.8 

Here ξ is estimated using (r1s+r2s)/2ravg.22 Within the first to second coordination shell, free 

volume arising from packing inefficiencies contributes to a reduced dimensionality in the 

structure. This reduced (< 3) dimension cannot proliferate to greater lengths because the free 

volume necessarily remains smaller than the volume occupied by atoms, whose relative positions 

are dictated by long-range attraction and low kinetic energy. At longer length scales, where free 

volume is less significant and the atom clusters appear closely packed, we find that the 

dimension of the structure is 3. 

 

Figure 1. a) Diagram of expected crossover in log-log plot of mass versus radius. Short-range 

fractal dimension df crosses over to long-range dimension d at the correlation length ξ. b) Radial 

distribution functions for Cu46Zr54 (FF2) in the glass and liquid phase. Dashed lines indicate 

positions for the first peak, r1, and coordination shells, ris. 

a b
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Figure 2. Log-log plots of total atom number (CN+1) versus radius, r, showing local dimension 

in metallic glasses of Cu46Zr54 a) FF1, b) FF2, c) Ni80Al20, d) Ni33.3Zr66.7, and e) Pd82Si18. Short-

range dimension, d = 2.71 ± 0.04, is measured through a linear fit between the radius of the 

center atom and the outer radius of the first coordination shell. Long-range dimension, d = 3, is 

measured from a linear fit of points beyond the outer radius of the second coordination shell. 

 

B. Metallic liquids 

Applying the same method to metallic liquids, we measure d = 2.57 for Cu46Zr54 FF1 at 2500 

K, d = 2.55 for FF2 at 2000 K, d = 2.48 for Ni80Al20 at 3000 K, d = 2.64 for Ni33.3Zr66.7 at 2500 

K, and d = 2.53 for Pd82Si18 at 2000 K (Figure 3) from ravg to r1s. These estimates are dependent 

on temperature, as the position of r1s changes due to thermal expansion (see section D). The 

average value of d  = 2.55 ± 0.06 is in line with the value of ~2.52 from percolation theory,5 and 

is ~0.16 lower than the average value in our metallic glasses. This difference in local dimensions 

in liquid and glassy phases may be related to the accumulation of dense ordered clusters, such as 

icosahedra, across the glass transition, which pack more efficiently and reduce local free 

a b c

ed
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volume.3, 23, 24 A crossover in dimension from d < 3 to d = 3 occurs in roughly the same region as 

in the metallic glasses, which suggests that the liquids are structurally analogous to percolation 

structures with a correlation length of ξ~3.68 atomic diameters, slightly higher than previous 

suggestions.8 In percolation theory, the correlation length is inversely related to the atomic 

packing fraction (ξ ∝ ሺϕ − ϕୡ)ି஝), and more loosely packed liquid structures may exhibit longer ξ. Metallic liquids are dense, possessing packing fractions of around ϕ~0.67 (FF2 at 2000 K), a 

value that is only ~8% lower than their glassy counterparts (ϕ~0.73 for FF2 glass at 300 K). To 

observe structures with ξ~4 diameters or longer, we estimate that we would need to study liquids 

and glasses with packing fractions in the neighborhood of ϕ~0.5, which is not feasible for our 

metallic systems, as a first-order phase transition to the gaseous phase would likely precede such 

a low packing fraction in the liquid phase. 

 

Figure 3. Log-log plots of total atom number (CN+1) versus radius, r, showing local dimension 

for metallic liquids of Cu46Zr54 a) FF1 at 2500 K, b) FF2 at 2000 K, c) Ni80Al20 at 3000 K, d) 

Ni33.3Zr66.7 at 2500 K, and e) Pd82Si18 at 2000 K. Short-range dimension, d = 2.55 ± 0.06, is 

measured through linear fit between the radius of the center atom and the outer radius of the first 

a b c

ed
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coordination shell. Long-range dimension, d = 3, is measured from a linear fit of points beyond 

the outer radius of the second coordination shell. 

 

C. Comparison to Copper and grid analysis 

We compare our results to those for crystalline Cu at 300 K, which has a dimension of 2.93 

between the center atom and the minimum after the first peak (measured at the midpoint between 

the first and second peak).22 Beyond the first peak, the dimension is ~3 (Figure 4a). We expect 

the long-range crystal dimension to be exactly 3 owing to its close-packed cubic structure. In the 

short-range, the crystal dimension should be slightly less than 3, owing to finite-temperature 

fluctuations and presence of defects. 

Comparison of the crystalline (300 K), glassy (300 K), and liquid (2500 K) phases of Cu 

shows that the major contribution to < 3 dimensionality in the liquid and glassy phases is the 

short-range structure, which, due to fluctuations in free volume, can be locally more open. The 

overall coordination number curve is shifted toward higher radii for the liquid phase, which 

reduces its short-range dimension. The short-range structure in the glass phase appears denser 

and more ordered compared to the liquid – the coordination number rises more steeply in the first 

shell, increasing d towards a close-packed, crystalline value. 

The discrete nature of our atom-counting procedure introduces error into the estimates for local 

dimension and makes the measurements of short-range dimension in these structures delicate, as 

the fitting is performed over only two points. This motivates a method to count the atoms 

continuously by modeling them as spheres that occupy a volume based on their atomic radii. For 

this purpose, we represented our Cu system as points on a grid, which occupy the physical 

volume of each Cu atom with a 0.3-Å resolution (Figure 4b). To generate the grid, we impose a 

mesh onto the entire system with a specified spacing. We select a grid spacing of 0.3 Å in order 

to optimize spatial resolution while weighing computation time. We keep the nodes on the mesh 

that lie within rCu of the center of mass of each Cu atom, where rCu is the radius of Cu, ~1.28 Å, 

and we reject nodes that do not meet this criterion. The remaining nodes are the grid points that 

occupy the physical space of our Cu atoms. To perform the atom counting, we take the partial 

RDFs of each atom center of mass position with respect to the grid points and normalize by the 

average number of grids per atom. 
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With the grid method, we find that the short-range dimension of the Cu liquid is 2.65 and that 

of the Cu glass is 2.76 (Figure 4c). We estimate ξ~3 using ξ = rc/rCu, where rc~4 Å and rCu = 

1.278 Å, for both phases. The correlation length is slightly longer for the liquid phase than the 

glass phase, owing to a lower global density, which leads to a longer rc. This lower global 

density (higher local free volume concentration) also contributes to a lower short-range 

dimension in the Cu liquid compared to the glass, ~2.65 vs. 2.76. This effect dominates over the 

averaging effect due to temperature fluctuations, which may serve to increase local dimension 

(see section D about dv). Our observations on the relative dimensions from the grid method of 

counting CN corroborate those from the two-point analysis involving ravg and r1s. The estimates 

for local dimension are more accurate in the grid analysis, as the fitting is performed over a 

longer range of r, rather than two points. Even so, it is likely more pertinent to compare the 

relative dimensions of identical systems under various conditions rather than consider their 

absolute values. This is evident from the observation that the local dimensionality is r-dependent 

(see secondary-axis plot in Figure 4c). The local 1st derivatives of the ln(CNgrid) plots, 

d(ln(CNgrid))/d(ln(r)) vs. r, show that the local dimensions of these systems vary depending on 

the real-space region of the structure. In the Cu glass, the local dimension is close to 3 in a 

narrow peak between ravg (1.278 Å) and r1 (~2.5 Å). In the Cu liquid, this peak is lower and 

shifted toward longer r. Interestingly, there is a stable real-space region between r1 and r2 where 

the < 3 dimensionality reliably occurs for both glassy and liquid phases. 
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Figure 4. Comparison of crossovers in pure Cu systems using discrete and grid counting 

methods. a) d~2.90 in Cu crystal (300 K), d~2.69 in Cu glass (300 K), and d~2.51 in Cu liquid 

(2500 K) below ξ with CN counted by atom center positions. b) Schematic of the grid procedure. 

Cu atoms in the simulation box (left) are replaced by effective grid points representing their 

physical volume. Grid points capture the overall atomic structure (see 1 Å slice, right). c) 

Crossovers in dimension from d~2.65 and d~2.76 to d~3 for Cu liquid and glass, respectively 

using a grid method for continuous counting. Here CNgrid is the normalized coordination number 

based on counting grids within each atom. Secondary axis (right side): d(ln(CNgrid))/d(ln(r)) 

versus r showing a distinct crossover near ξ~8 Å. 

 

D. Temperature effects on atomic structure during quench 

We examine the evolution of local dimensions within real-space regions of interest in our Cu 

systems as a function of temperature during quenching from the liquid state to the glassy state 

(Figure 5). Each temperature snapshot is taken via quenching from the immediately higher 

temperature. The short-range dimension, ds, which we define heuristically as ranging from 

~1.2rCu to ~3.2rCu, increases roughly linearly with decreasing temperatures. This is somewhat 

unexpected, as the global volume change during cooling is linear in the liquid and glassy regions, 

while strictly nonlinear near the glass transition.22 The short-range dimensional changes 

indicated by ds do not reflect the same trend as that from the global volume, showing instead a 

a

b

3
c

1Å slice
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lack of an inflection point near Tg. This suggests that ds is mostly temperature-dependent, and is 

not sensitive to the glass transition. It also suggests that the local dimension in a real-space 

segment within ds must be decreasing very rapidly near Tg. The valley in d(ln(CNgrid))/d(ln(r)) 

versus r from ~r1 to ~3.2rCu, corresponding roughly to the center of the first nearest neighbor to 

the edge of the second nearest neighbor, has a local dimension, denoted dv, that is very sensitive 

to the glass transition. dv hovers around 2.6 at temperatures above 1500 K, and dips abruptly 

below 2.55 on cooling past 1200 K, close to the glass transition temperature of Tg~1150 K. This 

abrupt shift corresponds also to the appearance of a shoulder in the first minimum, which 

indicates the development of ordered clusters. The dv region relates to the amount of free volume 

in the system around the first neighbor. The liquid phase has a higher dv due to stronger thermal 

fluctuations occurring at higher temperatures, which play an averaging role on the local 

dimension. A reduction in dv indicates increased local free volume just beyond the nearest 

neighbor, which suggests, somewhat counter-intuitively, increased local order via ordered 

clusters. This is analogous to the development of interstitial volume, which greatly decreases 

local density within a narrow region in r during crystallization. 
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Figure 5. Temperature effects on local dimensions in Cu glass and liquids using grid counting. 

a) ln(CNgrid) versus r and d(ln(CNgrid))/d(ln(r)) versus r plots at temperatures from 600-2100 K at 

300 K intervals. We define heuristically intervals for short-range dimension, ds, ~1.2—3.2rCu, 

and valley dimension, dv, ~2—3.2rCu, where the local dimension is largely temperature 

insensitive but appears to be sensitive to the liquid/glass phase. rCu = 1.28 Å. b) ds and dv versus 

temperature; ds increases roughly linearly as temperature is decreased, and dv appears sensitive to 

the glass transition (Tg ~ 1150 K). 

 

We consider the evolution of dv as a function of volume fraction, �, and the effects of global 

volume change on the local dimensionality (Figure 6). We calculate � using NgridVgrid/Vs, where 

Ngrid is the number of occupied grids in the system, Vgrid is the volume of each grid voxel, and Vs 

is the total system volume. We observe an inflection point in dv versus � around �~0.64-0.66. 

Notably, this value corresponds to the random close packed (RCP) value and the maximally 

random jammed (MRJ) value in monodisperse hard spheres.25, 26 This inflection point also occurs 

dv

ds

a

b

Tg

dvds
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close to the packing fraction at the glass transition, �~0.66. Other methods of calculating �, 

such as taking � = NCuVCu/Vs, where NCu and VCu are, respectively, the number and volume of 

Cu atoms, yield similar results. 

 

 

Figure 6. dv versus � showing a connection between the maximally random jammed (MRJ, � ~ 
0.64) state and onset of Tg. 

 

III. DISCUSSION 

The glass transition may be related to the densification/ordering that occurs in the local glass 

structure, but the connection is not clear. Previous analyses comparing amorphous and crystalline 

structures have emphasized that radii ratios of ~0.6-0.95 in binary systems favors formation of 

amorphous phases,27 and local icosahedral structure in the first shell plays an important role in 

driving glass formation for Cu-Zr-Al metallic glasses.20, 28 In our analysis, we observe an 

increase in d from ~2.55-2.65 to ~2.71-2.76 from the liquid to glass phases, suggesting that some 

ordering occurs across the glass transition in these metallic alloys and metals. This ordering can 

be seen more clearly in the grid analysis of Cu liquid and glass structures (Figure 4c), where the 

two main observations are: 1) the short-range dimension, d(ln(CNgrid))/d(ln(r))  vs. r plot from 

~1.5 Å to ~4 Å, is dCuglass ≈ 2.76 for the Cu glass, ~0.11 higher than that of the liquid phase, 

which has dCuliquid ≈ 2.65, and 2) d(ln(CNgrid))/d(ln(r)) vs. r shows sharpening in the first peak of 

the Cu glass, reaching a slope of around 3, indicating ordering in the first nearest neighbors, and 

a shoulder appears near the first minimum, indicating the development of ordered clusters. 

Absolute changes in d, ~0.11-0.16, across the glass transition are small, representing only a ~4-

dv

�

MRJ
Tg
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6% increase. However, keeping in mind that the values for d are roughly constrained to be from 

2 to 3, as these structures occupy 3-dimensional space, the relative changes in slopes are actually 

closer to ~20-30%. 

The liquid-glass transition appears to be a universal phenomenon in that any liquid can vitrify 

with sufficiently fast cooling.4, 29 Diverging relaxation time and viscosity can happen with or 

without accompanying structural changes. For example, symptoms of the glass transition such as 

the jump in heat capacity and logarithmic increase of Tg with quench rate can be explained 

without invoking phase transitions and thermodynamics, by considering that the systems stop 

relaxing within the experimental timescale.30 In these metallic systems, the structural changes 

that appear across the glass transition may be unique – other common glasses such as covalent 

network glasses or molecular glasses have not yet been studied in this way, although the methods 

presented here can be extended to study those systems. Nonetheless, the structural effects 

observed in this study on metallic glasses may be instructive for a more general understanding of 

the liquid-glass transition (refer to SI for additional discussion). 

The short-range dimension in our metallic glasses, d~2.71-2.76, in contrast to the metallic 

liquids, deviates considerably from percolation models, where the fractal dimension is ~2.52. In 

simple percolation models, the constituent units occupy lattice sites or are allowed to overlap one 

another5 such that no limit exists for the site occupancy probability or volume fraction of 

overlapped spheres. In real systems and hard sphere percolation models, the constituent spherical 

particles (e.g. metallic atoms) have excluded volume. This gives rise to fundamental limits in the 

random close packing fraction of hard spheres, which is �~0.637 for monodisperse spheres,31 

and ~0.64-0.83 for bi-disperse spheres, depending on their radii ratios and compositions.32 Stable 

binary metallic glasses, while not perfectly represented by hard spheres, have high packing 

fractions: ~0.73 for our Cu46Zr54 (FF2) and above ~0.7 for other binary alloys.33 Interestingly, our 

monatomic Cu system exhibits sensitive changes in dv near Tg and at a volume packing fraction 

of �~0.64. This corresponds closely with RCP and MRJ states in monodisperse hard spheres. 

The densification/ordering that occurs in these systems at the atomic level may be due to the 

frustration and jamming of the atoms, which approach and exceed the maximal packing fractions 

allowed by the random packing of spheres, arresting molecular motion. A similar idea has been 

explored in granular materials; for example, Xia, et al. found that polytetrahedra serve as 

structural elements to glassy order in hard-sphere particle glasses, forming a globally jammed 
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fractal structure.34 The mechanism for geometrical constraint in our systems may be similar to 

ideas in jamming or rigidity percolation.35, 36 

 

IV. SUMMARY 

We find that the cumulative CN analysis shows a crossover in dimension for both metallic 

glasses and liquids. We observe that the short-range dimension is less than 3, d~2.55-2.71 for 

both liquids and glasses using two methods: 1) two-point analysis from linear fit between ravg and 

r1s in binary systems, and 2) grid analysis of continuously counting grid points representing 

monatomic Cu systems. The long-range dimension crosses over to 3 beyond the first 

coordination shell. Analysis of the structural evolution during quenching suggests that ordering 

develops across the glass transition as short-range dimension increases roughly linearly with 

decreasing temperatures. Observations of local dimensions between ~2—3.2rCu in Cu shows 

sensitivity to the glass transition and a correlation with the packing fraction around RCP and 

MRJ states, suggesting that densification during cooling of metallic liquids may be arrested by 

fundamental packing limits near the glass transition. 
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VI. APPENDIX: MOLECULAR DYNAMICS METHODS 

All molecular dynamics simulations of the metallic liquids and glasses discussed here used 

embedded atom model (EAM) potentials: 

• The Cu46Zr54 systems (54,000 atoms) were prepared using two potentials, Cheng et al.20 

(FF1) and Mendelev et al.21 (FF2).  

• The Ni80Al20 systems (32,000 atoms) were prepared using Pun et al.,37  

• The Ni33.3Zr66.7 systems (32,000 atoms) were prepared using Mendelev et al.38, and  

• The Pd82Si18 systems (32,000) were prepared using Ding et al39.  

Cutoff distance: FF1 – 6.5 Å, FF2 – 7.6 Å, NiAl – 6.3 Å, NiZr – 7.6 Å, Cu – 7.6 Å, PdSi – 6.5 Å. 
Cooling procedure: cooled from melt to room temperature over 1000000 ps (steps of 0.001 ps). 
Thermalization at the end of cooling: fixed NPT at 300 K and 0 Pa for 100000 ps 

We selected four binary metallic glasses and liquids: Cu46Zr54, Ni80Al20, Ni33.3Zr66.7, and 

Pd82Si18. Among these four MGs, Cu-Zr, Ni-Zr and Pd-Si belong to metal-metal MGs and Pd-Si 

belongs to metal-metalloid MGs. The binary Cu-Zr and Pd-Si MGs have been synthesized in 

experiments.40 Although bulk metallic glasses have not been formed in binary Ni-Zr and Ni-Al 

systems, they are interesting to study in simulations because they have good (simulated) glass 

forming ability.41, 42 

In all cases the binary metallic glasses were quenched from the liquid phase (2000-3000 K) at 

a rate of ~1012 K/s to room temperature (300 K). The Cu crystal (13,500 atoms), liquid (2048 

atoms) and glass (2048 atoms) are prepared from FF2. The Cu metallic glass was quenched at a 

rate of ~1014 K/s. 

For the grid analysis, we first mapped the whole space onto grid sites on a cubic lattice with 

spacing ~0.3 Å. We remove grid points outside the average radius of the atoms by marking all of 

the grid points within one atomic radius from an atomic center. The remaining grid points fill the 
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excluded volume of our systems. The total number of grid points is 657545 for the Cu glass and 

642106 for the Cu liquid. 

The RDFs were calculated by binning the atomic structure (100,000 bins for binary systems 

and Cu crystal, 5000 bins for Cu liquid and glass). Coordination numbers are obtained by 

integrating the total RDF. The CNgrid value is taken from the partial RDF from the Cu atom 

center positions to the grid points. We normalize the final CNgrid value by the average number of 

grid points within each atom (CNgrid at r = ravg). 

Supporting Information: coordination number dimension analysis for Zr crystal, different RDF 

binning conditions, and applied hydrostatic pressures (30 GPa). 
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