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We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin−1/2 chain

antiferromagnet, Sr2CuO3, with an extremely weak magnetic ordering. The ESR spectra at T > TN , in the

disordered Luttinger-spin-liquid phase reveal nearly ideal Heisenberg-chain behavior with only very small, field-

independent linewidth, ∼ 1/T . In the ordered state, below TN , we identify field-dependent antiferromagnetic

resonance (AFMR) modes, which are well described by the pseudo-Goldstone magnons in the model of a

collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly

anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. We propose

that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due

to its interaction with the high-energy amplitude mode in the regime of a weak spontaneous symmetry breaking.

PACS numbers: 75.50.Ee, 76.60.-k, 75.10.Jm, 75.10.Pq

The symmetry broken states and quasi-particle excitations

in condensed matter explore much of the same physics as the

field theories of particles in the Universe [1–8], while pre-

senting an advantage of being precisely tunable and accessi-

ble in laboratory-scale experiments. Studying model mate-

rial systems such as quantum magnets can bring important in-

sights into the physics of strings [1–3], quark confinement, or

Higgs particles [9–11]. Weakly interacting Heisenberg spin-

1/2 chains present particularly favorable opportunity for ex-

ploring these concepts [4–10, 12–15].

The ground state of an isolated chain is disordered, with

the de-confined fractional spin-1/2 excitations (spinons) form-

ing a continuum of physically accessible spin-1(2,3,...) states

[4, 9, 15]. This state, known as Luttinger liquid (LL), is

quantum-critical, so that even a tiny inter-chain coupling in

a real material leads to a three-dimensional (3D) magnetic

ordering at T < TN . A spontaneous symmetry breaking

by magnetic order imposes linear attractive potential, which

at low energy confines pairs of spin-1/2 spinons into spin-

1 magnons, in accord with the Goldstone theorem requiring

such gapless excitations [16, 17]. In the case of a collinear an-

tiferromagnetic (AFM) order, these are the well-known trans-

verse spin waves [18, 19]. The interaction of such Goldstone

magnons with the amplitude fluctuations of the order parame-

ter is usually discarded, although it must grow in importance

near the quantum critical point (QCP), where the symmetry-

breaking order is weak, and its amplitude fluctuations are sig-

nificant. If so, what is the energy scale where this interaction

occurs, and what is the spectral weight involved – are coherent

Goldstone magnons detectable at all near the QCP, when the

symmetry breaking is weak? What is the role of the longitu-

dinal magnon mode predicted by the chain-mean-field (CMF)

theory [12–14, 20, 21]?

Motivated by these questions, we carried out ESR experi-

ments aimed at a comparative study of magnetic resonance in

the ordered and LL phases of a chain cuprate, Sr2CuO3, at

frequencies of the microwave field, ν, probing magnetic exci-

tations with energies hν . kBTN . Surprisingly, not only we

have been able to identify Goldstone magnons, modes corre-

sponding to the transverse oscillations of the magnetic order

parameter and a hallmark of spinon confinement, but we have

also discovered an unusual magnetic excitation with strongly

field-dependent energy gap (mass). This mode is not predicted

by the low-energy, hydrodynamic theory of spin dynamics,

which instead predicts a field-independent pseudo Goldstone

spin wave [18, 19]. Therefore, the observed massive mode

likely involves a short-wavelength physics, such as the inter-

action of a Goldstone magnon with the amplitude fluctuations

of an order parameter [22–24].

Sr2CuO3 has a body-centered orthorhombic crystal struc-

ture (space group Immm) composed of chains of corner-

sharing CuO4 square plaquettes in the (ab)-plane, running

along the b-axis of the crystal. The strong Cu-O hybridiza-

tion results in an extremely strong Cu-O-Cu in-chain superex-

change, J ≈ 2800 K, [15, 25, 26]. Small orbital overlaps

between the planar CuO4 plaquettes on neighbor chains yield

a much smaller inter-chain coupling, J ′/J . 5 · 10−4, result-

ing in an almost ideal spin-chain structure. Hence, Sr2CuO3

undergoes a phase transition into an antiferromagnetically or-

dered state only below the Néel temperatureTN = 5.5(1) K ≈
2 · 10−3J , in a very close proximity of the 1D LL quantum-

critical state. Strong quantum fluctuations result in an or-

dered moment of only 〈µ〉 = 0.06µB, as was determined from

neutron scattering and µSR experiments [27]. Consequently,

Sr2CuO3 presents an ideal model material for exploring ef-

fects of an extremely weak symmetry breaking in a system

of coupled quantum-critical spin-1/2 chains with fractional

spinon excitations, the emergence of Goldstone and ampli-

tude fluctuations modes resulting from spinon confinement,

and the corresponding dimensional cross-over regimes.

The ESR experiments were carried out on a high-quality

single crystal sample (m ≈ 0.056 g), similar to the ones used

in our previous studies [15]. The sample was oriented using

the tabletop Laue Xray. The magnetic resonance spectra were
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FIG. 1. Temperature dependence of magnetic resonance spectra mea-

sured at ν = 27.0 GHz (left panel) and ν = 139.3 GHz (right panel)

for magnetic field H ‖ c-axis of the sample. The signals are normal-

ized to a unit level at maximum and consecutively shifted by +0.07,

from bottom to top. Red and black curves correspond to ordered and

spin-liquid phases, respectively. Arrows mark different resonance

peaks discussed in the text.

measured using a set of home made transmission-type mi-

crowave spectrometers with cylindrical and rectangular cav-

ities covering the frequency range 22− 140 GHz. A magnetic

field up to 12 T was supplied by the superconducting mag-

net. The temperature varied from 0.5 K (with the 3He cryo-

stat insert) to 50 K. For the complementary neutron measure-

ments, a larger piece of a similar Sr2CuO3 crystal was placed

in a 4He flow cryostat on SPINS spectrometer at NIST Cen-

ter for Neutron Research; the fixed scattered neutron energy

of 3.7 meV, BeO filter after sample, and beam collimations

37′ − 80′ − 80′ − 240′ from sample to detector were used.

Typical resonance absorption spectra of Sr2CuO3 recorded

at low and high frequencies are presented in Fig. 1. At

T > TN , the spectrum consists of an intense principal line and

two weak satellites (marked S1 and S2). An excellent fit to

the field profile of the ESR absorption signal for all measure-

ment frequencies is obtained by using Lorentzian profile for

the principal line and Gaussians for the satellites, resulting in

three fitting parameters for each resonance line: the signal am-

plitude, A, the resonance field, Hres, and the half width at half

maximum (HWHM) linewidth, ∆H . At T > TN all observed

resonance modes have linear frequency-field dependence typ-

ical of a paramagnet, hν = gµBHres (h is the Planck con-

stant, µB is the Bohr magneton), with the g-factor values de-

pending on the direction of the applied field. For the main

line, the g-tensor components in the principal crystal axes are,

ga = gb = 2.03 ± 0.02, gc = 2.22 ± 0.02, consistent with

the ab-plane geometry of the Cu dx2−y2 orbital in Sr2CuO3

[15]. For the satellite peak S1, ga1 = gb1 = 2.22 ± 0.02,

gc
1
= 2.03 ± 0.02, while the S2 mode has isotropic g-factor,

g2 = 2.11 ± 0.02. As explained in detail in [28], these reso-

nance lines correspond to two types of paramagnetic defects

whose relative concentrations can be evaluated from the cor-

responding integral signal intensities, normalized to the main

signal: n1 ≈ 2 · 10−5, n2 ≈ 1 · 10−3, thus, establishing the

exceptional quality of our single crystal samples [28–30]. Be-

FIG. 2. The resonance field shift (a), the line width (HWHM) (b),

and the integral intensity (c) of the principal ESR line as a function of

temperature, measured at three excitation frequencies: 27.0 GHz (◦
and • are the two spectral components below TN ), 79.0 GHz (△),

and 139.3 GHz (�), for H ‖ c. Solid lines in panels (b), (c) show

α+β/T and C/T fits, respectively, for the width of the main line and

the intensity of the residual paramagnetic component associated with

defects. (d) The decomposition of a typical low-frequency resonance

line in the ordered phase into Lorentzian (AFM1, PM) and Gaussian

(S1, S2) spectral components. (e) The square of the AFMR gap,

∆2

1(T )/ν
2, obtained from the temperature dependence of the AFM1

resonance field measured at ν = 27.0 GHz (�) and the intensity of

the (0, 0.5, 0.5) neutron magnetic Bragg peak (▽) vs temperature.

low, we therefore focus the attention on the main spin system.

The temperature evolution of the principal resonance line

is shown in Figure 2, (a–c). At T > TN , this mode nar-

rows with the increasing temperature, concomitantly increas-

ing in amplitude; its position does not change except in the

vicinity of the ordering transition, at T . 1.5TN . The inte-

gral intensity remains practically constant, in agreement with

the low-T susceptibility of a S = 1/2 chain [26, 31, 32].

Within the experimental accuracy, the linewidth appears to

be independent of magnetic field (the excitation frequency),

Fig. 2(b). Its temperature dependence is best described as

µ0∆H ≃ 0.014 + 0.2/T (solid line). The 1/T contribution

can be associated with a small anisotropy of the weak inter-

chain coupling, J ′
z 6= J ′

x,y [33], where our estimate yields

δJ ′ ∼ 0.5 K, while the constant term accounts for other con-

tributions. According to Refs. [34–36], the absence of a mea-

surable ∼ 1/T 2 contribution to the linewidth, as well as a

very small observed T−dependent line shift, impose stringent

upper limit on possible staggered fields, hst . 2 · 10−2 K,

consistent with the ideal crystal structure of Sr2CuO3 where

such terms are prohibited by symmetry. The estimated upper

bound on the T−linear contribution to the linewidth indicates

an upper bound on the anisotropy of the intra-chain exchange,

δJ/J . 1.4 · 10−2, [28, 35], which is further corroborated by

the analysis of the AFMR spectra observed below TN . The

overall detailed analysis of the high-temperature magnetic res-
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FIG. 3. The resonance absorption spectra measured for H ‖ b-axis at

frequency ν = 73.6 GHz on decreasing the temperature from above

TN to 1.3 K (upper panel), and the low-temperature records made at

various excitation frequencies for H ‖ b (middle panel) and H ‖ c
(lower panel). Arrows mark absorption maxima corresponding to

different resonance modes discussed in the text.

onance properties of Sr2CuO3 is presented in Ref. [28].

At temperatures below the transition into an ordered state,

the resonance spectrum of Sr2CuO3 markedly transforms.

We observe a gradual shift of the principal resonance line,

at all measurement frequencies, ν, for H ‖ a and c, and in

the low-frequency range for H ‖ b, which is consistent with

the opening of gaps in the spin excitations spectrum (see up-

per curves in Fig. 1) [37]. Assuming the relation for a field-

dependent gapped mode in a two-sublattice antiferromagnet

with weak anisotropy, ν2 = ∆2(T ) + (gµB/h)
2
H2

res, we

obtain the temperature dependence of the gap, ∆(T ), which

is directly related to the AFM order parameter, ∆ ∝ 〈S〉

[38]. The corresponding (∆(T )/ν)2 dependence for H ‖ c
and ν = 27.0 GHz is shown in Fig. 2(e), along with the in-

tensity of the (0, 0.5, 0.5) magnetic Bragg peak measured by

neutron diffraction, which also probes the square of the mag-

netic order parameter. The excellent agreement between the

two measurements confirms unambiguously that we observe

the AFMR, and that pseudo Goldstone magnon modes de-

velop at T < TN in a system of weakly ordered chains in

Sr2CuO3 in the frequency range probed in our experiments.

The fit of the square of the order parameter in the vicinity of

AM mode

AM mode AM2,3 modes

FIG. 4. Frequency-field diagrams of the magnetic resonance spectra

measured at T = 1.3 K for the three principal directions of the ap-

plied field with respect to the crystal axes, H ‖ a, b (top), and H ‖ c
(bottom). The two AFMR modes are shown with the open sym-

bols, the solid lines are the theoretical calculations [18, 19, 39] for

the biaxial collinear antiferromagnet. Closed circles show the low-

temperature AM mode; the dashed lines are linear fits discussed in

the text. The dashed-dotted lines show the paramagnetic resonance

position for the g-factors obtained from high-temperature measure-

ments. The drawing in the lower panel illustrates a mechanism of

dynamical coupling of the amplitude mode and the transverse Gold-

stone magnon corresponding to oscillations of the order parameter in

the plane perpendicular to the applied field.

the ordering transition reveals linear temperature dependence

consistent with the CMF theory [20], and yields the Néel tem-

perature TN = 5.5(1) K in agreement with previous stud-

ies [27]. The evolution of satellite modes S1, S2 below TN

supports the conclusion that these signals originate from tiny

amounts of defects and inclusions.

For H ‖ b, a step-like, non-resonant feature develops be-

low TN , in addition to the resonance modes (Fig. 3, upper

and middle panels). The magnetic field at which this feature

arises, µ0Hc ≃ 0.47 T, does not depend on temperature and

frequency. This allows its identification with a spin-flop tran-

sition [40–42], where a discontinuity in the real part of mag-

netic susceptibility leads to a step-like absorption feature (note

that at zero field the ordered magnetic moments in Sr2CuO3

are directed along the b-axis [27]).

The behavior of the AFMR modes identified in our exper-

iments for all directions of the applied magnetic field reveals

the spectrum of a collinear antiferromagnet with two inequiva-

lent anisotropy axes (in accord with the orthorhombic symme-

try of Sr2CuO3). The most general theoretical interpretation
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of the low-energy spin dynamics of such a system is provided

by the theory of spin hydrodynamics [19]. For a collinear

antiferromagnet, such as Sr2CuO3 at T < TN , this phe-

nomenological theory predicts two pseudo Goldstone trans-

verse spin wave branches, which correspond to our AFMR

modes 1 and 2. Their resonance excitation energies for all

three directions of magnetic field are accurately reproduced

by the theory using only two parameters, ∆1 = 23.0 GHz

and ∆2 = 13.3 GHz, for the gap values rendered by a small

anisotropy to the two Goldstone magnons (lines AFM1 and

AFM2, respectively). The critical field of the spin-flop tran-

sition, which at low temperature is given by the relation,

µ0Hc = h∆2/(g
bµB) ≃ 0.47 T, is in excellent agreement

with the observed value.

Having thus unambiguously established spinon confine-

ment into the Goldstone magnons giving rise to the AFMR in

Sr2CuO3 in the energy range covered in our measurements,

hν . kBTN , we now focus on another remarkable feature.

For all directions of the magnetic field, we observe an intense

line of resonance absorption, marked “AM” (amplitude mode)

in Fig. 3. It has a roughly temperature-independent line width,

several times larger than that of the AFMR modes. This line

appears below TN and rapidly grows in intensity, with no shift

of the resonance field, on further cooling. It reveals a novel

magnetic excitation emerging in the ordered phase, which is

both theoretically unanticipated and hitherto unobserved. For

H ‖ a, b this type of signal consists of a single resonance line;

for H ‖ b it only appears at H > Hc (see middle panel of

Fig. 3). Two additional signals are observable in the high-

field range for H ‖ c, whose intensity drops precipitously at

ν . 30 GHz (see data at 27.8 GHz and 31.2 GHz in Fig. 3).

The frequency-magnetic field diagram of Fig. 4 shows the

experimental data for the field dependence of this novel mode

(closed symbols) along with that of the conventional AFMR

lines 1, 2. For H ‖ a, b, the AM follows linear dependence,

hν = geffµBH , shown by dashed lines in the corresponding

panels of Fig. 4. The fit yields a very large and anisotropic “ef-

fective g−factors”, gaeff = 2.60(5) and gbeff = 4.7(1). The

triple line observed forH ‖ c has a non-monotone field depen-

dence, and appears to soften in high fields, possibly indicating

a quantum phase transition. In the vicinity of the “transition”,

µ0Hc2 ≃ 9.44 T, the mode can be described by a critical-

type linear dependence, hν = gceffµB|H−Hc2|, with a slope

gceff = 1.91(5) (dashed line in Fig. 4).

The nature of the spin system in Sr2CuO3 suggests that the

new mode could be related to the amplitude fluctuations of the

order parameter in a weakly ordered system of spin-1/2 AFM

chains. We note that no such mode was observed in CsNiCl3,

a system of weakly coupled AFM spin-1 chains with a very

similar TN ≈ 4.8 K, nor in a spin-5/2 chain system CsMnBr3
(TN ≈ 8 K), where the ESR spectra are in full agreement

with the spin hydrodynamics theory [43, 44]. In Sr2CuO3 the

theory predicts an undetectable (for our field-scanning tech-

nique), field-independent AFMR modes (horizontal lines in

Fig. 4), in addition to the observed field-dependent pseudo

Larmor (lines 1 or 2, depending on the field direction). An

interaction of these Goldstone magnons with the amplitude

mode of the order parameter provides a plausible mechanism

by which they can acquire field dependent mass. At the origin

of such coupling could be the spin anisotropy, which favors

different amplitude of the ordered moment depending on its

alignment with respect to the easy/medium/hard axis. This is

illustrated in the lower panel of Fig. 4, where the Larmor pre-

cession of the ordered magnetic moment around the applied

field modulates its amplitude.

In summary, our ESR measurements in the quasi-1D spin-

1/2 chain antiferromagnet Sr2CuO3 confirm nearly ideal 1D

Heisenberg behavior in the Luttinger-liquid phase. In the

weakly ordered AFM phase, at T < TN , they reveal a

novel, dominant excitation mode, which develops along with

the field-dependent gapped AFMR modes (transverse pseudo-

Goldstone magnons) intrinsic to a collinear antiferromagnet

with weak two-axial anisotropy. Recent analysis [45] of the

Heisenberg necklace model performed in the context of the

present findings suggests that such a strongly field-dependent

excitation cannot be explained by a coupling to the paramag-

netic impurities, or the nuclear spins, and therefore must be

a property of the bulk chains. This new mode is missed by

the macroscopic theory of spin hydrodynamics, which pro-

vides theoretical interpretation for the pseudo Goldstone spin

waves observed in our experiments. It thus embodies a short-

wavelength physics and can be rationalized as a mixed mode

of the transverse and the amplitude fluctuations of the order

parameter [22–24], resulting from the interaction of the Gold-

stone magnon with the Higgs amplitude mode (AM) [46].

Consistent with this mixed character is its substantial width,

reflecting the universally damped amplitude mode, and broad

longitudinal modes found in other experiments [12–14]. The

observed softening of the novel AM mode at a critical field

Hc2 might then herald a symmetry breaking transition to the

longitudinal spin density wave state, which is expected in a

system of weakly coupled spin-1/2 chains in a field [47].
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