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Recent neutron scattering observations by Plumb et al. [1] reveal that the ground state of FeSc2S4

is magnetic with two distinct Fe environments, instead of a quantum spin liquid as had been previ-
ously thought. Starting with the relevant O(N)-symmetric vector model of FeSc2S4, we study how
the discrete (Z2) and continuous rotational symmetries are successively broken, yielding nematic
and ordered phases. At high temperatures, we find that the nematic order parameter falls as T−γ

(γ > 0), and therefore, FeSc2S4 lacks any distinct nematic ordering temperature. This feature in-
dicates that the three-dimensional diamond lattice of FeSc2S4 is highly susceptible to the breaking
of Ising symmetries, and explains the two distinct Fe environments that is present even at high
temperatures, as seen by Mössbauer and far infrared optical spectroscopy.

Introduction: Frustrated magnetic systems, resisting
ordering to the lowest temperatures, can arise from an
intricate interplay between lattice geometry and the sign
of the magnetic exchange interactions. While no single
parameter can characterize the failure of a magnetic sys-
tem to order, a commonly used measure of frustration
is a large value of the ratio f = |Θcw|/Tc, where Θcw

(proportional to the exchange interaction) is the Curie-
Weiss temperature, and Tc is the transition tempera-
ture; the system is considered frustrated in the regime
Tc < T < Θcw. In the class of materials AB2X4 [2–
9], which are known as spinels, the exchange interactions
are frustrated because the A-site atoms form a diamond
lattice and are surrounded tetrahedrally by the X-site
atoms. Consequently, numerous papers have proposed
that the ground state of these materials is of the spin liq-
uid type [6, 10–13]. In particular, because the frustration
parameter in FeSc2S4 is enormous (f ≈ 1000), this mate-
rial has risen to the fore [5, 14–16] as a leading candidate
for a spinel exhibiting quantum spin liquid behaviour.

However, the recent neutron scattering measurements
by Plumb et al. [1] are surprising, because they found
that powdered samples of FeSc2S4 exhibit a magnetic or-
dering transition at 11.8 K. With |Θcw| ≈ 45 K [5], this
observation drastically reduces the frustration parame-
ter in this material from a thousand to about f ∼ 4.
Their observations also uncovered a small and ‘incipient’
cubic to tetragonal structural transition (c/a = 0.998)
that closely accompanies the formation of orbital order;
both of these phases precede the magnetic transition and
continue to prevail even at high temperatures. The struc-
tural transition distorts the sulfur atoms coordinating the
Fe ions, and in the process leaves the two Fe sublattices
surrounded by inequivalent atomic potentials. In this
new lattice environment with a lower symmetry, the hole
in the A sublattice occupies the dz2 orbitals, while that
in the B sublattice occupies the dx2−y2 orbitals.

In fact, the presence to two distinct Fe environments
was present even in the original Mössbauer data[17, 18]
as noticed recently by Broholm and collaborators[1]. Ad-
ditionally, far infrared optical absorption measurements

[19, 20] detected two distinct bands near 467 cm−1 up to
300 K, indicating a high-temperature symmetry broken
phase. Thus, in contrast with previous reports[5, 14–16],
the authors [1] concluded that there is a strong indication
of a phase with broken Z2 sublattice symmetry, followed
by the conventional regime in which continuous spin ro-
tational symmetry is broken.

It is this experimental puzzle that we address in this
paper. Prior theoretical works on FeSc2S4 have focused
sharply [21–24] on the competition between spin-orbit
and Kugel-Khomskii [25] type exchange interactions, and
have obtained a phase diagram containing a spin-orbit
singlet phase and a magnetically/orbitally ordered phase
separated by a quantum critical point (QCP). Consistent
with existing experimental data [26, 27], these works also
argued that FeSc2S4 lies close to the QCP on the spin-
orbit singlet side of the phase diagram. The experiment
of Plumb et al. [1], in contrast, shows that FeSc2S4 lies
on the magnetic side of this yet unobserved QCP.

In this work, using the order by disorder mechanism,
we aim to provide a theoretical description of these ne-
matic and ordered phases observed in FeSc2S4. We
begin by modeling the spins with an O(N) symmetric
vector model, where the spins are represented by N -
component real vectors in three-dimensional space. Us-
ing the Hubbard-Stratonovich transformation, we decou-
ple the biquadratic terms and define a generalized ne-
matic order parameter in the context of the diamond
lattice. We then study the temperature dependence of
the spin nematic order parameter, and investigate the
development of long-range magnetic order. In the large
N limit, we find that, contrary to a few possible models
proposed in Ref. 1, the nearest neighbor (NN) and next-
nearest neighbor (NNN) exchange interactions (J1 and J2

respectively) need to be comparable in order to fit exper-
imental data. Moreover, the spin nematic order persists
even at high temperatures; in the limit T/J1 � 1, the
nematic order falls as a power law proportional to T−γ ,
γ > 0. This indicates that the three-dimensional dia-
mond lattice is highly susceptible to Z2 symmetry break-
ing and explains the presence of two distinct Fe environ-
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ments even at high temperatures, as seen by Mössbauer
[17, 18] and far infrared optical spectroscopy [19, 20].
This is unlike the 2D case [28, 29] where there is a dis-
tinct transition with a discontinuity in the first derivative
with temperature. The effects of including orbitals into
the theory are detailed in the Supplementary Material.

Order by disorder : Apart from the conventional break-
ing of continuous spin rotational symmetries leading to
ordered phases, Hamiltonians describing magnetic sys-
tems can also spontaneously break an additional dis-
crete Ising (Z2) symmetry associated with permutations
of the sublattices [30–33]. This mechanism, widely re-
ferred to as the ‘order by disorder’, has been extensively
reported in high-temperature superconductors, such as
the copper-based [34, 35] and iron-based superconduc-
tors [28, 36]. The key physics underlying this mechanism
stems from biquadratic spin contributions [37] derived
from integrating out short wavelength quantum fluctua-
tions that are not initally present in the classical versions
of the action. Such biquadratic terms in the Lagrangian
will be the main focus of this work. A representative sys-
tem [33] where this is realized is the double layered anti-
ferromagnet, schematically shown in Fig. 1. The emer-
gent biquadratic terms break the continuous symmetry
(and hence the degeneracy) with respect to arbitrary ro-
tations (angle Φ in Fig. 1) between the sublattices. At
the classical level, this symmetry exists even in the pres-
ence of inter-sublattice couplings. The net effect of the
high energy quantum fluctuations on the classical action,
then, is to lower the continuous rotational symmetry to a
discrete Ising symmetry corresponding to a relative sub-
lattice orientation of either 0 or π. Lowering the tem-
perature can then break the order parameter symmetry
space Oj(N) × Z2j (j = spin, orbital, etc) through suc-
cessive phase transitions for each participating symmetry,
thereby leading to nematic and/or ordered phases. Thus,
due to the rich potential latent in them, these ideas have
had wide applicability outside two-dimensional layered
systems as well [38, 39]. It is, therefore, of great interest
to further explore other classes of systems where similar
physics can be realized in more general settings.

Theory : The partition function for the spin only de-
grees of freedom (the role of the orbital degree of freedom
is presented in the Supplementary Material) is written as

Z =

∫
D~φ1D~φ2 exp

[
−βN

∫
d3~rL (φa1(~r), φa2(~r))

]
(1)

where φa1(~r), φa2(~r) are the ath components of the O(N)
vector on sublattices j = 1, 2 at lattice site ~r. For sim-
plicity, we will henceforth supress the index a on φj(~r),
keeping in mind that they refer to the individual compo-
nents of a vector. We also denote L as the Lagrangian
density, N as the number of spin components, and β as
the inverse temperature. Defining J1 and J2 to be the
NN and NNN magnetic exchange couplings, respectively,
we can write the Lagrangian, L , in the continuum limit

FIG. 1. Two intercalated square lattices (solid and open cir-
cles) with antiferromagnetic order on each sublattice. Each
atom in a sublattice either forms the center of a plaquette of
the other sublattice, or could be displaced along the c axis.
The spins on one sublattice are oriented at an angle Φ with
respect to the spins on the other sublattice.

as

L (φ1, φ2) =
J2

2

∑
j=1,2
i=x,y,z

(∂iφj(~r))
2 −NKφ (φ1(~r)φ2(~r))

2

+J1

∑
~aµ

∂~aµφ1(~r) ∂~aµφ2(~r). (2)

We note that the coupling constants J1 and J2 contain
factors proportional to the magnitude of the spin angu-
lar momentum squared after setting the lattice constant
to unity. The vectors ~aµ are the three translational vec-
tors of the diamond lattice occupied by the Fe atoms.
They are given as ~a1 = 1

2 (1, 1, 0), ~a2 = 1
2 (1, 0, 1), and

~a3 = 1
2 (0, 1, 1), which are along the diagonals of the three

faces of a cube. To obtain the first (J2) term, we observe
that each Fe in a sublattice has twelve second nearest
neighbors. For an Fe atom centered at ~r0 = (0, 0, 0), six
of these neighbors are positioned at ~aµ, µ = 1, 2, 3, and
their inverses; six others are positioned perpendicular to
these directions at vectors ~aµ−~aν with µ, ν = 1, 2, 3, and
µ 6= ν. Summing all of these contributions in the con-
tinuum limit, one obtains the first term up to an overall
total derivative. The last (J1) term can be obtained in
a similar fashion by noting that the J1 exchange interac-
tion connects the nearest neighbor, opposite sublattices,
as shown in Fig. 2 (left). There are four such nearest
J1 neighbors for each Fe atom; three lie along the lattice
translation vectors (~aµ), and one lies within the same
primitive cell. The J1 term is then obtained by summing
over these contributions in the continuum limit. Finally,
a biquadratic term (with a coupling constant Kφ) for the
diamond lattice can be motivated in a manner analogous
to the case of a square lattice as was described in the
previous paragraph. Fig. 2 (left) shows the lattice and
magnetic structures of the Fe atoms projected onto the
a-b plane (i.e. a c-axis viewpoint). The red (dark) and
green (light) disks denote the two Fe sublattices, and the
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FIG. 2. (Left) Magnetic structure proposed in [1] with ex-
change interactions defined. Red (dark) and green (light)
disks denote the two Fe sublattices with the arrows point-
ing in the spin direction. The dark (light) arrows belong to
the top (bottom) two layers. The disk boundaries order the
various layers along the c-axis from the readers viewpoint —
(top to bottom) thick solid, thin solid, thick dashed and thin
dashed. (Right) The sulfur tetrahedra surrounding each Fe
sublattice. At lower temperatures, the tetrahedron about one
of the Fe sublattice contracts and the other expands.

arrows point in the direction of the spin moments. The
topmost (second from top) layer is indicated by a thick
(thin) solid disk boundary. These two layers belong to
two different sublattices and have antiferromagnetic or-
der in each layer. Even in the presence of a quadratic
intersublattice coupling term, the relative orientations of
the spins between these two layers are degenerate in the
same sense as in Fig 1. Therefore, the introduction of an
intersublattice biquadratic coupling term — derived by
integrating out the short-wavelength, high-energy quan-
tum fluctuations — will lower this continuous symme-
try to an Ising Z2 symmetry. This Z2 symmetry can
then be broken at lower temperatures to form a nematic
state. For simplicity in the analyses to follow, we ig-
nore longer range exchange couplings, an approximation
which is consistent with experiments [1].

We now proceed to decouple the biquadratic term
using the Hubbard-Stratonovich transformation. At
a mean field level, the Hubbard-Stratonovich field (≡
σ(~r) = σ) plays the role of a nematic order parameter
and is proportional to 〈φ1(~r)φ2(~r)〉. A unitary rotation
of the fields φ1(~r) and φ2(~r) shows that the field σ(~r)
quantifies the degree of a broken Z2 symmetry. The vec-
tors ~φ1 and ~φ2 are constrained in this model to lie on a
unit sphere, i.e. |~φ1|2 = |~φ2|2 = 1. This constraint is
imposed through Lagrange multipliers λj for each of the
two fields. Fourier transforming into momentum space
and noting that φ∗j (~p) = φj(−~p) (i.e. φj(~r) is real), the
partition function can be recast into

Z =

∫
Dφ1Dφ2DσDλ1Dλ2 × exp

[
−βN

2
×

∑
~p

{
Φ†(~p)MΦ(~p)− 2T (λ1 + λ2) +

2T 2σ2

NKφ

} , (3)

FIG. 3. (Left) Plot of the spin nematic order parameter,
σ, as a function of T ′ = T/J1 for Λ = 2, K′φ = Kφ/J1 =
0.05. For the sake of comparison, we have also plotted the
case of a 2D square lattice. (Right) Plots of the magnetic
transition temperature, T ′m = Tm/J1, and the value of the
spin nematic order at the magnetic transition temperature,
σm, as a function of 1/K′φ for Λ = 1.

where the matrix elements of the 2 × 2 matrix M are

given by Mii = 2λiT − J2

(∑
~aµ
p2
~aµ

+
∑
~aµ,~aν
µ<ν

p2
~aµ−~aν

)
for i = 1, 2, and Mij = −J1

(
1 +

∑
~aµ
p2
~aµ

)
− 2Tσ for

i 6= j. Here, p~aµ = ~p · ~aµ, and Φ†(p) = (φ∗1(p), φ∗2(p)). It
is easy to check that the J2 terms simply add up to p2 =∑
i=x,y,z p

2
i as was discussed in the preceding paragraph.

The Φ(~p) integrals are Gaussian and can be performed
easily by standard field theoretic techniques, while the
remaining functional integrals can be determined by the
saddle point approximation.

The resulting momentum integrals and the simultane-
ous equations that must be solved for λj and σ are not
straightforward; inclusion of the orbital degrees of free-
dom (see Supplementary Material) only complicates this
further, and one must therefore resort to approximations.
To do so, we seek hints from experiments [1] which pro-
vide fits of the data to three different magnetic exchange
models. The simplest model assumes that J1 and J2

have opposite signs, and that |J1| � |J2|; this condition
implies that we can ignore J1 to the lowest order approx-
imation. By solving the simplified set of equations, how-
ever, we find that this approximation does not yield an
experimentally consistent variation of the nematic order
parameter with temperature. We therefore consider the
two other models where J1 is similar in magnitude to J2

and has the same sign. This scenario becomes tedious if
the full momentum dependence in J1 is inserted; instead,
to allow for analytical transparency, we assume that the
J1 term is a constant, independent of momentum. With
these approximations, we obtain simultaneous equations
for λ and σ given by (seeking solutions with λ1 = λ2 = λ)

2Nπ2

T ′
= −2Λ + G+(σ, λ, T ′) + G−(σ, λ, T ′),

−2π2σ

K ′φ
= −G+(σ, λ, T ′) + G−(σ, λ, T ′), (4)
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FIG. 4. (Left) A plot of the temperature-dependence of the
spin nematic order parameter, σ, obtained by including the
full momentum dependence in the J1 term. (Right) Same
plot as that on the left but on a log-log scale. The slope in
the high T ′ limit can be shown to be close to −0.5 and is
confirmed by the numerics above. The parameters chosen are
Λ = 2, K′φ = 0.05, and N = 3.

where we have defined G±(σ, λ, T ′) =√
1± 2T ′(σ ∓ λ) arctan

[
Λ√

1±2T ′(σ∓λ)

]
. Here, Λ is

the momentum cutoff and is O(1) (where the lattice
constant is set to unity), T ′ = T/J1, K ′φ = K/J1, and
J1 = J2. Fig. 3 (left) shows a plot of the spin nematic
order parameter, σ, as a function of T ′ obtained by
numerically solving the above set of equations. Within
the aforementioned approximations, σ acquires a long
tail which slowly vanishes at very large temperatures
(compared to the magnetic exchange interactions). It
can be checked that at large values of T ′, the nematic
order parameter falls to zero as T ′−2. The absence of a
distinct nematic transition temperature and the presence
of a long tail is a result of the three dimensionality of the
diamond lattice, indicating that the existence of multiple
sublattices in a cubic system makes it highly susceptible
to broken discrete symmetries. This is unlike the case of
a 2D square lattice [28, 29] (also shown in Fig. 3 (left))
where there is a distinct nematic transition temperature
above which the nematic order is zero. These results
provide a possible explanation for the presence of two
distinct Fe environments even at high temperatures, as
suggested in Ref. 1 and also supported by Mössbauer
[17, 18] and far infrared optical spectroscopy [19, 20].

We note that our qualitative conclusions are robust to
the inclusion of the full momentum dependence in the
J1 term as shown in Fig. 4 (The accompanying Supple-
mentary Material gives details of the resulting integrals).
However, the value of γ decreases from 2 to about 0.5
with this inclusion, indicating that the precise value of
γ could be dependent on the ratio of J1 and J2. That a
relatively large NN exchange J1 (comparable to the NNN
J2) is needed to obtain experimentally consistent results
restricts the possible magnetic models of FeSc2S4. (For
example, it rules out model 3 in Ref. 1). Finally, our
results reveal the presence of a Z2 broken nematic state
(which extends up to high temperatures) right above the

ordered side of the QCP in the ‘fan’ diagram put forward
in Ref. 22.

Next, to obtain the magnetic transition temperature,
we need to treat the order parameter field along one of
the spin components to be different from those orthog-
onal to it [40]. In other words, we must integrate out
only N − 1 components and treat the Nth component as
a Lagrange multiplier. Doing so, we obtain the condi-
tion for the magnetic transition as λ = 1

2T ′
m

+ σm, where

T ′m is the ratio of the magnetic transition temperature to
J1, and σm is the value of the nematic order parameter
at the transition temperature. By substituting this con-
dition into Eq. 4, we can solve for T ′m and σm. Fig. 3
(right) shows that T ′m grows linearly with inverseK ′φ, and
for small K ′φ, σm is linearly proportional to K ′φ. These
conclusions are consistent with our expectations that, de-
pending on their ratio (K ′φ), exchange interactions pro-
mote magnetic order, while biquadratic couplings favor
nematic order. The Supplemental Material describes how
this behavior is affected by the presence of orbital degrees
of freedom and the Kugel-Khomskii (KK) type exchange
interactions coupling the spins and orbitals. The KK
coupling has two qualitatively different consequences: a)
both the magnetic and orbital ordering temperatures vary
with the bi-quadratic interactions and b) the linear de-
pendence of the transition temperatures with 1/Kφ − a
salient feature of T ′m in the absence of KK interaction
(see Fig. 3)− no longer holds good; both T ′m and the
orbital equivalent, T ′o, now vary sub-linearly. We would
also like to point out at this juncture that a solution
for the magnetic ordering transition temperature in our
model exists only when the signs of J1 and J2 are the
same; this reaffirms our previous assertion that we can
rule out the magnetic structure of model 3 proposed in
Ref. 1. For Λ = 1, J1 ∼ J2 = 0.2 meV (from Ref. 1) and
K ′φ = 0.05 (Kφ � J1), we obtain a magnetic ordering
temperature of Tm = 30 K (compared to the experimen-
tal value of 11.8 K).

To conclude, we modeled the successive breaking of
Ising and rotational symmetries in the diamond lattice
structure of FeSc2S4. We found that, unlike the case of
a 2D square lattice, the nematic order for the diamond
lattice persists even at high temperatures. Specifically,
in the limit T/J1 � 1, the nematic order parameter falls
as a power law proportional to T−γ , γ > 0. This feature
indicates that the three-dimensional diamond lattice is
unstable toward a Z2 breaking Ising order, and explains
the recent observation of two distinct Fe environments
in FeSc2S4 even at room temperatures. Our theory also
restricts the possible magnetic structures and exchange
interactions proposed in literature.
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