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Thermal fluctuations of the Josephson current induced by the magnetic flux through a ring of N
superconducting grains are studied. When a half-fluxon is threading the ring, I exhibits incoherent
transitions between the two degenerate states due to thermal phase slips. We propose a new numer-
ical method to deal with both equilibrium and dynamic properties of Josephson systems. Computed
transition rate has the form Γ = A(N) exp[−B(N)/T ], where B(N) agrees with the analytical result
derived for the energy barrier associated with phase slips. In the non-degenerate case (e.g., at a
quarter-fluxon) the equilibrium value of I decreases with T due to harmonic excitations and then
gets destroyed by phase slips.

PACS numbers: 74.50.+r, 74.81.Fa, 73.23.Ra, 02.70.-c

I. INTRODUCTION

Persistent currents in small metallic rings have been
studied theoretically and experimentally since 1960s.1
Rapid progress in manufacturing of nanostructures2 has
ignited a contemporary interest to measurements of mi-
croscopic chains of Josephson junctions (JJ).3 Analytical
studies in this area consider two limits: When the dy-
namics of the chain is dominated by the capacitances of
the junctions4 and when the dynamics is dominated by
the capacitances of the superconducting islands.5 Here we
focus on the latter limit in the classical regime when ther-
mal fluctuations dominate over quantum fluctuations.

There are two characteristic energy scales in the prob-
lem. One is the charging energy of the superconduct-
ing island, U ≡ EC = 2e2/C, where C is the capaci-
tance of the island with respect to the ground, and the
other is the Josephson energy, J . They determine the
characteristic temperature ranges and physical proper-
ties of the JJ chains.5–9 At T � T ∗ =

√
2JU quan-

tum fluctuations dominate over thermal fluctuations. At
T = 0 and T ∗ = TKT ∼ J (with TKT being the temper-
ature of the Kosterlitz-Thouless transition in a 2d XY
model) quantum phase slips yield the superconductor-
insulator transition.10–13 The persistent currents in the
quantum regime have been computed numerically for
long chains,14,15 as well as analytically using the effec-
tive low-energy description.16

Here we focus on the classical thermal regime corre-
sponding to the temperature range T ∗ � T , which is
easily accessible in experiment. We begin with analyt-
ical calculation of the low-temperature behavior of the
persistent current I and the energy barrier for the phase
slip. The numerical computation of the equilibrium value
and dynamics of I that follows is challenging for two
reasons. Firstly, while fluctuations of the current de-
crease with the length of the chain, so does the current
itself, I ∝ 1/N . Thus increasing the system size does
not suppress fluctuations and an extensive averaging is
needed. Secondly, accounting for the exponentially rare
phase slips at T � J requires a very long computer time.

We propose an efficient numerical method to compute
both equilibrium and dynamic properties.

II. THE MODEL

The energy of the ring is a sum of charging energies of
the grains with and the Josephson coupling energy (see,
e.g. Ref. 15 and references therein)

H =

N∑
i=1

{
C

2
V 2
i + J

[
1− cos

(
θi+1 − θi +

2πφ

N

)]}
.

(1)
Here C is the capacitance of a superconducting grain with
respect to the ground, Vi is the voltage of the i-th grain,
φ = Φ/Φ0 with Φ being the magnetic flux piercing the
ring and Φ0 = h/(2e) being the flux quantum. Using the
Josephson relation

Vi =
~
2e
θ̇i, (2)

where θi is the phase of the superconducting order pa-
rameter of the i-th grain (θ̇i = dθi/dt), one can rewrite
the energy as

H =

N∑
i=1

{
~2

4U
θ̇2i + J

[
1− cos

(
θi+1 − θi +

2πφ

N

)]}
(3)

with U ≡ EC = 2e2/C. Mechanical analogy to our prob-
lem is a chain of rotators with the moment of inertia ~2

2U .
Due to periodicity of the ring, the sum rule∑N
i=1(θi+1 − θi) = 2πm with m being an integer, 0 ≤

m ≤ N −1, is satisfied. The limitation on m is similar to
that on the wave vector in the Brillouin zone. For a given
m the minimum of the Josephson energy is achieved when
all phase differences are the same, θi+1 − θi = 2πm/N :

E
(m)
J = NJ

[
1− cos

2π(m+ φ)

N

]
. (4)
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Figure 1: Josephson energy EJ vs the phase-slip angle Θ,
Eq. (6). (a) φ = 1/4. (b) φ = 1/2.

In the half-integer-fluxon case, φ = n+ 1/2, this ground
state is degenerate, E(−n)

J = E
(−n−1)
J = NJ

(
1− cos π

N

)
.

For 0 < φ < 1/2 the ground and first excited states are
m = 0,−1, their energy difference being

E
(−1)
J − E(0)

J = 2NJ sin
π

N
sin

π(1− 2φ)

N
. (5)

This and all other energy differences become small for
large N .

Consider the energy barrier for a phase slip. To change
m in a manner that requires minimum work, one has
to change the phase difference Θ between any pair of
neighboring grains from nearly zero to nearly 2π, keeping
all other phase differences small and constant, θi+1 −
θi = ∆θ. Eliminating ∆θ from the periodicity condition
Θ + (N − 1)∆θ = 2πm yields the Josephson energy16

EJ(Θ) = NJ − J cos

(
Θ +

2πφ

N

)
− (N − 1) J cos

(
2πm−Θ

N − 1
+

2πφ

N

)
(6)

shown in Fig. 1. For N � 1 the second cosine becomes a
parabola with superimposed oscillations due to the first

cosine. Transition from m to m′ = m − η with η = ±1
occurs via changing Θ from Θ(m) = ∆θ(m) = 2πm/N

to Θ(m′) = ∆θ(m
′) + 2πη. Here from the periodicity

condition in the form 2πη+N∆θ(m
′) = 2πm one obtains

∆θ(m
′) = 2πm′/N . In particular, transition from m = 0

to m′ = −1 (η = 1) requires the change in Θ from zero to
2π(1−1/N). Analysis of EJ(Θ) shows that for φ = 1/2 it
is symmetric with the top of the energy barrier between
the two minima at Θb = π(1− 1/N), so that

B = EJ(Θb)− EJ(0) = J
[
2−N

(
1− cos

π

N

)]
. (7)

The barrier varies from J/2 at N = 3 to 2J at N →∞.
Classical equation of motion corresponding to Eq. (3)

reads

~2

2U
θ̈i = −∂H

∂θi
. (8)

In terms of grain charge Qi = CVi = e~
U θ̇i this becomes

continuity equation

Q̇i = −2e

~
∂H
∂θi

= − 2π

Φ0

∂H
∂θi

= Ii,i+1 + Ii,i−1, (9)

where

Ii,i±1 =
2πJ

Φ0
sin

(
θi±1 − θi +

2πφ

N

)
(10)

is the current flowing into grain i from grain i ± 1. For
the chain current in the direction of increasing i we will
use the average

I =
2πJ

Φ0

1

N

N∑
i=1

sin

(
θi+1 − θi +

2πφ

N

)
. (11)

This formula also can be obtained as I = ∂H/∂Φ.
In terms of the dimensionless momenta pi defined via

θ̇i =
√
2JU
~ pi, the kinetic energy in Eq. (3) becomes Ek =∑

i
J
2 p

2
i , and with the dimensionless time τ =

√
2JU
~ t

equations of motion become

dpi
dτ

= sin(θi+1 − θi) + sin(θi−1 − θi),
dθi
dτ

= pi. (12)

This system is equivalent to a closed chain of interact-
ing rotators, with the charging energy playing the role of
kinetic energy and the Josephson energy being potential
energy. Here we study the limit of negligible dissipa-
tion which does not show up on the time scale of the
experiment. We used Wolfram Mathematica with com-
pilation in C. As the differential-equation solver we used
the 5th order Butcher’s Ruge-Kutta method that makes
6 function evaluations per integration step. High preci-
sion of this integrator allows using a larger integration
step ∆τ = 0.2.
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III. EQUILIBRIUM PROPERTIES

To consider equilibrium properties analytically at low
temperatures, it is convenient to introduce reduced
phases θ̃i according to θi = θ̃i + 2πm

N (i − 1) (so that
accumulation of the reduced phases over the ring is
zero). Thermal average of the ring’s Josephson energy
EJ ≡ 〈HJ〉 is given by15

EJ = NJ

[
1−

〈
cos

(
θ̃i+1 − θ̃i +

2π(φ+m)

N

)〉]
= NJ

[
1−

〈
cos

(
2π(φ+m)

N

)〉〈
cos
(
θ̃i+1 − θ̃i

)〉]
,

(13)

where we have taken into account
〈

sin
(
θ̃i+1 − θ̃i

)〉
= 0

and decoupled fluctuations of the winding numberm and
reduced phases θ̃i. The latter describe harmonic fluctua-
tions that are similar to spin-wave theory for the equiv-
alent system of the two-component classical spins. Thus
one can use the known result for the XY classical spin
chain in one dimension,

〈cos(θ̃i+1 − θ̃i)〉 = 1− T

2J
. (14)

In a similar way, or just by I = ∂EJ/∂Φ, one obtains

I =
2πJ

Φ0

〈
sin

2π(φ+m)

N

〉(
1− T

2J

)
. (15)

At T � J phase slips changing m are exponentially
rare, and one can discard averaging in Eq. (15). For φ = 0
the ground state is m = 0, and the corresponding current
is zero. For φ = 1/2, there are two opposite I values
in the degenerate ground states m = 0,−1. Eq. (15)
is valid within time intervals between rare phase slips
0 
 −1. However, the large-time average of I is zero. To
the contrary, in non-degenerate cases, such as φ = 1/4,
there is a robust thermal average value of I.

At higher temperatures one has to take into account
thermal fluctuations of m that are especially pronounced
at large N since energy differences between states with
different m decrease with N (see Fig. 1b). Averaging
over m can be done by

I =
2πJ

Φ0

(
1− T

2J

)
1

Z

N−1∑
m=0

sin
2π(φ+m)

N
exp

(
−
E

(m)
J

T

)
,

(16)
where Z is the corresponding partition function and

E
(m)
J = NJ

[
1− cos

(
2π(φ+m)

N

)(
1− T

2J

)]
, (17)

c.f. Eq. (4). Harmonic corrections in this formula are
important in the intermediate temperature range for
N � 1, where m-fluctuations have to be taken into ac-
count but harmonic approximation still holds.

Equilibrium properties of the system can be computed
either by the Monte Carlo (Metropolis) routine for effec-
tive two-component classical spins si = (sin θi, cos θi).
Since at T � J equilibration of winding numbers m
becomes very slow, standard Monte Carlo routine us-
ing trial changes of directions of individual spins fails
to reach equibrium. However, adding trial changes of m
in the routine,

θi → θ
′

i ≡ θi +
2πm′(i− 1)

N
, 0 ≤ m′ ≤ N − 1 (18)

(one time before or after the full system update by in-
dividual rotations) makes the system equilibrate fast in
spite of energy barriers shown in Fig. 1.

Figure 2: Thermal averages of the current at φ = 1/4 for dif-
ferent N . Numerical results (symbols) are obtained by Monte
Carlo with m-jumps and analytical results (solid lines) are
those of Eq. (16). Dashed line is harmonic approximation,
Eq. (15) without angular brackets and with m = 0.

Thermal equilibrium values of the current for different
numbers of grains in the ring are shown in Fig. 2, setting
J = Φ0 = 1. Most of the numerical data were obtained
by Monte Carlo with trial m-jumps added, that allows to
reach equilibrium at any temperature. Analytical results
of Eq. (16) are in accordance with numerical data. In
experiment it can be difficult to reach equilibrium at low
temperatures because of energy barriers. The required
equilibration time can be estimated using our dynamical
results below.

IV. MAXWELLIZATION METHOD FOR
THERMODYNAMICS AND EQUILIBRIUM

DYNAMICS

While Monte Carlo is a mainstream method at equilib-
rium, it is not suitable for dynamical problems simply be-
cuase it is not based on real dynamics. We propose here
another numerical method for statics and equilibrium dy-
namics of classical systems having kinetic energy, such as
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arrays of Josephson junctions. In this method that we
call maxwellization, equations of motion, here Eq. (12),
are solved numerically over a long time interval (0, τmax)
divided into sub-intervals of length τ0 � τmax. At the
end of each sub-interval the momenta pi, having the
Maxwell distribution fp ∝ exp

(
−Jp

2

2T

)
with the average

kinetic energy T/2 per particle at equilibrium, are gen-
erated anew with another realization of the Maxwell dis-
tribution at the same temperature T , leaving the phases
θi unchanged. In such a way a statistical ensemble is cre-
ated in which the energy of the system is fluctuating. Ki-
netic energy is converted into potential energy during the
microscopic time τ ∼ 1, thus the whole system becomes
quickly thermalized. After a short thermalization time,
one can begin measuring physical quantities by averaging
the solution of the equations of motion over large times.
Maxwellization method works for both equilibrium and
dynamic problems. We have checked that maxwellization
yields the same results with τ0 ∼ 1 and τ0 � 1. Fig. 3
shows that thermal Josephson energies EJ obtained by
Monte Carlo are the same as obtained by maxwellization,
the accuracy and computer time being comparable.

Figure 3: Josephson energies EJ vs T , obtained by Monte
Carlo and by maxwellization.

Maxwellization resuls are also shown in Fig. 2 for N =
16 with τmax = 108. For larger N maxwellization can-
not reach equilibrium, similar to standard Monte Carlo
without m-jumps. Unlike Monte Carlo, maxwellization
cannot be extended to include m-jumps since it is based
on the realistic dynamics.

The background for the application of the maxwelliza-
tion method to equilibrium dynamics is the following.
Dynamics of underdamped systems of many supercon-
ducting grains that are considered throughout this paper
is predominantly internal and it is non-trivial enough to
generate phase slips. Small coupling to the bath only
slightly perturbs the dynamics and can be neglected. The
system serves as a bath for itself. In the underdamped
case one can use the microcanonical approach and aver-
age the energy-dependent phase-slip rate Γ(E), obtained

Figure 4: Time dependence of the current at φ = 1/4, show-
ing harmonic fluctuations and phase slips in states with two
different total energies E, generated at the same T .

Figure 5: Time dependence of the Josephson current at φ =
1/2, showing harmonic fluctuations and phase slips.

for the isolated system as explained in the next section,
over the energies satisfying the Gibbs distribution as fol-
lows

Γ(T ) =
1

Z

ˆ
dEρ(E)e−E/TΓ(E). (19)

Here Z is partition function and ρ(E) is the density of
states of the system, while E is energy per grain above
the ground-state energy. Γ(E) vanishes for E < B/N ,
where B is given by Eq. (7). For N � 1 the system
is above the barrier in a wide range of energies E and
can cross the barrier via its internal dynamics without
any help of the bath. Practically, instead of integrat-
ing with the poorly-known ρ(E), one can sample energy
states with the help of the Monte Carlo procedure for
phases θi and Maxwell distribution for their time deriva-
tives θ̇i (both being statistically independent for classical
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Figure 6: Microcanonical superconducting current transition
rate Γ(E) of a ring of N Josephson junctions in the half-fluxon
case.

systems), that is

Γ(T ) =
1

Nsamp

Nsamp∑
i=1

Γ(Ei), (20)

where Nsamp is the number of sampled states that has to
be large, especially at low temperatures.

The microcanonical method was applied at the early
stages of the work and it gave the results perfectly con-
sistent with those obtained by the maxwellization that is
nothing else than its computational improvement. The
computational difficulty with the microcanonical method
is that at low energies Γ(E) is very small and one needs
to run conservative dynamics over very large time inter-
vals to have a few phase slips. The numerical integration
method should be very accurate to avoid energy drift
that will spoil the results. In fact, in the present com-
putations energy corrections were introduced to ensure
conservation of the energy. To compute Γ(T ), the best
strategy is to pre-compute Γ(E) over a relevant range of
energies, build an interpolation function over these re-
sults, and than run Monte Carlo for Eq. (20).

The microcanonical method is working well and it
could be used as the main method in this project. How-
ever, the maxwellization method is more direct, robust,
and elegant. This method puts dynamics and statistics
into one. There is only one very long dynamical run, in
the course of which kinetic energies are re-assigned ac-
cording to the Maxwell distribution at regular intervals
τ0 � τmax. In this way, the statistical ensemble is being
built during the evolution of the system, closer to what
happens in reality. One does not need to strictly ensure
energy conservation in the numerical integration of the
equations of motion since the energy is changing anyway.
Results of the maxwellization method do not depend on
τ0 and are exactly the same as those obtained by the
microcanonical method.

Figure 7: Numerically computed transition rates Γ with Ar-
rhenius fits for transitions between opposite directions of the
current, corresponding to m = 0 and m = −1, for rings of
different length in the half-fluxon case.

V. DYNAMICS OF PHASE SLIPS:
NUMERICAL RESULTS

Typical time dependences of I obtained by solving the
equation of motion, Eq. (12), and using Eq. (11) for a
quarter-fluxon threading the ring are shown in Fig. 4
in states with two different dynamically conserved en-
ergies, generated at the same temperature. In this illus-
trative computation, no maxwellization has been done
to show that fluctuations of the current have mainly dy-
namic origin. Jumps correspond to the transitions (phase
slips) between different values of m indicated in the fig-
ure. Small fluctuations between phase slips are harmonic
excitations. Dynamical fluctuations of I are stronger in
the states with a higher energy. Due to the lack of sym-
metry (see Fig. 1a), there is a non-zero time average of
the current, shown in Fig. 2 as the maxwellization result
for N = 16.

In the half-fluxon case the energy is degenerate and the
current averaged over long times is always zero. I(τ) ex-
hibits jumps between opposite directions corresponding
to m = 0 and m = −1, on top of harmonic fluctuations
around these states, see Fig. 5 (also without maxwelliza-
tion). The rate of transitions between the opposite values
of I can be computed as Γ = Njumps/τmax, where Njumps

is the number of current jumps within the time interval
of length tmax.

Transition rate Γ(E) obtained from the conservative
evolution of the system is shown in Fig. 6. For large N
the results can be fitted with the Arrhenius energy de-
pendence. For smaller N , the curves deviate downwards
from straight lines since Γ(E) = 0 for E < B/N , as ar-
gued above. These results can be used to obtain Γ(T ) by
statistical sampling at the temperature T , see Eq. (20).
The results are in agreement with the results obtained
by the maxwellization.
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Figure 8: Thermal fluctuations of I at a half fluxon. (a)
Barrier energies B extracted from the fits of Γ in Fig. 7, com-
pared to their analytical values from Eq. (7). (b) Prefactor A
extracted from numerical data.

The results for Γ(T ) obtained directly by the
maxwellization, as explained in the preceding section,
follows the law Γ = A exp(−B/T ). This is shown for
closed chains of different length in Fig. 7 (in terms of the
dimensionless time τ with τmax = 108). Numerically ob-
tained exponents B(N) are in excellent agreement with
the analytical result given by Eq. (7), as one can see from
Fig. 8. The computed prefactor is well approximated by

A = 0.23(N − 3/2). Its proportionality to N at large
N agrees with the fact that the phase slip can occur at
any of the N sites of the chain. At higher temperatures,
T ∼ J , temporal behavior of the current becomes more
chaotic as it involves transitions between other values of
m as well.

VI. DISCUSSION

We have considered equlibrium and dynamic proper-
ties of Josephson-junction rings in the classical limit. It
was shown that for rings composed of many junctions,
N � 1, one has to take into account different values of
the winding numberm in the thermodynamics of the per-
sistent current caused by the magnetic flux piercing the
ring. Analytical results combining harmonic approxima-
tion with averaging over different m have been confirmed
by a Monte Carlo routine allowingm-jumps (phase slips).
Energy barriers for phase slips have been obtained ana-
lytically and shown to increase with N .

Numerical method of “maxwellization” for solving ther-
modynamic and equilibrium dynamic problems has been
developed and applied to JJ rings. This method is based
on real dynamics and it is suitable for computation of
quantities such as transition rates at a given tempera-
ture. In particular, we have obtained Arrhenius temper-
ature dependence of the inversion rate of the persistent
current at a half fluxon with the barrier given by our
analytical expressions.

By visualizing the temporal behavior of the current in
Josephson junction chains, our results provide guidance
for future experiments in this field. Similar numerical
approach can be tried to study open chains with a bias
current.
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