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Superconducting vortices and phase slips are primary mechanisms of dissipation in superconduct-
ing, superfluid, and cold atom systems. While the dynamics of vortices is fairly well described, phase
slips occurring in quasi-one dimensional superconducting wires still elude understanding. The main
reason is that phase slips are strongly non-linear time-dependent phenomena that cannot be cast
in terms of small perturbations of the superconducting state. Here we study phase slips occurring
in superconducting weak links. Thanks to partial suppression of superconductivity in weak links,
we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not
valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-
dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that
the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific
voltage-current dependence. Our analytical results are in good agreement with simulations.

I. INTRODUCTION

The motion of Abrikosov vortices is recognized as the
main cause of dissipation in type-II superconductors1.
Conversely, in thin nanowires, the motion of vortices is
impeded and phase-slip events are responsible for the
dissipation. Phase slips, changing the phase difference
of the superconducting order parameter by 2π, may be
caused by different physical mechanisms. Thermally ac-
tivated phase slips at high temperatures and small ap-
plied currents are well understood2. At very low tem-
peratures, phase slips can be caused by quantum fluctu-
ations (aptly called quantum phase slips)3–5. Phase slips
are not unique to superconductors, they also occur in su-
perfluid systems6–8, and more recently, dissipation due
to phase slips were studied in cold atom systems9–11. In
particular, phase slips can be triggered in a superfluid
cold atom system by a rotating weak link12.

Even without thermal and quantum fluctuations, the
phase slip phenomena and dissipative (or resistive) states
can be induced by an applied current13,14. Magnetic
field penetrates type-II superconductors in the form of
Abrikosov vortices. If an external current is applied, the
Lorentz force induces motion of the vortices. This motion
is the main cause of dissipation in 2D and 3D supercon-
ductors. However, in quasi-one dimensional nanowires
with the coherence length ξ(T ) and the penetration depth
λ(T ) large compared to the wire diameter, vortex mo-
tion is suppressed. In this situation the transition to
the normal state was made through successive voltage
jumps which are attributed to the appearance of phase
slip centers13,14. A study of this phenomenon was given
first by Kramer and Baratoff who found that slightly be-
low the depairing current, there is a dissipative state
which consists of localized phase slips occurring in the
superconducting filament15. In a narrow range of cur-
rents close to the depairing current, the material is su-

perconducting except in narrow regions where phase slip
centers (PSCs) occur. The period of these PSCs diverge
as the external current approaches the lower bound in
this narrow region. It was also shown that random ther-
mal fluctuations allow for phase slips16, but these did not
persist indefinitely. Further numerical study of the one-
dimensional time-dependent Ginzburg-Landau equation
revealed periodic phase slips existing in a narrow range
of currents close to the depairing current17,18. Follow-up
numerical studies of narrow two-dimensional supercon-
ducting strips discovered a transition from a phase-slip-
line to vortex pairs19. Periodic lattices of the phase slip
centers were studied in the context of vortex penetra-
tion in thin superconducting films near the third critical
magnetic field20. Using a saddle-point approximation for
the Ginzburg-Landau energy in narrow superconducting
strips, the dependence of voltage drop vs temperature
and bias current (neglecting thermal fluctuations) was
studied in [21].

The situation is different, however, for spatially in-
homogeneous systems, such as superconductors with
macroscopic defects or weak links22. Perhaps the most
famous examples are Dayem bridges and Josephson
junctions23,24. The mechanism for dissipation in these
cases is the quantum tunneling of Cooper pairs between
the two superconductors, which is caused by a phase
difference between the weakly-linked superconductors.
When the current is below some threshold jc, the phase
difference is fixed in time and a stationary supercon-
ducting state persists. Above this threshold, the solu-
tion exhibits oscillations, which lead to a finite voltage.
In a review paper by Ivlev and Kopnin, inhomogeneities
were analyzed, but in regards to the stability of the nor-
mal state25. Thus, their analysis involved currents much
closer to the GL critical threshold jGL = 2/

√
27. A lower

bound j1 at which the normal state was globally unsta-
ble (i.e. arbitrary small perturbation lead to instabil-
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ity of the normal state), and above which there was a
critical-sized perturbation which separated the normal
and superconducting states was estimated. Also, an up-
per critical current j2 such that the normal state was
absolutely stable for an external current j0 > j2 was
found. An inhomogeneity much smaller than the coher-
ence length, ξ(T ), was used and was approximated by a
δ function, simplifying the algebra. Here we consider a
more realistic situation for the type-II high-temperature
superconductors: an inclusion on the scale of ξ(T ). The
transition we are interested in analyzing, occurs between
the non-uniform superconducting state and the oscilla-
tory state with phase slips. Therefore, the steady state
and linearization in this paper are much more complex
then in analyzing the normal state. The authors of [26]
have shown experimental results of weak-links with non-
hysteric behavior.

The phase slip state of homogenous systems have re-
cently been analyzed in much greater detail27. Using
bifurcation analysis, Baranov et. al. extract the nor-
mal form of a saddle-node bifurcation when the current
is near the critical current. They then correctly deter-
mine the characteristic scaling law and show its agree-
ment with numerical simulations. The period diverges
in an infinite-period saddle-node bifurcation as j0 → jc.
These authors further expanded upon their analysis by
showing the important role that the material parameter
u plays in the type of bifurcation that can occur28 (u is
related to the electric field penetration depth). They ob-
served that for finite lengths and values of u above some
critical threshold uc2, numerical simulations showed hys-
teresis in the I-V curve. However, our work focuses on
analytical methods for the inhomogeneous system, which
as stated previously makes the steady state and lineariza-
tion to much more difficult to handle. We show that a
simplified system can be obtained through weakly non-
linear analysis and that this system contains the nor-
mal form obtained in [27] as the size of the weak link
shrinks to zero. We also demonstrate that in addition
to the infinite period bifurcation for small u, a hysteresis
exists in our system for large u values, similar to that
in Ref. [27]. However, in contrast to previous studies,
our reduced two-dimensional nonlinear system exhibits
evolution of periodic orbits and a transition between su-
perconducting and normal states that are not properly
captured by the one-dimensional model in Ref [27].

A work by Michotte et. al. in [29] have found that
the condition for PSCs to occur is based on the com-
petition between two relaxation times: the relaxation
time for the magnitude of the order parameter t|Ψ| and
the relaxation time for the phase of the order parame-
ter tφ. They observed that phase slips are possible only
when tφ < t|Ψ|. A linearized Eilenberger equation in the
dirty limit was studied, resembling a generalized TDGL
equation with additional parameters related to inelas-
tic electron-phonon collisions, which was first derived in
[30]. They derived an approximate critical current via
this equation and their results implied that there was

a finite maximal oscillation period for the order param-
eter. In contrast, for weak links all oscillation periods
diverged. The generalized GL equation used contained
an additional parameter γ characterizing relative super-
conducting phase relaxation time (for us, γ = 0). For
large γ values hysteresis was observed in the I-V curve.
On a qualitative level, the effect of increasing parameter
γ is similar to an increase in parameter u27. Correspond-
ingly, we observed hysteresis when u � 1. The authors
of [31] have done numerical analysis of a periodic array of
weak links using the generalized TDGL equation. They
showed I-V curves for different magnetic fields, however
no analysis of the divergence of the period of vortices was
presented.

We focus on a 1D superconductor, separated by a nor-
mal or weakly superconducting inhomogeneity. The com-
plete system is modeled by a spatially dependent critical
temperature Tc(x). The weak link is created by a lower
transition temperature inside an interval I = [−r, r],
which leads to a suppression of the order parameter.
Here r is the inclusion radius. Below some critical cur-
rent, this system relaxes to a stationary superconducting
state, but above it, the superconductor exhibits a finite
voltage with oscillatory behavior. Thermal fluctuations
are initially not considered in this model and therefore
does not cause a finite voltage in the superconducting
state. The Josephson junction analysis is not applica-
ble here. Indeed, since there is no dielectric contact be-
tween the two superconductor pieces, the phase should
always be the same, implying zero voltage. We will show
via simulations of the time-dependent Ginzburg-Landau
equation, that the oscillations in the voltage is caused
by phase slips in the center of the inclusion. The sys-
tem approaches this state via a saddle-node bifurcation
of two superconducting states, which occur at the critical
current (at a saddle-node bifurcation stable and unsta-
ble stationary superconducting states annihilate and a
periodic resistive state appears). The suppression of the
order parameter in and near the weak link allows us to
employ analytical methods in the vicinity of the critical
current. We derive a reduced two-dimensional system
governing the time evolution of the phase slip solution
and describe a sequence of transitions between supercon-
ducting and dissipative states.

The paper is organized as follows: section II describes
the model, section III deals with the stationary case
and estimates the critical current which is obtained from
the saddle-node bifurcation condition. Sections IV-VII
deal with the time periodic solutions, extracting a time-
dependent system via weakly nonlinear analysis and then
studying the simplified model to show that it exhibits the
same qualitative behavior. In section VIII, we interpret
our analytical results, show the correspondence to the
parameters of the superconductor and its effects on the
phase slip state. Finally, section IX gives closing remarks
and ideas for further study.
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II. GOVERNING EQUATIONS

The time-dependent Ginzburg-Landau equations (TD-
GLE) are obtained by minimization of the GL free
energy32. In the absence of a magnetic field this results
in

Γ

(
∂t + i

2e

~
µ

)
Ψ = a0ν(x)Ψ− b|Ψ|2 + Ψ +

~2

4m
∂2
xΨ,

(1)

where Γ, a0, b are phenomenological parameters that can
be found from the microscopic theory33, e,m are the elec-
tron charge and mass, µ is the scalar potential, and ν(x)
a spatially dependent linear coefficient modeling inhomo-
geneities in the system. Following Sadovskyy et al.34, we
define the +x direction be the direction of the external
current and obtain the following dimensionless form:

u(∂t + iµ)Ψ = ∂2
xΨ + [ν(x)− |Ψ|2]Ψ (2a)

with the total current j0

j0 = =(Ψ∗∂xΨ)− ∂xµ. (2b)

Here Ψ is the complex order parameter, satisfying |Ψ| = 1
in the purely superconducting state, and |Ψ| = 0 in the
normal state. The parameter u = Γ/a0τGL with time

τGL = 4πσλ2
0/c

2, λ0 =
√

mc2

8πe2ψ2
0

is the magnetic penetra-

tion depth (c the speed of light) and ψ0 =
√
a0/b is the

equilibrium value of the order parameter when spatial
variations are neglected, i.e., ν(x) = 1. The zero temper-

ature coherence length ξ0 =
√

~2

4ma0
is used for the unit

of length. For more details see [34].
We apply periodic boundary conditions for Ψ. Since µ

is on average an increasing function of x, there is neces-
sarily a discontinuity at the boundary. This is resolved
by making the following transformations:

Ψ = Ψ̃eiK(t)x (3a)

µ = −Ax+ µ̃. (3b)

Here, µ̃ is a periodic function in x. Essentially, we
are moving the growth of µ to the phase of Ψ. The
growth in K now does not affect the magnitude. In-
deed, this also allows us to rewind K through K →
K−(2π/∆x)bK∆x/2πc which will remove any error from
rapid phase oscillations34. Inserting this into (2a) gives

u[∂t+ix(∂tK−A)+iµ̃]Ψ̃ = (∂x+iK)2Ψ̃+[ν(x)−|Ψ̃|2]Ψ̃.

Setting ∂tK = A eliminates the linear term. Now insert-
ing this into (2b), we have

j0 = =(Ψ̃∗∂xΨ̃) + |Ψ̃|2K + ∂tK − ∂xµ̃.

Averaging this equation over space and noting that
〈µ̃x〉 = 0 results in an ordinary differential equation
(ODE) for K

∂tK +
〈
|Ψ̃|2

〉
K = j0 −=

〈
Ψ̃∗∂xΨ̃

〉
≡ jn.

For clearer notation, we now suppress the tildes, and we
arrive at our modified TDGLE

u(∂t + iµ)Ψ = (∂x + iK)2Ψ + [ν(x)− |Ψ|2]Ψ (4a)

µx = =(Ψ∗∂xΨ) + ∂tK + |Ψ|2K − j0 (4b)

jn = ∂tK +
〈
|Ψ|2

〉
K. (4c)

The integration domain is periodic with the period L.
For the numerical integration, we generally took L = 20
and u = 1, however this was relaxed to see if the qual-
itative behavior changed. We verified that increasing L
does not affect the results, however changing u can have
a large effect (see section VIII C). To make the analysis
simpler, we placed the weak link of length 2r symmetri-
cally at the origin in the interval I. The inclusion’s effect
enters through the term ν(x)Ψ defined by

ν(x) ≡

{
1, x 6∈ I
−C, x ∈ I

. (5)

Numerical analysis has shown that for L� r there exists
a critical current jc, which is a function of r that sepa-
rates the dynamics of this system. For j0 < jc, the sys-
tem goes to a stationary superconducting state, while for
j0 > jc the system exhibits a dissipative state represented
by periodic phase slips occurring in the center of the in-
clusion via a stable limit cycle. In the following sections,
we explain these results analytically. We first provide an
analytical approximation of the critical current. Next,
we extract a coupled two-dimensional nonlinear system
of ODEs from (2a) which describes qualitatively, the cor-
rect behavior for suitable choices of the coefficients of the
simplified system.

III. THE STATIONARY CASE j0 < jc

In the superconducting state with an applied current
of j0 < jc, it can be shown that µ = 0, (see appendix 1
for details). To proceed, we rewrite (2a) in terms of am-
plitude and phase of the order parameter, i.e., Ψ = Feiφ.
Inserting this into (2a) and (2b) gives for the stationary
equation

0 = ∂2
xF + [ν(x)− (∂xφ)2 − F 2]F (6a)

j0 = F 2∂xφ. (6b)

Plugging (6b) into (6a) gives the nonlinear ODE

0 = ∂2
xF + [ν(x)− j2

0F
−4 − F 2]F. (7)

A. Large C approximation

We now assume a large C approximation, that is, the
weak link strongly suppresses superconductivity in the
inclusion (i.e. C � j2

0F
−4). This allows us to neglect the

nonlinear term and obtain a first order approximation of
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the solution of (6). From this we notice that (6a) has
a first integral for both the inclusion domain and the
superconducting domain. Asymptotic analysis of the size
of these coefficients gives us a condition for jc given by

jc =
1

2
√
C
e−2r

√
C , (8)

for details see appendix 2. Setting C = 1, we have that

jc =
1

2
e−2r. (9)

Comparing this approximation with numerical simula-
tions, we see that the large C approximation with C = 1
is in good agreement with the numerical solution (see
Fig. 1). Thus, we derived that a weak link results in a
exponential suppression of the critical current as a func-
tion of the inclusion width 2r and strength C. A similar
result was obtained through a different method in Ref.
18. However, our method is appealing for the simple
generalization to multiple inclusions.

B. Multiple inclusions

Let r1, . . . rk be the radii of k inclusions in the domain.
We have k + 1 superconducting domains and k normal
domains, each with their own first integral constant. The
analysis from appendix 2 carries over and we expect the
inclusion domain’s first integral constant EIk to be ap-
proximately 0 for each k. This holds at the center of
each respective inclusion, which each give different crit-
ical currents. However, when one is no longer satisfied,
the system will no longer be satisfied and the global jc is
determined by the lowest local jc, which appears at the
longest inclusion:

jc ≈
1

2
e
−2 max

k
rk
. (10)

C. Linear stability analysis of the stationary state

Consider now a perturbation η of the stable state in
the form Ψ = (F + η)eiφ. Inserting this into (2a)-(2b)
and linearizing in η, we obtain with (6a) and (6b)

u∂tη = ∂2
xη +

(
ν − (∂xφ)2 − 2F 2

)
η+

i(2∂xφ∂xη + ∂2
xφη − uFµ)− F 2η∗

0 = =(F∂xη + 2iF∂xφη + ∂xFη
∗)− ∂xµ.

r
0.5 1 1.5 2 2.5 3

j c

10-3

10-2

10-1

100

One inclusion (simulation)
Two inclusions (simulation)
One inclusion (theory)
Two inclusions (theory)

FIG. 1. The critical current as a function of inclusion size
using (9) (e.g. C = 1 with (8)). For the two inclusions,
one inclusion is held fixed at r = 2. Above the curves the
superconducting order parameter Ψ oscillates.

Separating η(x, t) = (U + iV )eλt we obtain the following
system (here λ is the growth rate)

0 = ∂2
xU +

(
ν − (∂xφ)2 − 3F 2 − λ

)
U−

(2∂xφ∂xV + V ∂2
xφ)

(11a)

0 = ∂2
xV +

(
ν − (∂xφ)2 − F 2 − λ

)
V+

(2∂xφ∂xU + U∂2
xφ)− uFµ

(11b)

∂xµ = F∂xV − V ∂xF + 2FU∂xφ. (11c)

This system along with (6a)-(6b) represents a 7 dimen-
sional boundary-value eigenvalue problem which must be
solved with appropriate boundary conditions. First, we
note from (6a) that replacing x → −x leaves the dif-
ferential equation unchanged. This with the reflection
symmetry implies that F is an even function in x. This
symmetry implies from (2b) that ∂xφ and ∂xµ are even
in x. Thus x → −x changes Ψ → Ψ∗. The action
of this must be retained in the linearization implying
that η(−x) and η∗(x) are both solutions. Hence U is
even and V is odd in x. Furthermore, by symmetry it
suffices to solve the equations only on the half interval
(0, L/2) with the obtained natural boundary conditions
from symmetry and the remaining conditions to be found
by matching-shooting algorithm. To solve this we used a
technique developed in20,35. In order to do so, we used
a numerical matching-shooting solver for ODEs by be-
ginning with a small domain (typically L ∼ 3). We
extracted the appropriate shooting boundary conditions
and approximation for λ and used these as guesses for a
larger system size. Iterating this process, we continued
to L sufficiently large until the boundary conditions and
λ were not changing significantly. The results are plotted
in Fig. 2. We note here that jc ≈ 0.0637 obtained by the
solver is only 6% away from the value obtained through
direct numerical solution of the Ginzburg-Landau model.
The step size used in the dynamic simulations were much
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larger (∆x = 0.05 compared to shooting solver with
∆x = 0.001) and each had an associated numerical error.
Therefore, jc ≈ 0.0637 is more accurate. We checked if
the error is independent of the solvers by analyzing the
dynamic simulations jc as a function of ∆x in appendix
3. We found that as ∆x → 0, we approached a similar
value to that found from shooting. Thus, from Fig. 2
one sees that at the critical current, when stable (λ < 0)
and unstable (λ > 0) solutions merge and annihilate, the
corresponding linear system becomes degenerate. At the
critical point it possesses two zero eigenvalues λ1,2 = 0.
This degeneracy is taken into account through weakly
nonlinear analysis.

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x [ξ]

(a) |Ψ|
U
V
10µ

|Ψ
(0

)|

0.15

0.2

0.25

0.3
(b)

j0
0.058 0.059 0.06 0.061 0.062 0.063 0.064

λ

-0.1

0

0.1 (c)

FIG. 2. (a) Amplitude |Ψ| and linearized solutions U, V, µ
with j0 = 0.061, r = 1. plots (b) and (c) shows the value
of |Ψ(0)| and location of the smallest eigenvalue respectively,
for stable (solid line) and unstable (dashed line) solutions of
eqs. (7), (11a)-(11c) for varying current. At the critical cur-
rent the stable and unstable stationary (i.e. superconducting)
solutions merge and annihilate.

IV. ANALYSIS OF TIME-PERIODIC
SOLUTIONS FOR j0 > jc

When the current is above the critical threshold, the
above analysis breaks down. Numerical simulations in-
dicate that the superconductor exhibits oscillations in
the order parameter, where phase slips are now present
(i.e. |Ψ(0, t)| = 0 for some t). In figure 3 we have
estimated the period of oscillation T as a function of
j0 − jc � 1. Numerical simulations indicate that the
period T ∼ O(|j0 − jc|−1/2), which is indicative of an
infinite-period bifurcation (IPB) at the point j0 = jc.
In general for a bifurcation parameter R (e.g. current
j) the period of oscillations T ∼ O(|R − Rc|−1/2) for
|(R/Rc)− 1| � 1 for an IPB36. We can see from figure 3
that an IPB is occurring at the critical value. In section
VIII C, we show that for u� 1, we also observe hystere-
sis, behavior which is typical of a homoclinic bifurcation,
a different mechanism through which a limit cycle can be
destroyed36.

(R - Rc)-1/2
0 50 100 150 200

T

0

100

200

300

400

500

600

700
Simplified system
TDGL equation

FIG. 3. IPB analysis with L = 20 and r = 1. The critical cur-
rent jc ≈ 0.067 was obtained via stable state calculation from
Section II. The simplified system derived in section VII from
weakly nonlinear analysis at γ = −0.13 with cIP ≈ −0.565
also exhibits an IPB. As expected, period T ∝ 1√

R−Rc
near

the bifurcation point in both cases. Here R is current j in the
TDGLE and parameter c in the simplified system.

Figure 4 shows time-voltage curves for j0 > jc. One
clearly sees the period diverging as we approach the crit-
ical value. To calculate the current-period relationship,
we ramped the current from an initial amount (typically
jinit < jc). If the system was stationary for a certain
number of iterations, we increased the current. Once the
system started oscillating, we calculated peaks in voltage,
while skipping the first few to account for system equili-
bration. Then we averaged over the remaining peaks to
obtain the period. We then used linear extrapolation to
find the new current. For example, at the nth step, we
have the current jn and corresponding period Tn. Let
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V

0
0.005
0.010
0.015 (b)

t [τGL]
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V

0
0.005
0.010
0.015 (c)

V

0
0.005
0.010
0.015
0.020

(a)

FIG. 4. Plots (a)-(c) show dependence of voltage vs time
above the critical current where j0 = 1.045jc, j0 = 1.015jc
and j0 =

(
1 + 10−6

)
jc, respectively and jc ≈ 0.067. System

size L = 20, with an inclusion r = 1 in the center.

mn = ∆Tn/∆jn, then suppose we want to find the cur-
rent corresponding to a new period Tn+1 = (1 + α)Tn,
with α > 0. This is given by jn+1 = jn + αTn

mn
. Figure 5

shows a similar period divergence of the oscillations of Ψ
and the simplified model (see section VII).

V. WEAKLY NONLINEAR ANALYSIS

We now extract a coupled ODE system, which exhibits
two dynamical possibilities. In the case j0 < jc, we show
that the stationary (fixed) solution is stable, while in the
opposite case, a stable limit cycle exists. It is of course
possible that a bistability region can exist, which would
lead to hysteric effects. Such effects have been observed
in homogeneous superconductors19,27,28. For large u, we
have also observed hysteric I-V curves and we show that
our extracted system contains both possibilities. The
process is standard and is broken into these steps:

• Find stationary (basic) state Ψ0 = Feiφ (it is al-
ready shown in Fig. 2)

• Perturb solution and solve linearized system.

• Extract weakly nonlinear effects from orthogonality
condition.

• Show that certain conditions allow for a stable limit
cycle to exist.

Though standard, the difficulty in this problem is that
the basic state and linearization cannot be solved in
closed form. Though we can approximate it to a certain
degree, its region of validity is dependent on the radius
of the inclusion r, the current j0 and to a smaller extent,
the system size L. Indeed, it is impractical to obtain
it numerically since the solutions are sensitive to these

|Ψ
(0

)|

0  

0.1

0.2
(a)

|Ψ
(0

)|

0  

0.1

0  
(b)

t [τGL]
0 100 200 300 400 500 600 700

|Ψ
(0

)|

0  

0.1

0  
(c)

x

-10
-5
0
5 (d)

x

-10
-5
0

(e)

t
0 100 200 300 400 500 600 700

x

-10
-5
0

(f)

FIG. 5. Plots (a)-(c) show dependence of |Ψ(0)| vs time above
the critical current where j0 = 1.045jc, j0 = 1.015jc and
j0 =

(
1 + 10−6

)
jc, respectively and jc ≈ 0.067. System size

L = 20, with an inclusion r = 1 in the center. Plots (d)-
(f) correspond to the simplified system Eqs. (16) where γ =
−0.13 with cIP ≈ −0.565 is the IPB threshold, with c =
0.955cIP, c = 0.985cIP and c =

(
1− 10−5

)
cIP.

choices. However, our analysis will assume that these
are all known a priori and proceed through the frame-
work. The simplified system is then obtained generally,
and we show that the system exhibits the appropriate
behavior for certain values in parameter space.

We expand Eqs. (4a)-(4c) near the stationary solution
and near the critical point j0 = jc + ε with ε � 1. The
first order solution will be given by Ψ0 = Feiφ (since
K = 0, there is no electric potential in the super con-
ducting state), in fact the initial transient would show

exponential decay of K → e−〈|Ψ|
2〉t and so µ = 0 as ex-

pected. Let Ψ = (F + η)eiφ, where η, and time will now
both slowly vary and be controlled by a small parameter
0 < δ � 1, whose size will be related to ε. The proper
scaling will be determined from the ODE for K. Based
on numerical simulations, we assume K = O(δ2). We
claim that we may regard K as constant in the relevant
order of the perturbation method by the following argu-
ment. The perturbation η at first order is highly localized



7

inside the inclusion and from this we argue that

〈|Ψ|2〉 =
1

L

∫ L

0

F 2 + 2F (η + η∗) +O(η2) dx

≈ 1− j2
0

L
(L− r) +

1

L

∫ r

0

F 2 + 2F (η + η∗) dx

≈ 1− j2
0 +O

( r
L

)
.

For L � r, we can regard 〈|Ψ|2〉 as a constant. In a
similar way all averaged quantities in the voltage equa-
tion can be neglected in the large superconductor domain
limit. This analysis shows that the time-dependence of
the voltage is slaved to the behavior of the order param-
eter Ψ. Therefore, we set K to a constant by

K =
ε

1− j2
0

+O
( r
L

)
. (12)

From this, we extract the relation ε = αδ2 where α = ±1.
The linearized system at ε = 0 has a degenerate eigen-
value as was shown previously in Fig. 2. Therefore we
expand η(x, τ) = A(τ)η1(x) +

√
δ[B(τ)η2(x) +z1(x, τ)] +

δz2(x, τ) where Lη1 = 0, Lη2 = η1 and L is the linear
operator from (11). Using orthogonality conditions, we
arrive at the coupled system

uAτ = B + c1A
2

uBτ = c2AB + c3A
3,

(13)

where the coefficients ck can be found through evaluating
the integrals (see appendix 4). We will show in section
VI why we chose to not include the constant K at this
order. The general behavior is only captured correctly at
ε = 0. When ε 6= 0 (i.e. K 6= 0) we do not see a saddle-
node bifurcation. To correct for this deficiency, higher
order terms will be included. However, we can still gain
some insight by analyzing this simplified system first.

VI. DYNAMICAL SYSTEM ANALYSIS

We begin with (13) by making a dimensionless system
to analyze it more easily. We introduce the dimensionless
variables

x =
A

LA
, Y =

B

LB
, t′ =

t

uLt
.

Inserting this into the system and defining the character-
istic variables

LA =
1

c2Lt
, LB =

1

c2L2
t

,

we arrive at the dimensionless system

Ẋ = Y + aX2

Ẏ = XY + bX3,
(14)

where a ≡ c1/c2 and b ≡ c3/c
2
2. The characteristic scale

for time is arbitrary and is a consequence of the degen-
eracy in the system. The culprits are the X2 term and
XY terms whose combination of characteristic scales si-
multaneously vanish.

A. Fixed points and stability

There is only one fixed point located at the origin,
provided that a 6= b. In this case there is a family of
non-isolated fixed points along the parabola Y = −aX2,
however this case is not physical so we omit it. Next, we
note the symmetry t→ −t and X → −X of (14), which
implies that the linearized center located at the origin
is robust. We wish to see if this system exhibits closed
orbits. The system is conservative if a = −1/2. In this
case, a first integral can be obtained

H(X,Y ) =
1

2
Y 2 − 1

2
X2Y − 1

4
bX4.

This has closed orbits provided that b < −1/2. So now
that we have established the existence of closed orbits,
we seek to gain insight if a 6= −1/2. We replace Y via
the transformation

Y =
U

2a+ 1
− aX2,

and rescale X → X
2a+1 and obtain

Ẋ = U (15a)

U̇ = UX +
b− a

(2a+ 1)2
X3 ≡ UX + γX3. (15b)

This leaves us with one independent parameter γ. We
have already analyzed the case where a = −1/2 which,
if b < −1/2 corresponds to γ → −∞ and has a family
of closed orbits. If b > −1/2 then γ → ∞ and we know
this does not have closed orbits. Therefore, there must
be some critical value of γ where this behavior changes.
We seek a solution of (15) of the form X = C̃t−1 with C̃
to be determined. Plugging this into the equation gives
the condition

C̃ =
1±
√

1 + 8γ

2γ
.

These two solutions form a saddle-type connection only
when they are equal which occurs at γc = −1/8 or in the
original coefficients

bc = −1

8
(2ac − 1)2.

This critical curve separates closed orbit solutions in
the (a, b) parameter space. We have shown that the
simplest (first order) system obtained, demonstrates a
saddle-type infinite period bifurcation, however this cre-
ates an infinite family of closed orbits and a unique sta-
ble limit cycle is not obtained. The bottleneck is created
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FIG. 6. Plots (a)-(c) represent the solutions to (15) in the
phase plane (X,Y ) with γ = −0.25,−0.15,−0.13, respec-
tively. There is a dimple near the origin where the trajec-
tories are being squeezed down due to the homoclinic orbit at
γc = −1/8. In plot (d), we display this dimple as a function
of γ by taking 150 initial conditions and taking the average
maximum.

near the origin (see Fig 6). Additionally, it does not
have a saddle-node bifurcation which we expect to occur
at j0 = jc. We note also that introducing K at this or-
der, which adds a nonzero constant term to the second
ODE would still only have one fixed point and a con-
stant at this order would destroy the degeneracy (and
also any closed orbits) in a degenerate Hopf-type bifur-
cation when that constant crosses through zero. This
should be corrected by including the next higher order
cubic terms which will saturate and force the system to
select one unique closed orbit.

The bottleneck created near the emergence of the
saddle-node bifurcation is apparent in both the physi-
cal and simplified system (see figure 5). Note that the
time scales need not be the same and careful treatment
of the parameters in the simplified system (see section
IV) would lead to the relation between the GL time and
the time scale of the simplified system.

VII. FULL DYNAMICAL SYSTEM

We modify the system to include the next order cu-
bic terms. In principle, we could obtain the next order
terms by continuing the perturbation expansion, how-
ever, we chose to include the generic next higher order
terms X3, X2Y,XY 2, and so on. We then found that
the removal of some cubic terms e.g. XY 2, Y 3 slightly
shifts the transitions boundaries but does not qualita-
tively change the bifurcation sequence. Therefore, we

chose to keep the following system for our analysis:

Ẋ = Y + aX2 + w1X
3 (16a)

Ẏ = XY + bX3 + c+ w2X
2Y, (16b)

where we have introduced the new coefficients c, w1, w2.
We will enforce w1, w2 < 0 to ensure the phase flow can-
not escape to infinity, which would be a nonphysical state
for this system.

A. Analysis

The fixed points cannot be found analytically in gen-
eral since the equation involves a quintic polynomial. In-
stead we look to find the two critical curves which corre-
spond to our system. We wish to find a saddle-node bi-
furcation curve and an infinite-period bifurcation as the
current is varied. The saddle-node bifurcation involves
the merging and annihilation of the stable and unstable
stationary solutions. An infinite-period bifurcation is a
saddle-node bifurcation which occurs on the limit cycle
in the phase plane36.

We first find the fixed points of (16). Using (16a),
we obtain Y ∗ = −(X∗)2(a + w1X

∗), which leads to the
quintic equation

f(X) ≡ w1w2X
5 + (w1 + aw2)X4 + (a− b)X3 − c = 0.

A saddle-node bifurcation occurs provided that f(X∗) =
f ′(X∗) = 0. The curve exists only if X∗ is real which
leads to the requirement that

b ≥ a− 4(w1 + aw2)2

15w1w2
.

To motivate our choice of parameters, we write this in
terms of γ

γ ≥ − 4w1

15w2

( w2

w1
a+ 1

2a+ 1

)2

.

If we set w2 = 2w1 we can eliminate a from the depen-
dence on γ. Thus, we have that the saddle-node bifurca-
tion exists only if γ ≥ − 2

15 .
Writing the quintic now with a = −1 allows us to cast

the quintic function solely in terms of w1, γ and c.

2w2
1X

5 − w1X
4 − γX3 − c = 0.

The saddle node bifurcation then occurs along the curve

cSN(X∗) =
1

5
(X∗)3

[
2γ + w1(X∗)2

]
,

where X∗ is given by

X∗ =
1±

√
1 + 15

2 γ

5w1
.
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The Jacobian of this system is

J =

[
2aX∗ + 3w1(X∗)2 1

Y ∗ + 3b(X∗)2 + 2w2X
∗Y ∗ X∗ + w2(X∗)2

]
.

A necessary condition for a Hopf bifurcation to occur is
for a (un)stable spiral to change stability. This occurs
when the trace of the Jacobian τ = X∗[2a+ 1 + (3w1 +
w2)X∗] = 0 and the determinant ∆ > 0. For our analysis
this implies that X∗ = 0 or X∗ = (5w1)−1. Of course
our fixed point X∗ must also satisfy the quintic equation.
Inserting this gives a necessary condition and curve in
(γ, c) space for a Hopf bifurcation

cHopf = − 1

125w3
1

(
γ +

3

25

)
, or cHopf = 0.

The determinant is

∆ = − 1

125w2
1

(2 + 15γ).

Thus, the first Hopf bifurcation curve exists only when
γ < −2/15. The second Hopf bifurcation is more compli-
cated since ∆ = 0 and so nonlinear terms are important.
The existence of that curve was found numerically.

B. Phase Diagram

In general, this system has many different ways in
which a limit cycle is destroyed. Numerical experiments
indicate that this can occur via a Hopf, cycle bifurca-
tion, infinite period or homoclinic bifurcation. Slightly
changing the parameters can change which bifurcation
we obtain. From the preceding section, we motivated the
choices w1 = −0.05, w2 = −0.1, a = −1 to keep our pa-
rameter space (γ, c). This leads to a generalized phase
diagram of section VI. The Hopf and saddle-node bifur-
cation curves of figure 7 were obtained analytically. The
IPB curve cIP = cIP(γIP) was found numerically and for
comparison is compared to the observed physical limit cy-
cle in figures 3 and 5. Additionally, it was found numeri-
cally that the HB in region III, did not exhibit the birth
of a stable limit cycle. Possible trajectories of the su-
perconductor through this phase diagram is shown with
purple lines.

A more generic phase diagram with w2 6= 2w1 is given
in figure 8. Here, both an IPB and homoclinic bifurcation
can destroy the limit cycle. The existence of the homo-
clinic bifurcation changes the morphology of the phase
diagram to now include a bistability region in which the
limit cycle (phase slips) and fixed point (superconduct-
ing state) coexist. This is particularly encouraging since
we also found hysteresis for u � 1 (see section VIII C).
Possible trajectories of the superconductor through this
phase diagram is shown with purple lines.

γ
-0.135 -0.13 -0.125 -0.12

c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

I (phase slips)

II (normal)

II

III (superconducting)r
j

FIG. 7. Phase diagram with a = −1, γ = b+ 1, w1 = −0.05,
w2 = −0.1. There is a stable limit cycle, i.e. periodic phase
slips, (green) only in region I. Region II has one stable fixed
point and region III has three fixed points. The saddle-node
bifurcation (SNB) is boundary of the superconducting region.
There is an IPB occurring along the yellow line. Possible
trajectories in phase space are mapped with purple lines and
the dashed yellow line corresponds to increasing r. Note that
this phase diagram does not have a bistability region (with
u� 1, we observed hysteresis, see section VIII C).

VIII. DISCUSSION

A. Sensitivity to temperature

To test the sensitivity of these phase slips to small
thermal noise we modified (4) to include a small random
noise term uniformly distributed between [−Tf , Tf ] at
each point in space. Numerical simulations indicate that
the system is stable to small fluctuations. The qualitative
change is the existence of finite voltage in the supercon-
ducting state, however the critical current at which phase
slips begin is unchanged.

B. Effect of parameter u

The parameter u characterizes the penetration of the
electric field. In homogeneous wires, it has been found
that hysteresis of the phase slip state exists for finite do-
mains with u � 128. We analyzed u = 0.01, 1, 10, 100
with L = 20 and r = 1 (see figure 9). Another impor-
tant quantity not yet discussed is that of the retrapping
current jr. The authors of [28] discuss the effect of u, nu-
merically simulating the GL equation and finding a curve
separating the hysteresis region of the I-V curve through
some length dependent critical curve uc2(L). For our
simulations of weak links, u small (for r = 1, u < 30 is
small enough), jr = jc. However for u� 1, jr < jc, this
leads to hysteresis in the I-V curve (see figure 10).
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FIG. 8. Phase diagram with a = −1, γ = b+ 1, w1 = −0.09,
w2 = −0.08. There is a stable limit cycle (green) in region I.
Region II has one stable fixed point and region III has three
fixed points. Region IV is a bistability region where a limit cy-
cle and distant attractor coexist. The limit cycle is destroyed
along the yellow line via a homoclinic bifurcation (a saddle
point moving towards the limit cycle), and the dashed yellow
line corresponds to increasing u. This homoclinic bifurcation
line eventually merges with the SNB line (boundary of region
III) and becomes an IPB (similar to Fig. 7).
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0
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0.006
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0.012
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FIG. 9. I-V curve with different u = 0.01, 1, 10, (color on-
line). The critical current does not change, however the slope
as j0 → jc increases as u → 0. Additionally, jc = jr (the
reentrance current) for all u shown (no hysteresis).

C. Physical quantities in simplified system

The phase diagram is in (γ, c) space. We can relate
the important physical quantities u, r, j0, L to γ, c by us-
ing appendix 4. The coefficient c is strongly affected by
the parameter u and the current j0. Consider j0 < jc
and u → 0, then we know that there is no voltage (i.e.

j0
0.06 0.061 0.062 0.063 0.064 0.065 0.066 0.067 0.068

 <
V>

x10-3

0

0.5

1

1.5

2

2.5
jr jc

FIG. 10. I-V curve for u = 100. Hysteresis is present, the
saddle-node bifurcation still occurs at jc ≈ 0.067, however
jr ≈ 0.0614 below which the superconducting state reappears.

K = 0), and α = −1. This implies that c ∼ −uζ2

for some ζ(r, j0, L) for small u. At a significantly large
enough u we expect our initial trajectory to begin from
a region in figure 8 where hysteresis is possible. Increas-
ing the current j0 > jc switches α = 1 and K 6= 0, as
j0 continues to increase, F decreases and we expect c to
change sign as we continue to increase it, which explains
our motivation for the direction of trajectories. Increas-
ing r lowers jc and so we expect the trajectories to spend
more time in the phase slip state, which leads us to expect
that c decreases. A similar argument, leads us to assume
the same holds for γ (see figure 7 and 8). The effects
on γ are more complicated for the current and probably
non-monotonous in a general case. From physical argu-
ments we know that the trajectories must begin in the
superconducting state and move into the phase slip state
via either an IPB or homoclinic bifurcation. Comparing
this to the phase diagrams, we see that as j0 increases,
γ must decrease. We also attempt to justify this from
the terms in appendix 4. We consider the scaling from
section VI, which implied b = c3/c

2
2. We noted that F

is decreasing as j0 increases (where F ′ is relatively un-
changed). Again, employing appendix 4, we see that c3
is decreasing with the current since the positive terms
involve F and the negative terms involve F ′. Finally we
use the fact that b = c3/c

2
2 to deduce that b must be de-

creasing and since γ = (b− a)/(2a+ 1)2, we see that γ is
also decreasing with the current.

IX. CONCLUSION

We have considered a weak-link superconductor qual-
itatively similar to other weak-link systems, but funda-
mentally different in mechanism. We demonstrated the
existence of a superconducting state and a PSC periodic
state separated by a critical current jc. This current was
calculated asymptotically and agrees very well with nu-



11

merical simulations. We then extracted a coupled ODE
system from the TDGL equations using weakly nonlin-
ear theory and showed under certain choices of parame-
ters, an infinite period bifurcation and homoclinic bifur-
cations can occur. This demonstrates that the dynam-
ics of phase-slip behavior in weak links described by the
TDGL equations can be correctly captured by a simpler
system of two coupled ordinary differential equations.

Further research is to extend this analysis to two di-
mensions. We anticipate additional transitions from
phase slips occurring instantly inside the weak link to a
more complicated dynamic regime involving phase slips
and nucleation of vortex pairs, similar to that in [19].
Another interesting generalization is to include disorder
in the transverse direction inside the weak link. Possibly,
some of the vortices will be pinned in the weak link. It
may. in turn, lead to further suppression of the critical
current.

The work was supported by the Scientific Discov-
ery through Advanced Computing (SciDAC) program
funded by U.S. Department of Energy for computations.
The Office of Science, Advanced Scientific Computing
Research and Basic Energy Science, Division of Mate-
rials Science and Engineering for analysis.

X. APPENDIX

1. No voltage in the superconducting state

We begin by multiplying (2a) by Ψ∗ and we differen-
tiate (2b) with respect to x. This gives

u(i|Ψ|2µ+ Ψ∗∂tΨ) = Ψ∗∂2
xΨ + [ν(x)− |Ψ|2]|Ψ|2 (17)

0 = =(Ψ∗∂2
xΨ)− ∂2

xµ. (18)

Taking the imaginary part of (17) and substituting this
result into (18), we obtain

∂2
xµ− u|Ψ|2µ = u=(Ψ∗∂tΨ). (19)

Far from the inclusion, all the applied current is super-
current and so if L� r, we expect j0 = =(Ψ∗∂2

xΨ|)x=±L,
which implies that ∂xµ(±L) = 0. Multiplying (19) by µ
and integrating over the domain gives∫ L

−L

[
(∂xµ)2 + u|Ψ|2µ2

)
dx = µ∂xµ

∣∣∣∣L
−L

+u

∫ L

−L
=(Ψ∗∂tΨ) dx.

Noting the boundary conditions for µ and the fact that
∂tΨ = 0 (stationary state), we see that µ ≡ 0.

2. Critical current calculation

We separate (7) by region (superconducting vs. nor-
mal metal) and then take the first integral to obtain the

equations

ES = (∂xF )2 + F 2 + j2
0F
−2 − 1

2
F 4, x 6∈ I (20)

EI = (∂xF )2 − CF 2 + j2
0F
−2 − 1

2
F 4, x ∈ I. (21)

Now, far from the inclusion (near the boundary of the
superconductor), F → F∞ a constant. Assuming the
relevant approximation that j0 � 1, we see that F 2

∞ ≈
1− j2

0 . Inserting this into (20), implies that ES ≈ 1
2 + j2

0 .

We now use the large C approximation that C � j2
0F
−4.

Proceeding, we obtain

FI(x) = K1e
(|x|−r)

√
C ,

where we have introduced the radius r of the inclusion.
Solving the outer region at first order is given by

FS(x) = tanh

(
|x| −K2√

2

)
.

The two constants are determined by the continuity con-
ditions at the boundary of the inclusion. By symmetry,
we may analyze just one side of the boundary, then our
conditions are

K1 = tanh

(
r −K2√

2

)
(22a)

K1 =
1√
2C

sech2

(
r −K2√

2

)
. (22b)

Solving for K1 and K2, we obtain

K1 =
1√
2C

+O

(
1

C

)
(23a)

K2 = r − 1√
C

+O

(
1

C

)
. (23b)

Note the identity ES − EI = (1 + C)F 2(r) ≥ 0. This
implies that

EI ≈ j2
0 −

1

2C
� 1.

Motivated by this, we assume that EI is a small param-
eter. At first order then EI = 0 and looking at x = 0 we
see that

EI = 0 = −CF 2(0) + j2
0F
−2(0)− 1

4
F 4(0),

where the derivative has vanished by symmetry. Since F
is small in the inclusion, the last term can be neglected
and we are left with j0 ≈

√
CF 2(0). This leads to Eq.

(8).

3. Numerical analysis of jc

To analyze the error associated with calculating jc nu-
merically, we took L = 20 and varied ∆x. The results
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FIG. 11. Convergence of jc as a function of ∆x. As ∆x→ 0,
jc approaches the true value. Dynamic simulations took place
with ∆x = 0.05.

are shown in figure 11. Assuming the error is linear, we
extrapolate the critical current to be jc ≈ 0.06366, which
is in excellent agreement with the linear system solved
using the shooting method with ∆x = 0.001. For fixed
∆x = 0.05, we measured the sensitivity of L on jc and
found no significant change for L � r (typically L > 5r
was sufficient).

4. Weakly nonlinear calculation

To obtain the weakly nonlinear system, we analyze
near j0 = jc+ε where |ε| � 1. Linearizing about the base
state near ε = 0 with Ψ = (F + η)eiφ. From before, we
saw that ε = 0 leads to a degenerate zero eigenvalue im-
plying that the linearized system has a generalized eigen-
vector solution where Lη1 = 0 and Lη2 = η1. We use

Ansatz η = Aδη1 + δ2B(η2 + z) + δ3ζ where ηk =

(
Uk
Vk

)
and ε = αδ2. Inserting this into (4a)–(4c) with the aid
of mathematica and obtain at first order the ODE for A

Lz = uη1∂τA−

 BU1 −A2
[
F (3U2

1 + V 2
1 ) + uV1

∫ x
−L/2(F ′V1 − FV ′1 − 2Fφ′U1) ds

]
BV1 −A2

[
uU1

∫ x
−L/2 FV

′
1 − F ′V1 + 2Fφ′U1 ds+ F

(
2U1V1 + u

∫ x
−L/2{φ

′(U2
1 + V 2

1 ) + U1V
′
1 − U ′1V1} ds

)] .

At next order, we obtain the ODE for B (where we have already projected onto the eigenvector)

u∂τB〈U†1 , U2〉 =

〈
U†1 , A

3

{
uV1

∫ x

−L/2
[φ′(U2

1 + V 2
1 ) + U1V

′
1 − U ′1V1] ds− U3

1 − U1V
2
1

}
− 2KFφ′ +

AB

[
uV2

∫ x

−L/2
(2Fφ′U1 + FV ′1 − F ′V1) ds− uV1

∫ x

−L/2
(2Rφ′U2 + FV ′2 −R′V2) ds− 2R(3U1U2 + V1V2)

]〉

u∂τB〈V †1 , V2〉 =

〈
V †1 ,−A3

{
U2

1V1 + V 3
1 + uU1

∫ x

−L/2
[φ′(U2

1 + V 2
1 ) + U1V

′
1 − U ′1V1] ds

}
−

AB

{
U2

[
2FV1 + u

∫ x

−L/2
(FV ′2 − F ′V2 + 2Fφ′U2) ds

]
+ U1

[
2RV2 +

u

∫ x

−L/2
(FV ′2 − F ′V2 + 2Fφ′U2) ds

]
+ uF

∫ x

−L/2
[U2V

′
1 − V2U

′
1 + U1V

′
2 − V1U

′
2 + 2φ′(U1U2 + V1V2)] ds

}
+K

(
2F ′ − uF

∫ x

−L/2
F 2 ds

)
+ uαxF

〉
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