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Fully gapped two-dimensional superconductors coupled to dynamical electromagnetism are known
to exhibit topological order. In this work, we develop a unified low-energy description for spin-singlet
paired states by deriving topological Chern-Simons field theories for s-wave, d + id, and chiral
higher even-wave superconductors. These theories capture the quantum statistics and fusion rules
of Bogoliubov quasiparticles and vortices and incorporate global continuous symmetries - specifically,
spin rotation and conservation of magnetic flux - present in all singlet superconductors. For all such
systems, we compute the Hall response for these symmetries and investigate the physics at the edge.
In particular, the weakly-coupled phase of a chiral d + id chiral state has a spin Hall coefficient
vs = 2 and a vanishing Hall response for the magnetic flux symmetry. We argue that the latter is
a generic result for two-dimensional superconductors with gapped photons, thereby demonstrating
the absence of a spontaneous magnetic field in the ground state of chiral superconductors. It is also
shown that the Chern-Simons theories of chiral spin-singlet superconductors derived here fall into
Kitaev’s 16-fold classification of topological superconductors.

I. INTRODUCTION

Topological order is a cornerstone of contemporary
quantum condensed matter physics'?. Rooted in the dis-
covery of the fractional quantum Hall effect, it arises in
numerous phases of matter such as spin liquids and frac-
tional quantum Hall liquids. Topological order manifests
itself in the fractionalization of low-energy excitations,
ground state degeneracy on closed manifolds, and long-
range entanglement3.

The idea that two-dimensional superconductors, i.e.,
electrically charged paired fermions that couple to a dy-
namical two-dimensional electromagnetic field, are topo-
logically ordered has been known for some time*®. Due
to the Higgs mechanism, there are no Goldstone modes
in the energy spectrum and, at zero temperature, the su-
perconductor is completely gapped. There are two types
of point excitations in a two-dimensional superconduc-
tor: Bogoliubov quasiparticles and vortices. At energies
much lower than the gap, only the topological properties
of these low-energy excitations (their braiding and fu-
sion rules) and their symmetry quantum numbers matter.
This information can be effectively encoded in a topologi-
cal field theory. For an s-wave superconductor, a topolog-
ical Chern-Simons theory was elucidated and described
in detail in a beautiful paper by Hansson, Oganesyan,
and Sondhi®.

More recently, attempts have been made to con-
struct topological theories for non-abelian p + ip
superconductors®!?. These states are an important ex-
ample in the field of two-dimensional fermionic chiral su-
perfluidity and superconductivity, which has been the
focus of experimental and theoretical condensed mat-
ter physics for decades. Today, chiral p + ip pairing
plays a central role in research fields as diverse as the
physics of 3He!'"'2, quantum Hall physics?, unconven-
tional superconductivity'?, cold atoms'*®, and topolog-

ical quantum computation'®.

Our focus in this paper is on chiral spin-singlet paired
states which have also received some attention in the
past. For example, in the weakly-coupled abelian topo-
logical phase, which falls into class C of the ten-fold way
classification'?, a chiral d+id superconductor is predicted
to exhibit a spin Hall effect”™!®, support four protected
chiral edge modes!'?, and have a non-universal edge mass
current carried by unpaired fermions2®2!. Over the past
few years, new physical motivations necessitating further
study of chiral d + id pairing have emerged. Specifically,
two-dimensional materials with a hexagonal lattice sym-
metry necessarily have degenerate d2_,2 and dgy gaps'3,
which makes them good candidates for chiral d + id su-
perconductors. Two well-known examples where d + id
pairing is currently believed to be relevant are the pnic-
tide SrPtAs?%?3 and graphene doped to the van Hove
filling?425. Chiral spin-singlet superconductors paired in
higher partial even-waves are also theoretically interest-
ing and are likely to become experimentally relevant in
the future.

In a two-dimensional chiral superconductor, the spon-
taneous breaking of parity and time-reversal symmetries
might lead one to expect a spontaneous generation of a
finite magnetic field in the ground state, which originates
from the internal motion of fermions orbiting around each
other in Cooper pairs. For a type II superconductor, this
would result in a finite density of quantum vortices in
the ground state. One might thus anticipate a relation
between the density of elementary fermions, ny, and the
density of vortices, n,, of the form n, = v,ny. An im-
portant question that motivated this work is whether v,
is a universal quantized number for chiral paired states
such as a d + id superconductor.

To answer this question and to extend the understand-
ing of superconductors as topologically ordered states,
we present a general framework for studying the low-



energy physics of spin-singlet superconductors. We start
from the microscopic theory of these states that are spin-
rotationally invariant and conserve magnetic flux. From
there, we derive topological field theories for different
gapped abelian states, i.e., s-wave, d + id, and chiral su-
perconductors paired in higher partial even-waves. The
virtue of this approach is that it naturally encodes the
braiding and fusion rules of low-energy excitations, in-
corporates symmetries, and captures the physics at the
edge. In the case of chiral states, we reproduce the known
spin Hall effect”'8. Moreover, we investigate the vor-
tex Hall response associated with the magnetic flux sym-
metry. The coefficient v, introduced above, equals the
Hall coefficient for this response. Importantly, we demon-
strate explicitly that for all superconductors considered
here, v, is zero. As a result, we predict that there is no
spontaneous magnetic field, and thus no dense array of
vortices in the ground state of a chiral two-dimensional
superconductor. By merging the ideas discussed above,
our work unifies topological order and symmetries in su-
perconductors and firmly establishes them as symmetry
enriched topological (SET) phases?S.

It is worth remembering that in this work the elec-
tromagnetic field is assumed to be strictly confined to
two spatial dimensions. Is such flatland electromag-
netism actually realizable in an experiment? It is clear
that without special arrangements electromagnetism will
penetrate into the third dimension, and as a result,
one has to deal with a mized dimension problem where
paired fermions are confined to two spatial dimensions
but electromagnetism is three-dimensional. By embed-
ding fermions into a specific medium, however, electro-
magnetism can be spatially confined. First, one needs
to keep all electric lines inside the quasi-two dimensional
sample without losing them at its boundary, as shown
in Fig. 1(i). This can be achieved by surrounding the
sample by a low-permittivity medium with a dielectric
constant epeq < €27. Second, the magnetic lines within
the quasi-two dimensional sample should point perpen-
dicular to its boundary, as depicted in Fig. 1(ii). This
can be arranged by sandwiching the sample between a
high-permeability (pmeq > ps) material. Thus, at least
in principle, static electromagnetism can be confined to
two dimensions.
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FIG. 1. Two-dimensional static electromagnetism: quasi two-
dimensional sample (gray) embedded into a medium (sur-
rounding white) that has both (i) a low permittivity and (ii)
a high permeability.

The outline of our paper is as follows: In Sec. II,
we first introduce our framework — an abelian Chern-
Simons field theory that captures the topological prop-
erties, symmetries, and edge physics of abelian gapped
states. Next, in Sec. III, we introduce topologically or-
dered spin-singlet superconductors and identify their in-
ternal global symmetries. Then, in Sec. IV, we derive
the topological theories of s-wave and d + id supercon-
ductors by starting from the low-energy model of a non-
relativistic d,2_,» paired state. In that section, we also
extend this derivation to chiral superconductors paired in
higher partial even-waves. In Sec. V, we analyze the re-
sulting Chern-Simons theories. Here, we first devote Sec.
V A to a conventional (s-wave) superconductor. In Sec.
V B, we then investigate the effective theory of a d + id
superconductor and calculate its spin and vortex Hall
responses. Next, in Sec. V C, we describe the extension
of our construction to chiral spin-singlet superconductors
paired in higher partial even-waves and demonstrate that
these fall into the sixteen-fold way classification of chiral
superconducting states developed by Kitaev?®. Sec. VI
presents a general argument that elucidates why chiral
superconductors have a zero vortex Hall coefficient. Fi-
nally, in Sec. VII, we close with some open questions
that go beyond the scope of this paper.

II. ABELIAN TOPOLOGICAL FIELD
THEORIES

The low-energy physics of a completely gapped two-
dimensional state of matter is encoded in a topological
field theory. Moreover, since the spin-singlet supercon-
ductors studied in this paper are known to form only
abelian phases®®, we propose that topological aspects of
such phases can be captured by an abelian Chern-Simons
field theory30-32
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Here a! is a multiplet (I = 1,2,..., N) of auxiliary sta-
tistical gauge fields3®, K is a symmetric integer-valued
N x N matrix that determines the self and mutual statis-
tics of excitations, and j; are quasiparticle currents. Note
that a, are coupled to quantized charges carried by the
currents j;. As a result, the first-quantized current den-
sities are j(r) =" lgn)é(r — (™), characterized by an
integer-valued gauge charge vector (™) and the position
r™ of the n'™™ quasiparticle excitation. The third term
in Eq. (1) represents the coupling to external sources
A4 of A = 1,2,..., M global U(1)4 symmetries. The
theory (1) has proven to be successful in describing the
low-energy properties of abelian quantum Hall fluids34.
Importantly, topological order is simply encoded in the
effective theory (1). Indeed, the ground state degeneracy
on a torus, a direct manifestation of topological order, is



fixed by the determinant of the K-matrix>*
#GS = |detK|. (2)

Moreover, this determinant also fixes the number of in-
dependent anyon types (see, for example,3?).

While the effective field theory (1) is quite an inefficient
formalism for encoding the fusion and braiding rules of
the bulk excitations®®, it is in fact very well suited for
understanding the physics of the edge. Following Wen37,
in the absence of external sources A, one finds a chiral
Luttinger theory of N chiral bosons ¢! propagating along
the edge

Losge = 1= [K15061 0.6 ~ Vigouo'0:7]. (3
Here V7; is a non-universal positive-definite real matrix
that depends on the microscopic properties of the edge.

Systems with a finite chiral central charge c at the edge
have a non-zero thermal Hall conductance and host ¢ co-
propagating bosonic edge modes that cannot be gapped
by backscattering. In particular, for chiral spin-singlet
superconductors, with the chirality parameter k to be
defined in Eq. (10), one finds ¢ = k.

A natural next question to ask is whether counter-
propagating edge modes can be gapped without breaking
any symmetries or if they are symmetry-protected , i.e.,
are stable against arbitrary local symmetry preserving
perturbations. In the rest of this section, we present a
brief analysis of this question.

To understand the structure of a straight edge along
the 2 direction in the presence of external sources A“,
we start from Eq. (1) in the absence of quasiparticle
currents j1'. Following®’, we first impose a gauge fixing
condition in the bulk

al +vlal =o0. (4)
The Gauss law constraint (or incompressibility condition)

68
2 — = K1 b7 —ta 84 =0, (5)
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where b = eijaiajl- and B4 = €V 8Z~Aj-‘, is automatically
satisfied by

al = 0;0" + K tas AL (6)

Substituting Eqs. (4) and (6) into the bulk action (1),
with some manipulations, will result in the generaliza-
tion of the effective edge action (3) in the presence of
sources A“. For the purposes of understanding the fate
of counter-propagating edge modes in the presence of
symmetries, however, it suffices to work out the trans-
formation properties of the edge fields ¢;. Under a lo-
cal U(1) 4 transformation parametrized by 4, the back-
ground gauge fields and the edge multiplet transform as

5./4;? = 75‘#0[,4,

dpr = O[AKI_JltAJ.

(7)

The last equation follows from Eq. (6) and the U(1)4
neutrality of all statistical gauge fields a!. We consider
now an edge perturbation of the form

/dxdt cos(lror). (8)

First, the requirement of locality of this term enforces
that I € ZY must be bosonic (have trivial self and mu-
tual statistics)3®. Moreover, it follows from Eq. (7) that
these terms (sometimes called “Higgs” terms) are invari-
ant under all global symmetries if [7- K~ -t4 = 0 for all
A=1,...,M. In addition, according to the null vector
condition of?®, such symmetry allowed Higgs terms can
now gap a pair of counter-propagating edge modes if and
only if T - K~! .1 = 0 since the two fields can then be
rotated such that they form a single non-chiral Luttinger
liquid that is gapped by backscattering®®. More gen-
erally, for gapping n pairs of counter-propagating edge
modes, we will require n-independent (commuting) Higgs
terms that can simultaneously provide energy gaps to all
of these edge modes.

In summary, in the presence of U(1) global symmetries,
n pairs of counter-propagating edge modes can be gapped
if and only if one can find l; e ZN (i=1,---,n) such that

e The Higgs terms are constructed from elementary
bosonic excitations:

I K~'.1'=0 (mod2r) Vi,vI'eZzN (9a)

e The Higgs terms are charge neutral under all global
symmetries:

IF"K='.ty=0 Vi VA (9b)

e The null vector conditions are satisfied:

iK' 1, =0 Vij (9c)

As shown later, all systems considered in this paper host
at least one pair of counter-propagating modes which are
gapped out by the Higgs terms satisfying the above con-
ditions.

IIT. SPIN-SINGLET SUPERCONDUCTORS:
TOPOLOGICAL ORDER AND SYMMETRIES

In this paper, we consider two-dimensional electrically
charged spinful fermions which couple to a dynamical
electromagnetic gauge field that is also confined strictly
to two spatial dimensions. We will assume that, due
to electromagnetism and some spin-independent short-
range attractive interaction, the fermions pair in a spin-
singlet chiral channel with the gap

Ap = (pz +ipy)FAg (10)



where the sign defines the chirality and k is an even in-
teger due to antisymmetry of the fermionic singlet pair
wave-function. In fact, k is just the orbital angular mo-
mentum carried by a Cooper pair.

We will discuss separately a conventional s-wave su-
perconductor (k = 0), d + id superconductor (k = 2),
and higher partial even-wave chiral superconductors (k =
4,6,...). The explicit construction and analysis of the
topological Chern-Simons theories of these superconduc-
tors depends on the chirality parameter, k, and will ap-
pear in separate sections below. Here, we first highlight
the generic properties that all of these systems have in
common:

e Topological order: Two-dimensional spin-singlet
superconductors with a dynamical gauge field ex-
hibit topological order. For an s-wave supercon-
ductor this has been emphasized in®, where the
ground state degeneracy on a torus was found to
be equal to four. In fact, this result also holds
for the d + id superconductor” and can be easily
extended to higher partial wave spin-singlet chiral
pairing. As a result, all superconductors considered
in this paper have |detK| = 4 and contain four in-
dependent anyons, which we call 1, e, m, and e,
following a common convention. As we will see in
the following, topological order in superconductors
leads to fractionalization of the quantum numbers
and statistics of low-energy excitations.

e Internal continuous global symmetries: In a
superconductor, electromagnetism, being a gauge
redundancy, is not a global symmetry. There are,
however, two internal global symmetries of spin-
singlet superconductors to be considered in this pa-
per: First, the spin-singlet structure of the pairing
implies that a non-abelian SU(2), spin rotation is a
global symmetry. Since by construction, the effec-
tive theory (1) can couple only to abelian sources,
here we consider the Cartan subalgebra of SU(2)
with the charge Qs ~ S, and introduce in Eq.
(1) an external abelian spin source A° that cou-
ples to the z-component of the spin current. We
will see that in superconductors, this charge is car-
ried only by Bogoliubov quasiparticles while vor-
tices are spinless. Second, any two-dimensional
superconductor has a global abelian U(1), mag-
netic flur symmetry with a charge Q, = [ d*zB*.
The conservation of this charge follows from the
electromagnetic Bianchi identity (Faraday’s law)
P9, F,, = 0, which is valid provided there are no
magnetic monopoles. This appears naturally in a
model where the electromagnetic U(1) gauge group
is non-compact, which we consider in this paper. In
a type-1I superconductor, a vortex carries one-half
of a magnetic flux quantum, i.e., a m-flux, while
a Bogoliubov quasiparticle is neutral with respect
to this symmetry. As a result, in a superconductor
the flux charge defined above is carried only by vor-

tices. Correspondingly, in the effective theory (1)
we introduce an external abelian source, AY, which
couples to the charge @,. It is worth emphasizing
that due to the presence of a gap, neither of the
two global symmetries introduced above are broken
spontaneously in a superconducting ground state.

IV. DERIVATION OF CHERN-SIMONS
TOPOLOGICAL FIELD THEORIES OF
SPIN-SINGLET SUPERCONDUCTORS

We start from the low energy model of a weakly-
coupled non-relativistic d,>_,» superconductor and, by
deforming it, will derive the topological Chern-Simons
theories for s-wave and d + id superconductors. At the
end of this section, we will also extend this derivation
to spin-singlet chiral superconductors that are paired in
higher partial even-waves.

Before presenting the derivation, it is worth noting
that for a relativistic s-wave superconductor a topolog-
ical Chern-Simons theory was derived in®. In contrast
to that construction, our derivation applies to all gapped
spin-singlet non-relativistic superconductors and includes
coupling to external magnetic flux and spin symmetry
sources.

Our starting point is the Lagrangian of a gapless two-
dimensional d,2_,2 superconductor®!

1

4

; s 1 wp fu
= Aplions + Lap(is A A%) = - 450, Ay,
(11)

where the covariant derivative D,p = 0,9 — A,, n,
is the superfluid density, and c, is the speed of sound.
The first term*? in Eq. (11) encodes the Maxwell dy-
namics of the electromagnetic field A and the next three
terms incorporate the dynamics of the fluctuating part,
¢, of the superconductor phase. In addition, we have
included the neutralizing ion static background that car-
ries the electromagnetic current ji = =n f(WO, where ny
is the density of elementary fermions that undergo pair-
ing. Cgp, specified later in this section, incorporates the
low-energy physics of gapless spinful fermionic quasipar-
ticles that couple to electromagnetism, A, and to the spin
source, A°. Finally, the last term in Eq. (11) describes
the coupling of the magnetic flux symmetry current to
its external source, A". Its prefactor fixes the magnetic
flux charge of an elementary counterclockwise vortex to
Qo = +1/2 (see footnote*!).
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L0 =
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A. Vortices

In the presence of vortices the superconductor phase ¢
can be split into the regular part ¢,ez and the vortex part



v, which has singularities at the positions of vortices.
By a suitable regular gauge transformation, the regular
part ¢reg can be absorbed into the electromagnetic po-
tential, A, (Higgs mechanism). On the other hand, the
singular part ¢, determines the conserved vortex current

. 1.

gt = ;6“ £0,0ppv. (12)
After introducing the statistical gauge field a, = 0,¢y,

that is dual to the vortex current, the Lagrangian (11)
becomes

1 v N 1 v,
L0 == ZFu " —b, (35 - e Payap)

ng 1 Ng
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1 -
= Apilons + Lap (Wi, A A%) = P 470, A,
(13)

where following® we introduced the (Lagrange multiplier)
statistical gauge field b,, whose equation of motion en-
forces the condition (12).

B. Bogoliubov quasiparticles

We now specify the quasiparticle Lagrangian, Egp. The
dg2_,2 superconductor has four nodes on the Fermi sur-
face (see Fig. 2), where Bogoliubov quasiparticles be-
come gapless. After linearizing near these nodes one finds
four massless two-component Dirac modes v;,, where we
introduced the nodal index ¢ = 1,2 and the spin index
a =T, ]. The low-energy Dirac Lagrangian of these quasi-
particles was derived in®*? and also discussed in**. In the
absence of electromagnetism it is given by

ﬁgp :¢Iiat¢1 + 1/)1 (ivpaxTz + tva Z eistpayeis@Ts)wl
s=+,—
+(1+2,XY),
(14

where 74 = (7, £ i7,)/2. Here we have introduced the
node-aligned spatial coordinates X = (z + %)/v2 and
Y = (—x +3)/+v/2 and suppressed both the spin index o
and Dirac index in particle-hole space, where the Pauli
matrices 7; operate. The gap terms proportional to 74
and 7_ contain the coupling to the superconductor phase
. Note that our normalization of this phase differs from
the normalization used in%%3 by a factor of two.

Since 1;, transforms as a doublet under the spin
SU(2)s symmetry, the quasiparticles couple to the spin
source A* via the minimal coupling 9,, — 9, +i0.A;, /2,
where the Pauli matrix o, acts in spin space. On the
other hand, the Bogoliubov quasiparticle spinor v, is a
combination of a particle and hole, and thus it is more
subtle to introduce the electromagnetic potential A into
Eq. (14). In fact, A appears only in the kinetic terms

FIG. 2. Four Dirac fermions ;. arising from the two pairs
of nodes (connected by dashed lines) at the Fermi surface of

a d,2_,2 superconductor.

(but not in the gap term) in Eq. (14) via the minimal
coupling 0, — 0, + ieT.A,, where we set e = —1 (see
footnote!). In the absence of vortices it is customary at
this point to transform to electrically neutral fermions,
¥; = exp(—ipT,)1;, which eliminates the phase ¢ from
the gap term®. Importantly, in the presence of vortices
this transformation is not single-valued*®, and instead

one should perform a single-valued transformation® (see
also?” for a general discussion)
¥; = exp(—ipr, + 10y Py (15)

The presence of these neutral fermions, that braid triv-
ially with all other quasiparticles, will be reflected in the
fermionic nature of the K-matrices discussed in Sec.V.

After performing the transformation with the minus
sign in Eq. (15), we find

L0 (i, A A%) =] [iDy + 7.(Ar — ar) ]
+ 1/;11)1.7 [Z"DXTZ + (AX — ax)]iz)l

- - (16)
+ PJoaiDy T2t
+(1+2,XY),
where
D, = 0y +ia, — i, Aj, /2. (17)
C. s-wave and d + id deformations of d,>_,

superconductor

Crucially for us, one can enter into the s-wave or d+id
gapped phase by adding appropriate masses to nodal
Dirac quasiparticles that were introduced above. In par-
ticular, the terms'®

Egp = —5(Plmyn £ Piryia) (18)



add to the dg2_,2 superconductor some amount of is and
idg, pairing, respectively. Topologically, the resulting
phases are equivalent to the s-wave and d + id super-
conductors. We see thus that that Eq. (18) is nothing
but the mass term for the nodal Dirac particles*®, with
masses m; = 0 and mg = —¢§. More generally, allow-
ing arbitrary masses m; for the spinors 1;, one can show
that their signs are the same (mymg > 0) for the d + id
phase, while they are opposite (mims < 0) for the s-
wave phase. The resulting phase diagram is summarized
in Fig. 3. Since the s-wave and the d + id superconduc-
tors differ only in the sign of the mass of the Dirac mode
19, in the following we consider them in parallel.

ma

S d+ id

d—1d S

FIG. 3. Topological phase diagram of a deformed d,2_,2 su-
perconductor as a function of masses m; of the Dirac modes

;. The origin represents the d,2_,2 superconductor.

D. Integrating out electromagnetism

Henceforth, we will assume that the Bogoliubov quasi-
particles ; have a sufficiently large gap and thus carry
an electric density and current that are negligible com-
pared to the superfluid density and the supercurrent. As
a result, the superfluid density n is equal to the density
ny of the elementary fermions. Given this, we first im-
pose the charge neutrality condition ns + ;2 . = 0 in Eq.
(13). Combining now Egs. (13), (16) and (18), we inte-
grate out the massive electromagnetic field A,,, which to
lowest order in derivatives is equivalent to the substitu-
tions A, — a,. Keeping now only the leading terms in
derivatives, we find

1
L——b, (j{j - ;eﬂuﬂauap)

- 1 -
—nsa; + Lqpp(wi) - %ENVPAZ&,GP

(19)

LD (4;) =] (mt +ivpr, Dy + iwaT, Dy — 5Ty)1;1

+1/~); (iDt + wwpT,Dx + ivaT, Dy F (57'y)1/~12,
(20)

where the covariant derivative D, was defined in Eq.
(17).

Since in a superconductor an elementary fermion car-
ries a 27 flux of the vortex magnetic field (see Appendix
A), a finite density of these fermions gives rise to a fi-
nite background value of BY. It thus seems natural at
this point to absorb the term —nga; in Eq. (19) into
the source term. This indeed can be done by writing
nsa; — € A%d,a,/(2m) with Ay = 0 and B” = 2mn,.
As the result, Eq. (19) simplifies to

1 1
L =—c""a,0,b, = bl — 5" A 0,0,

+ Eq’Dp('JJZ)v

(21)

where AV = AY + Av.

E. Topological field theory

Finally, we integrate out massive Dirac fermions in Eq.
(20), which are minimally coupled to the statistical gauge
field a and the spin source A°. The resulting statistical
and spin Hall response is

1 m;
=3 |m.|eul’P(a#ayap+q§AfLa,,AZ>, (22)
i=1,2 v
a=",]

where the unit of spin charge ¢; = 1/2. This can be en-
coded within the Chern-Simons theories of two statistical
gauge fields ¢! and ¢*.

Specifically, for the s-wave case, where Zm m;/|m;| =
0, we use the zero-chirality theory®’

1
D 0 o + +
Ly, —>47re“”p (cu&,cp — cu&,cp)

1 v
+ %el paual’(c; + Ci)
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1
1
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which by construction has a vanishing Hall response. In
particular, integrating out ¢’ and ¢* results in a term
~ A®0a which is exactly cancelled by the last term in
Eq. (23).

On the other hand, for the d + id case with



> i.a™i/|mi| = 4 we employ the chiral theory
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In Egs. (23) and (24), we also included the coupling to
gapped spin-up and spin-down Bogoliubov quasiparticles
that carry in the Chern-Simons field theory external cur-
rents j; and j, respectively®®. By putting Eqs. (23),
(24) that capture the quasiparticle sector of the full La-
grangian into Eq. (21) results in the completely topolog-
ical four-component (a,b,c',ct) Chern-Simons theories
for s-wave and d + id superconductors which will be dis-
cussed in detail in Secs. V A and V B, respectively.

F. Extension to higher partial waves

The above construction can be straightforwardly gen-
eralised to chiral superconductors paired in the k*" par-
tial wave, for k € 2Z/{0}. We start from a time-reversal
invariant superconductor with a gap proportional to the
real part of (p, £ ipy)k which has k pairs of nodes at the
Fermi surface. This leads to k& massless Dirac spin dou-
blets. We can deform into the chiral (p, + ip,)* state by
adding masses of the same sign to all Dirac modes. This
procedure gives rise to the Chern-Simons theory that will
be investigated in Sec. V C, following our presentation
and analysis for the s-wave and d + id cases.

V. TOPOLOGICAL FIELD THEORIES OF
SPIN-SINGLET SUPERCONDUCTORS

In this section we analyze the topological theories that
were derived in the previous section. In addition to sum-
marizing the braiding properties of quasiparticles, we in-
vestigate the role of global symmetries in the bulk and
at the edge of spin-singlet superconductors.

A. s-wave superconductor

Having encoded the topological properties of vortices
in Eq. (21) and of the nodal Dirac quasiparticles in
Eq. (23), we combine these to arrive at the four-
component Chern-Simons theory of the form (1) with
a’ = (a,b,c’, ct). The resulting K-matrix characterizing
the s-wave state is

O O =

(25)

=~ N O
O OO
O = O
1
—

This K-matrix is fermionic (with two odd integers on
the diagonal) encoding the presence of an elementary®?
fermionic excitation in the spectrum of the superconduc-
tor. Notably, the K-matrix (25) does contain the (toric

. 02
code) bosonic block (2 0)
conductor, was derived previously in®. The I-vectors,
defining integer-valued charges of independent excita-
tions with respect to statistical gauge fields a,b,c', ¢,
are shown®? in Fig. 4. The self and mutual statistical

, which, for the s-wave super-

€ .6

(0,0,1,0) 0,1,1,0)

b
(0,0,0,0) ® (0,1,0,0)

FIG. 4. Integer-valued [-vectors of 1, e, m, € excitations for
the s-wave and d + id superconductor.

angles can be extracted from the topological theory (1)
as

O =nmlt - K11, Oy =2ml" - K10 (26)

Thus, we find that e and m are bosons and € is a fermion
for the s-wave superconductor. In addition, any mutual
braiding gives the statistical angle 7.

Now we consider the symmetries: In a generic effective
theory (1) the charge Q4 of an excitation characterized
by the [-vector is given by

Qr=tT K11 (27)

For the s-wave state, it follows from the derivation in
Sec. IV that the t-vectors for the spin and magnetic flux
symmetry are tI = (2,0,1,—1), tI = (1,0,0,0). This
fixes the spin and vortex charges of m, € and e to be

Qe =0, Q=1  Q5=1,
Q' =12, Q=0 Q;=1/2

Since we previously defined that in a superconductor,
Bogoliubov particles carry only spin and vortices carry
only magnetic flur, we now must identify ¢ and m with
the Bogoliubov quasiparticle and vortex respectively. As
expected, the Bogoliubov quasiparticle € is a fermion,
while the vortex m is a boson. Their composite e is a
boson, which carries the spin and vortex charge. The
mutual w-phase under the braiding of € around m is con-
sistent with the well-known fact that in a superconduc-
tor the Bogoliubov quasiparticle (despite being electri-
cally neutral*) accumulates a minus sign upon encircling
a vortex®3:54,

(28)



The s-wave pairing does not violate two-dimensional
parity P (x < y) and time-reversal T (t — —t). As a
result, the effective theory (1) should be invariant under
these discrete symmetries. We specify the transforma-
tion properties of all fields: First, under P and T the
Bogoliubov quasiparticle currents jy, j; and the vortex
current j, transform differently. The definitions of the
currents lead to the following nontrivial transformations

P:jReg), el 90— i v e =il (29)
Tt el dte =il 5o -y

Given these, the statistical gauge fields ¢! and c* in Eq.
(23) transform as

P cg R —cé, cl < —ci, (30)
T:ch o —ct, o &c
- Co 00 G i

while the statistical gauge field b, the vortex source A
and the spin source A° transform like the vortex current
jv in Eq. (29). Finally, under P and T the statistical
gauge field a transforms like the electromagnetic gauge
potential A,

P:d® < aY
, . (31)
T:a"— —a’.

Using these transformation properties, it is straightfor-
ward to check that the effective theory (1) is indeed in-
variant under P and T.

In the absence of external quasiparticle currents in Eq.
(1), all statistical gauge fields can be integrated out re-
sulting in the Hall response

1 - v
Lros == ta K tp " A0, AT (32)
VAB

A simple calculation leads to v4p = 0. Thus the s-
wave superconductor reassuringly exhibits no Hall ef-
fects, which is consistent with P and T invariance of this
state.

Finally, we look at the edge, where there are two
pairs of counter-propagating chiral modes because the K-
matrix has two pairs of eigenvalues of the opposite sign.
Note, however, that one is allowed to add to the edge
Lagrangian (3) two independent Higgs terms cos(2ts - ¢)
and cos(2t, - ¢) which satisfy the conditions Eq. (9).
As a result, the two Higgs terms completely gap out all
four edge modes of the s-wave superconductor, consistent
with the expectation that this state neither has gapless
edge modes nor a Hall response. The above arguments
explicitly demonstrate that the low energy physics of the
s-wave state cannot be completely characterized by the
toric code model since the edge of the toric code can
be gapped out in two physically distinct ways®® whereas
the edge of an s-wave superconductor with U(1),xU(1),
symmetry is gapped by the unique mechanism presented
above.

B. d+ id superconductor

In a chiral d 4 id superconductor, parity and time-
reversal are broken spontaneously, which gives rise to
anyon self-statistics of excitations. In parallel with the s-
wave case, in Sec. IV we derived the fermionic K-matrix
for this state

(33)

= =N O

OO OoON
O = O =
_— o O

It describes a chiral state with a chiral central charge
¢ = k = 2. The l-vectors are identical to the s-wave case
and are illustrated in Fig. 4 (also see footnote®?). As a
result, in the weakly-coupled topological phase of a d+id
superconductor, e and m excitations are semions?®, i.e.,
they have the statistical angle . = 6,,, = w/2. On the
other hand, ¢ is a fermion and has a nontrivial mutual 7
statistics with e or m.

The derivation undertaken in Sec. IV fixed the sym-
metry t-vectors for this state to be

tT' =(0,0,1,-1), ¢I'=(1,0,0,0). (34)
Using Eq. (27), we find that the spin and vortex charges
of the excitations equal

Qr=0, Q=1 Q=1
Qr=1/2 Q=0 Q=1/2

which are, in fact, identical to those for the s-wave case
given in Eq. (28). As a result, in this case € and m will
be still identified with the Bogoliubov quasiparticle and
vortex, respectively. In contrast to the s-wave supercon-
ductor, the vortex here is a semion. In fact, the semion
statistics of the vortex can be extracted from the Berry
phase accumulated under exchange of two identical vor-
tices in a d + id superconductor, which can be computed
by a simple generalization of the computation done for
a p + ip superconductor in*’. Alternatively, the semion
phase follows from a qualitative argument presented in°6
that views a d + id superconductor as a stack of four
spinless p + ip layers.

The effective theory (1) with the K-matrix (33) is PT
invariant, but breaks separately P and T symmetries.
Consequently, we find a nontrivial Hall response

= (39) o

with v defined in Eq. (32). We thus showed here that
in the topological (weakly-coupled) phase a chiral d-wave
superconductor exhibits the spin Hall effects with v, =
2, but no vortex (v, = 0) and mixed spin-vortex Hall
(vys = 0) responses. For the spin part, this reproduces
in appropriate units the findings from™!®. In particular,
in a d + id paired state a position-dependent external
magnetic Zeeman field B(z,y) will give rise to the Hall

(35)



current of the z-component of spin ji = —o4€79; B with
the spin Hall conductivity o, = 1/(47)%". But what is
the physical implication of the absence of the vortex Hall
effect? Since the density and current of the elementary
fermions fix the background values of BY and & (see
Appendix A), a nontrivial vortex Hall effect would imply

Vy

ny = —BY = vyny,
.3 271;/1) ij ov ) (37)
]v:_%e 5] :ijfa

i.e., a linear relation between the densities of the ele-
mentary fermions and vortices in the ground state of the
d + id superconductor. The fact that we found v, = 0
demonstrates explicitly that zero magnetic field B (an
thus zero density of vortices) is generated in the ground
state of the chiral d-wave superconductor. At first sight it
might seem surprising that the unbroken magnetic flux
symmetry has a vanishing Hall response in the d + id
paired state that breaks spontaneously parity and time-
reversal. In Sec. VI we present a general argument which
independently supports this finding.

Consider now the edge of a chiral d-wave supercon-
ductor (33), where two co-propagating chiral bosons ap-
pear together with a pair of counter-propagating chiral
modes. For the purpose of the upcoming discussion, it is
convenient to transform the Chern-Simons theory into a
GL(4, Z) equivalent form (K,1,t) — (K[, 1), discussed in
detail in Appendix B. In this formulation, the K-matrix
is block-diagonal

2200
. 2000
Ke=10010| (38)
0001
the [-vectors are
Ih =1(0,1,0,0) =17,
(39)

izjr:(71707170)5 ZZL:(71707071)7

and the t-vectors are unchanged from Eq. (34): t, = t,,
ty = t,. In this basis, the counter-propagating modes ¢~>1
and ¢? are gapped out by the Higgs term cos(2f, - ¢) that
fulfils the conditions (9) introduced at the end of Sec. II.
On the other hand, due to quantization of the thermal
Hall conductapce28’58,~the remaining two co-propagating
chiral states ¢> and ¢* cannot be gapped by edge in-
teractions or disorder. These chiral states are neutral
under the magnetic flux U(1), symmetry. This implies
that there is no U(1), gauge anomaly at the edge, con-
sistent with the vanishing vortex Hall effect found above
(see also Sec. VI). In contrast, the spin Hall effect with
vs = 2 implies that the edge theory must have a spin
gauge anomaly. In fact, the current associated with the
spin chiral boson [, - ¢ with

iT =1k

S

—1 =(0,0,1,-1) (40)

realizes the U(1)s Kac-Moody affine algebra, where the
subscript denotes the level. From a standard argument®?,
the current affine algebra U(1), can be actually extended
to a larger affine algebra SU(2);. The spin sector is thus
described by the chiral SU(2); Wess-Zumino-Witten edge
theory” that has the spin gauge anomaly. The complete
bulk plus edge theory is of course consistent because the
edge anomaly is canceled by the inflow of the bulk spin
Hall current.

Curiously, the current associated with the orthogonal
combination IL, = Z?T + lzl = (—2,0,1,1) realizes an-
other copy of the U(1)2 — SU(2); Kac-Moody affine al-
gebra. The above arguments thus suggest that the edge
theory of the chiral d-wave superconductor has an ex-
tra SU(2)s0¢ symmetry. As discussed in”, the SU(2);0¢
is emergent and does not have a microscopic origin. In
a d + id superconductor, with the spin and particle-hole
symmetries, the velocities of the two co-propagating chi-
ral modes are necessarily equal. Therefore the edge sup-
ports an anomalous SO(4) = SU(2),®SU(2)¢0+ symme-
try which rotates four edge Majorana modes; for more
details, see”. In the following subsection, we show how
this discussion generalizes to superconductors paired in
higher partial even-waves.

C. Higher partial waves and the 16-fold way

So far, we have analyzed Chern-Simons theories for the
specific cases of conventional s-wave and chiral d-wave su-
perconductors, the latter being the simplest example of a
spin-singlet chiral state. At this point we extend the dis-
cussion to include all chiral spin-singlet superconductors
paired in partial even-waves.

In?8, Kitaev demonstrated that chiral superconductors
have a Zig bulk classification. Using either the language
of axiomatic topological field theory or by considering
stacked p+ip layers®®, it can be shown that the statistical
angle acquired upon exchanging two e-particles (or two
m-particles) has a 16-fold periodicity. That is, given a
chiral superconductor with Chern number v that hosts v
Majorana chiral modes at the edge, the exchange angle
of excitations?®

0. = 0., = 271/16, 0. =m. (41)
Since every Majorana mode contributes a half unit of the
central charge, the total chiral central charge ¢ = v/2.
Thus, systems with ¢ = 0 and ¢ = 8 have identical bulk
anyonic excitations but have different edge theories man-
ifested in different thermal Hall conductivities. The 16-
fold way is diagrammatically depicted in Fig. 5, where the
angle 0 represents 6, for the different states. The states
with half-integer central charge (represented by dashed
lines) are non-abelian whereas those with integer central
charge (represented by solid lines) are abelian. Among
the latter, the thick lines indicate states with ¢ € 2Z,
which are realized by the spin-singlet superconductors



studied in this paper. For these superconductors, the
chiral central charge c equals the chirality parameter k.

FIG. 5. (Color online) Diagrammatic representation of the
16-fold way. The abelian states considered in this paper are
represented by thick lines and the other abelian states by thin
lines. Dashed lines indicate the non-abelian states. For each
state, the angle 0 equals the exchange angle 6. = 0,,.

From Sec. 1V, it follows that the weakly-paired chiral
superconductor paired in even k'™ partial wave has the
(k+2) x (k+2) K-matrix

where we introduced the notation z; = (z,z,...,z). In
—_———
k times
fact, this K-matrix has previously appeared in a some-
what different context in®. The I-vectors of the excita-
tions are

lﬁ = (07 1, Ok)a

43
17 =1(0,0,1,05_1). “3)
It is straightforward to demonstrate that these spin-
singlet states k € 2Z/{0} fall into the 16-fold way since
they have the chiral central charge ¢ = k and lead to
the statistics (41). Interestingly, the states where ¢ is an
odd integer form a different class of abelian states which
perhaps describe certain phases of spin-triplet supercon-
ductors.

The charges of excitations are given by Eq. (35), i.e.,
they are identical to the s-wave and d + id cases. These
states are fixed by the symmetry t-vectors, which in this
case are given by

tT =(0,0,414),

44
tT =(1,0,04), 44)
where £1; = (1,—1,...,1,—1). We thus again find
—_—
k/2 times

the Bogolibuov quasiparticle to be the fermion €, while
the vortex is the anyon m that has the statistical angle
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0, = mk/8. An explicit calculation gives the spin Hall
coefficient vs = k and the vanishing vortex (v, = 0) and
mixed vortex-spin (v,s = 0) coeflicients. This result is a
natural generalization of Eq. (36) found for the d + id
state.

One can better understand the edge theory of chiral
paired states by casting the K-matrices (42) into two dif-
ferent GL(k 4 2, Z)-equivalent block-diagonal forms Kp
and K¢ (see Appendix B for details). Generalizing the
discussion in Sec. V B, from the form

= —k 2
Kp = 1 , 45
B ( 9 0) D Lixk (45)

one finds that a pair of counter-propagating edge modes
is gapped out by the allowed Higgs term cos(2t,-¢). Sim-
ilar to the d+id case, the remaining gapless chiral theory
is neutral under the magnetic flux U(1), symmetry. On
the other hand, symmetries of the edge appear naturally
from the Cartan block-diagonal form

o SO(2k 1 0
KC:AkX;>@<O_1>, (46)

where A:ggk) is the Cartan matriz of the Lie algebra
SO(2k) and is defined in Eq. (B8). For example, for the

d+id superconductor (k = 2), one finds K¢ = (2) g &
10 .
0 1] with the SO(4) = SU(2),®SU(2)s0¢ symme-

try, discussed in Sec. V B, manifest. In a similar fashion,
following®®, we can show that the current operators aris-
ing from the Cartan block satisfy SO(2k); Kac-Moody
algebra. This seems to suggest that the chiral edge theory
might have an internal SO(2k) symmetry associated with
rotations of the 2k multiplet of Majorana modes. Gener-
ically, however, we expect this symmetry to be broken by
the velocity matrix. As illustrated in Fig. 6, in a chiral
superconductor of chirality k, 2k Majorana edge modes
split into n = k/2 quartets. The modes within each quar-
tet are related by the spin and particle-hole symmetry,
and thus have the same velocity. However, nothing pre-
vents different quartets from having different velocities.
As a result the nature of the residual symmetry at the
edge of a chiral superconductor depends on the velocity
matrix and hence on the microscopic details.

From the Cartan form (46) of the K-matrices, it is
clear that the fermionic block, o#, is topologically triv-
ial, i.e., it does not effect the ground state degeneracy,
chirality, and statistics of the system. In other words, in
the absence of symmetries these K-matrices are stably
equivalent® to the Cartan matrices ASC(?%)62 However,
in the presence of coupling to the vortex source A", the
fermionic block is essential because the vortex symme-
try vector ¢, (in this basis) has non-zero elements in this
sector.



FIG. 6. A chiral superconductor with chirality & € 2Z hosts
2k Majorana modes at the edge. As indicated by the (1)) ar-
rows, each mode is doubly degenerate due to spin symmetry
and modes with the same color are related by particle-hole
symmetry. Thus, the modes within a quartet have the same
velocity v;, while generically different quartets will have dif-
ferent velocities.

VI. ABSENCE OF VORTEX HALL EFFECT IN
SUPERCONDUCTORS

In the previous section we found for all superconduc-
tors that the vortex Hall effect for the magnetic flux sym-
metry is zero. While for the s-wave state this is a com-
pletely expected result, for chiral spin-singlet states it
might seem surprising since parity and time-reversal are
spontaneously broken and one might expect that these
unbroken symmetries should exhibit a nontrivial Hall re-
sponses. Here we will argue that the vortex Hall effect
should vanish in any superconductor due to the finite
mass of the photon field acquired via the Higgs mecha-
nism.

Consider a general two-dimensional superconductor
coupled to the magnetic flux source A"

1
L= Lsc(f,A)— %GW”AZ&,Am (47)

where the elementary fermions f undergo Cooper pairing
and thus generate a mass to the electromagnetic gauge
potential A via the Higgs mechanism. After integrating
out f and A, the vortex Hall effect can in principle appear
from the quadratic contribution to the effective action
I'[A"]. In a translation-invariant system

1
PO = 5 [ dady 4T o - A 0)
1

=5 [ AP 040,

(48)

where in momentum space the kernel I'*”(p) is given by
T4 (p) ~ €*pa Dos(p)e”  pg (49)

with ¢D.,s(p) a fully renormalized photon propagator.
The kernel is illustrated in Fig. 7 as a Feynman diagram.
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FIG. 7. Feynman diagram for the kernel I'*"(p): the
bold wavy line denotes the renormalized photon propagator
1D~s(p), the red cross represents the vertex originating from
the last term in Eq. (47).

Let us start in the s-wave phase which obviously has a
vanishing vortex Hall coefficient v, = 0. As in Sec. 1V,
by tuning the Dirac masses of the Bogoliubov quasipar-
ticles we can enter into the chiral d + id phase (see Fig.
3). Importantly, during this process the photon propaga-
tor always remains gapped due to the Higgs mechanism.
Since v, can only change at a point where the photon
gap closes, this shows that as we enter the d + id phase
v, remains zero. This result should be contrasted to the
spin Hall effect which arises from the fermionic one-loop
diagram™18. Tt is clear from Fig. 3 that after starting
in the s-wave state the fermionic gap must close as one
enters the d + id phase, allowing the spin Hall coefficient
to jump from v; = 0 (s-wave) to vs = 2 (d + id).

Clearly the argument above can be generalized to other
chiral superconductors that can be obtained by deforma-
tions of a time-reversal invariant superconducting state.
In summary, as long as the Higgs mechanism produces
a finite gap for the photon field (along the deformation
trajectory), the Hall coefficient for the magnetic flux sym-
metry should vanish. This is in a stark contrast to the
standard probes of time-reversal breaking, such as the
polar Kerr, spin Hall and Nernst/Ettingshausen effects
that should give non-vanishing signals in chiral super-
conducting states.

VII. OPEN QUESTIONS AND OUTLOOK

In this work we have developed a topological frame-
work for the low-energy physics of two-dimensional spin-
singlet superconductors. Here we discuss some open
questions that go beyond the scope of this paper and
are left for future studies.

As emphasized throughout the paper, in this work the
electromagnetic field is strictly confined to two spatial di-
mensions. On the other hand, in thin film superconduc-
tors the mized-dimensional problem of two-dimensional
paired fermions interacting with a three-dimensional elec-
tromagnetic field is realized most naturally. For this rea-
son, this system deserves to be studied in detail. It also
might fall into the class of quasi-topological phases intro-
duced by Bonderson and Nayak in3.

Additionally, here we have considered a theory that al-
lows topological defects (vortices) of the matter field, but
not topological defects (magnetic monopoles) in the elec-
tromagnetic (non-compact) sector. It might be interest-
ing to investigate a two-dimensional superconductor with



a compact electromagnetism; in this version of the theory,
magnetic monopoles are allowed and appear in the form
of spacetime instantons®®. As a result, the magnetic flux
symmetry is lost because a pair of vortices can instantly
disappear into a monopole. This rich problem naturally
arises in the physics of spin liquids and was investigated
in the seminal paper of Fradkin and Shenker®. In the
future, it would be interesting to extend our work to this
model and to investigate the interplay of the unbroken
SU(2)s spin symmetry and topological order in it.

We have demonstrated in this paper that all supercon-
ductors have a vanishing vortex Hall response due to the
finite gap of the photon field that arises from the Higgs
mechanism. As long as this gap can be closed, however,
it seems possible that one can enter a distinct phase of
matter with v, # 0. In contrast to a superconductor, this
phase is characterized by a finite flux of magnetic field
in the ground state, corresponding to a dense collection
of vortices. It will hence be of interest to find ways of
closing the photon gap in our problem.

Moreover, the realization of the magnetic flux symme-
try might be subtle in the problem studied here. For a
bosonic toric code model, for instance, it is known that
it is impossible to realize an internal global U(1) symme-
try with the charges Q. = @,, = 1/2 in a purely two-
dimensional world. In fact, this realization of a symmetry
can only appear on the surface of a three-dimensional sys-
tem. This is known as the statistical anomaly and, for
bosonic systems, is discussed in detail in%%7. We be-
lieve that the fate of this anomaly in two-dimensional
fermionic superconductors deserves future investigation.

Recently, it has also become clear that in a weakly
paired d + id superfluid (and also in chiral superfuids
paired in higher partial waves) not all fermions in the
ground state are paired in the presence of an edge®C.
These unpaired fermions are localized close to the edge
and carry a mass current that partially compensates
the angular momentum L = [N/2 carried by the chi-
ral Cooper pairs. This current is non-universal since it
depends on the structure of the edge. It would be in-
teresting to investigate the nature of this current in the
presence of a dynamical electromagnetism.

A limitation of the K-matrix formalism is that it al-
lows us to incorporate only the coupling to the abelian
subgroup of the spin symmetry. Currently, the Chern-
Simons field theory does not allow coupling to the full
nonabelian spin symmetry because we do not how to
fractionalize representations of nonabelian groups. Using
an alternative formalism that allows coupling to all non-
abelian SU(2), sources could thus generalize our work.
In addition, since any physical system breaks the spin
symmetry due to spin-orbit coupling, it would be useful
to study the effects of (weakly) breaking this symmetry.

Finally, it is known that two-dimensional chiral su-
perconductors and superfluids exhibit a non-vanishing
“shift” and Hall viscosity®® 7. Following the seminal
work of Wen and Zee™, it should be possible to account
for these phenomena by coupling the spin connection to
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the topological Chern-Simons theories developed here.
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Appendix A: Relation between “magnetic field” B*
and fermion density ny

Here we demonstrate that in a superconductor the
background vortex “magnetic field” B = €% 0; A7 is fixed
by the density of the elementary fermions ny. Indeed, in
a superconductor the Lagrangian of a single vortex lo-
cated at position X? is given by™?

™

L,=-
2

Alternatively, we can rewrite the same Lagrangian as a
minimal coupling of a vortex current to its gauge po-
tential L, = —g,AYX7 with ¢, = 1/2 because in a
superconductor the vortex carries only a half of a unit
flux quantum of the magnetic field. As a result, we find
that the density of elementary fermions fixes the back-
ground value of BY to be BY = 2mny. At the same time
the fermion current j} fixes the background value of the

“electric field” &7 via the relation j} = —ieij &y

Appendix B: Block-diagonal forms of K-matrices of
spin-singlet chiral states

It is well-known that different K-matrices can repre-
sent the same topological state in the Chern-Simons the-
ory (1). Indeed, one is allowed to relabel the statistical
gauge fields a!

al — dl = X[JGJ, (Bl)

where X € GL(N,Z) is a N x N matrix of integers with
the determinant 1. Under such a transformation

K- K=X"KX,
| —1=xT1,
t—t=XTt

(B2)



and the theories defined by (K, [,t) and (K, 1,1) are equiv-
alent.

We demonstrate that the K-matrix of a chiral spin-
singlet superconductor paired in the (even) &' partial
wave can be put into block-diagonal forms. The two dis-
tinct block-diagonal forms used in the main text are high-
lighted here. We start from the K-matrix, [-vectors, and
t-vectors that were derived in Sec. V C and are given by
Egs. (42), (43), and (44) respectively.

If one chooses now the X-matrix

1 0| O
X=| 0 1] o0 |, (B3)
—1F of
one finds
~ —k 2
KB:< 5 0) D lixk, (B4)

r=(0,1,0,...,0) =%,
. (B5)
I =(-1,0,1,0,...,0),

€

tf = (0,0,1,—1,...,1,-1) =tT,
tf' = (1,0,...,0) =tI.

v

(B6)

In Eq. (B4) the topological order and chirality is encoded
in the first and second factor, respectively.

Alternatively, one can find a GL(N, Z) transformation
that transforms the K-matrix (42) into the Cartan block-
diagonal form

Ko = ASOPM o (1 0 ) , (B7)

where we introduced the Cartan matriz of of the Lie
algebra SO(2k)

2 210 0 0
1 2 0
SO(2k 0 . 2 -1 0 0
A = , . (BY)
0 oo —-1 2 -1 -1
: 0o -1 2 0
0 0 0 -1 0 2

In the form (B7) both the topological order and chirality
are encoded in the first factor, while the second factor is
topologically trivial. The X matrix for the d+id (k = 2)
case is

1 -10 -1
100 0

Xpy = . BY

h=2 1 -10 0 (B9)

1 1 1 1
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X matrices for higher partial even-waves can also be
found. For k = 4, k = 6, and k = 8, for instance, we
find

10 0 0 0 -1
10 0 100
S R
1 -1 0 0 0 O
1 0 0 011
-1 0 0 0 O 0 -1
~10 0 0 0 10 0
0 0 0 O -1 0 0
X | 00 0 1 1100 |
00 1 -10 000
0o 1 -1 0 0 0 0 O
1 =10 0 0 00 0
1 0 0 0O O O 1 1
10 0 0 0 0 0 0 -1
-10 0 0 O O O 1 0 O
00 0 0 0 0 1 -100
00 0 0 0 1 —1-100
Xk:8:00001_10000
00 0 1 -10 0 000
o 0 1 -1 0 O O OO0 O
0 1 -1 0 0 0 0 000
1 =10 0 0 0 0 000
1 0 00 0 0 0 011
(B12)

While these X matrices are not unique, the ones pre-
sented here easily generalize to higher k.
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