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Time-reversal invariance places strong constraints on the properties of the quantum spin Hall
edge. One such restriction is the inevitability of dissipation in a Josephson junction between two
superconductors formed on such an edge without the presence of interaction. Interactions and spin-
conservation breaking are key ingredients for the realization of dissipationless ac Josephson effect on
such quantum spin Hall edges. We present a simple quantum impurity model that allows to create
a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model
to substantiate a general argument that shows that any such non-dissipative Josephson effect must
necessarily be 8π-periodic.

I. INTRODUCTION

The Josephson effect1–3, which was originally a direct
manifestation of macroscopic quantum coherence in su-
perconductors, has turned out to be one of the most re-
liable ways of diagnosing the topological properties of a
junction. Topological superconductors (TSCs) support-
ing Majorana modes have been shown to demonstrate
a 4π-periodic Josephson effect4–10, which is doubled pe-
riod compared to the conventional Josephson effect. This
phenomenon, which is known as the fractional Josephson
effect, has been observed in quite a few devices11,12 in-
cluding the quantum spin Hall edge13,14. At first this is
quite counter-intuitive given that the Hamiltonian itself
is 2π-periodic. The fractional Josephson effect in this
case arises because the topological property of the su-
perconductor forces the local fermion parity (FP) of the
junction to change with each rotation of the phase by 2π.
If one assumes contact with a bath that equilibrates the
system to the ground state of the appropriate FP15 then
the topological nature of the superconductor is precisely
reflected in the fractional Josephson effect. Interestingly,
the addition of interaction can often modify the topolog-
ical classification qualitatively16,17. In fact, some of the
states such as parafermion states in superconductors18
are already known to be characterized by exotic Joseph-
son effects.

While several topological superconducting phases in-
volving interactions have been proposed18–20, not many
of them are within experimental reach. On the other
hand, an interesting 8π-periodic Josephson effect, which
relies on the combination of interaction and topology
that has recently been proposed21 certainly appears to
be within the realm of experimental possibility. Ideally,
one could just obtain this effect by studying a Josephson
junction (JJ) on an interacting two dimensional topolog-
ical insulator (TI) edge21.

However, as we discuss in this paper, the 8π Josephson
effect turns out to be the only possible non-dissipative
Josephson effect that a quantum spin Hall edge can sup-
port. To understand what we mean by non-dissipative
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Figure 1. (a) The system with a short Josephson junction
whose Andreev state is tunnel-coupled to a quantum dot. The
quantum dot is coupled to another localized spin. [Eq. (1)]
(b) Schematic diagram showing the 8π cycle of states. | ↑, ↓〉
represent the states of the spin and d†↑,↓ represents the electron
in the quantum dot. J, JA represents the spin symmetric and
asymmetric exchange interactions inside the dot respectively.
In each 2π cycle of phase shown by the bold arrow a spin up
electron is pumped into or a spin down hole leaves the edge.

Josephson effect consider a finite voltage biased Joseph-
son junction as is used to study the ac Josephson effect.
The ideal response of such a Josephson junction to a volt-
age bias is to create an ac current that can be measured
as radiation. However, at large finite voltages, a typical
Josephson junction dissipates part of its energy through
processes that generate quasiparticles in the bulk22. The
dissipation in turn leads to a dc current in addition to
the ac current, which is parametrized by the shunt resis-
tance of the junction. In this paper, we will be interested
in understanding the conditions under which such effect
shunt resistances can be avoided in TI junctions.

As we will review in more detail later, even though a
non-interacting TI edge with a ferromagnetic insulator
(FI) is predicted to have a 4π-periodic fractional Joseph-
son effect6,7, removing the FI qualitatively modifies this
effect. In the absence of a relaxation mechanism or for
a short junction, the JJ on the TI edge has a 2π period-
icity characteristic of conventional Josephson junctions.
The dissipation, which is observable as a parallel shunt
resistance across the junction22, arises here from ejection
of quasiparticles into the conduction band. The addi-
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tion of a relaxation mechanism also leads to a dissipative
but 4π-periodic fractional Josephson effect15. Thus, one
can say that the Josephson effect on a non-interacting
TI edge with TRS is always dissipative and fundamen-
tally accompanied by a shunt resistance. As shown by
Zhang and Kane21, the addition of interaction qualita-
tively changes this story and introduces a topologically
protected 8π-periodic fractional Josephson effect, which
is non-dissipative (i.e. free of the shunt resistance). It
is worth noting that this effect, unlike the 4π, 8π and
12π-periodic Josephson effect that can arise from fine-
tuning in conventional systems23, is indeed topologically
protected in the sense that it is completely robust to
all perturbations of the Hamiltonian that preserve time-
reversal symmetry.

In this paper, we study the effect of a strongly interact-
ing quantum dot (QD) in a quantum spin-Hall Josephson
junction. By considering a simple model of such a QD
that acts like a spin coupled to Andreev bound states
(ABS)24, we show that such a junction would show an 8π-
periodic fractional Josephson effect, in contrast to the 4π-
periodicity expected from time-reversal breaking topolog-
ical junction. We then argue that the generic low voltage
periodicity of the quantum spin-Hall Josephson junction
is 8π as opposed to the 4π periodicity for time-reversal
breaking topological junctions. In fact, while higher fre-
quencies could lead to 2π or 4π-periodic Josephson ef-
fects, such ac Josephson effects are necessarily dissipative
i.e. accompanied by a finite dc current.

II. JUNCTION WITH A QUANTUM DOT

While the non-dissipative 8π-periodic Josephson effect
is generic, we start by demonstrating it’s origin through
the simple device shown in [Fig. 1(a)]. This model incor-
porates the key ingredients for a non-dissipative Joseph-
son effect - namely, a topological quantum spin-Hall edge,
spin-conservation breaking and interaction. The device
in [Fig. 1(a)] consists of a JJ on a QSH edge laterally
coupled to a strongly-interacting multi-orbital quantum
dot. The interaction is chosen to be large enough so that
the quantum dot admits at most two electrons. Further-
more, the Hunds coupling is also assumed to be strong so
that one of the levels is always occupied by one electron,
which can thus be considered to be a local moment with
spin S. The resulting spin −1/2 is exchanged coupled
to the dot electron with spin s via the Hunds coupling
through a Hamiltonian

Hd−s = JS · s+ JA
(
S+s+ + S−s−

)
+ εd

(
d†↑d↑ + d†↓d↓

)
,

(1)

where the spin of the dot electron d†σ=↑,↓ can be written
as s = 1

2

∑
αβ d

†
ασαβdβ . In addition a projection con-

straint ensures no-double occupancy of the electron level
d†σ. The term proportional to J is the Heisenberg inter-

action between the dot and the spin, while JA represents
the process in which spin-conservation is broken.

The QD with Hamiltonian Eq. 1 is tunnel-coupled
to the quantum spin Hall (QSH) edge25 through a
Hamiltonian26,27

Hj−d = t
[
a†↑ (x = 0) d↑ + a†↓ (x = 0) d↓ + h.c.

]
(2)

where a†σ (x = 0) creates electrons on the QSH edge. A
time-reversal breaking impurity on the QSH edge is ex-
pected to produce a 4π-periodic Josephson effect because
of the flip of fermion parity with each 2π shift of the phase
φ. While the spin in the QD acts as a magnetic impu-
rity, as illustrated in Fig. 1(b), this only works in the
case of odd fermion parity of the JJ where by Kramers
theorem the ground state is two-fold degenerate. As will
be shown, while the QD returns to odd FP state each 4π
period (as in the time-reversal breaking case), the spin
in the QD is flipped over each such period. This leads to
the generic 8π-periodicity of the current as a function of
phase.

To illustrate the mechanism in Fig. 1(b) quantita-
tively, we consider the limit of weak tunnel coupling
t, the quantum dot electron can only tunnel to a low-
energy ABS in a Josephson junction on the edge written
as γ† =

∑
σ

´
dx
(
uσa

†
σ + vσaσ

)
with an energy E (φ),

which depends on the phase difference across the Joseph-
son junction. The effective Hamiltonian of the edge ABS
is written as

Hj = E (φ) (γ†γ − 1/2). (3)

The wavefunction of the ABS γ and its energy are solved
from the BdG Hamiltonian of the JJ

HBdG = τz (−ivF sz∂x − µ) + ∆ cosφ(x)τx + ∆ sinφ(x)τy
(4)

where s and τ are Pauli matrices on spin and Nambu
spaces, respectively, and φ (x) = φθ (x). Since
[HBdG, sz] = 0, the solutions are labeled with the
eigenvalues of sz, where the solution with sz = +1
have E (φ) = −∆ cos φ2 , u↑ (x = 0) = v↓ (x = 0)

∗
=√

sin φ/2
2ξ e−iφ/4 and u↓ = v↑ = 0 in the interval 0 ≤ φ ≤

2π, while its particle-hole-conjugated partner is the other
branch of solution with sz = −1. With this explicit form
of quasiparticle solution, we can therefore rewrite Hj−d
as

Hj−d = t
(
u↑d
†
↑γ + v↓γd↓ + h.c.

)
, (5)

where we have dropped the position arguments of u↑ and
v↓.

The simplified form of the effective coupling allows us
to describe the cycle of the QD shown in Fig. 1(b) as the
phase φ is varied. During each cycle of advancing φ by
2π forward, a quasiparticle is “pumped” from the bulk oc-
cupied states towards the conduction states through the
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Figure 2. The (many-electron) energy spectrum of a coupled
SC junction/QD/spin system [Eqs. (1)-(3)] as a function of
superconducting phase φ with J = 0.2∆ and εd = 0.5∆ and
(a) JA = 0 (spin-conserving case) and (b) JA = J (spin-
anisotropic case). The solid lines represent odd total fermion
parity (Kramer’s degenerate) states and the dashed lines rep-
resent even total fermion parity states. The fermion parity
changes with each 2π cycle of φ and the color represents the
curves corresponding to various eigenstates. Following the
spectrum in (a) we find that the ground state necessarily cou-
ples to the bulk states. In the spin-conservation breaking in
(b), the spectrum is isolated from the bulk states and 8π pe-
riodic.

edge states. The excitation of a bulk conduction band
electron must be avoided to prevent dissipation. This
can be accomplished by adding a spin-up electron or re-
moving a spin-down electron from the QD (and releasing
a Cooper pair). Starting with the state |↓〉 at φ = 0, i.e.
with the dot empty and localized spin at Sz = −1. Dur-
ing an increment of 2π of φ, a spin-up electron is added
to the dot from the bulk, which due to the hybridiza-
tion term Eq. (1) forms a singlet with the localized spin(
d†↑|↑〉−d

†
↓|↓〉√

2

)
. In the next cycle a spin-down electron

is removed from the dot, leaving the localized spin at
Sz = +1 (|↑〉). The electron leaving the dot can combine
with the next electron coming from the bulk and exit as
a Cooper pair. The next two cycles proceed similarly,
with JA breaking spin conservation to result in a triplet

state after the third cycle
(
d†↑|↑〉−d

†
↓|↓〉√

2

)
and returning to

the original state |↓〉 at φ = 8π.
The above process can be put on quantitative foot-

ing by projecting the Hamiltonian into the low-energy
Hilbert space and solving for the energy-phase relation
(EΦR), as detailed in the supplemental material. Typical
results with JA being zero or non-zero are shown respec-

tively in Fig. 2(a) and 2(b). In the absence the term pro-
portional to JA, the full 8π-cycle could not be completed
non-dissipatively because the dot-spin triplet state could
not be formed. Fig. 2(a) illustrates that the state is even-
tually driven into continuum, thereby dissipating away
the Josephson current. Alternatively, dissipation of the
excess energy into a phonon might lead to a dissipative
4π−periodic process. With non-zero JA [Fig. 2(b)], a full
cycle of states fully gapped from other excited states can
be obtained. We also note that JA breaks spin conserva-
tion along z-direction. The connection of the absence of
spin conservation with the prevention of dissipation will
be elaborated below.

III. CONDITIONS FOR DISSIPATIONLESS
JOSEPHSON EFFECT

We now discuss in general the necessary conditions
to realize a topological TRS Josephson junction with-
out dissipation. We first review how this is accomplished
in the case where time-reversal symmetry is broken by
an FI element in a topological junction with only one
ABS (see Fig. 3a). The EΦR is shown in Fig. 3(c). At
φ 6= 2πp, where p is an integer, a particle-hole pair of
ABS is present in the junction. Without the FI which
breaks TRS, these states are required to join the con-
tinuum modes (|E| = ∆) at the time-reversal-invariant
points φ = 2πp in order to satisfy the Kramers theo-
rem (black lines). This requirement corresponds (see
Fig. 3(d)) to the adiabatic change of the phase φ con-
necting the ground state at φ = 0 with the continuum
at φ = 2π. This creates quasiparticle excitations in the
bulk that lead to dissipation in the Josephson junction.
On the other hand, with the FI that breaks TRS even at
φ = 2πp, the ABSs remain disconnected from the contin-
uum modes [blue lines in Fig. 3(c)], and thus the many-
body state remains gapped from the continuum [blue
lines in Fig. 3(d)]. The full 4π-cycle of Josephson cur-
rent could then be completed without dissipation if the
temperature and rate of change of φ are low enough.

As seen in Fig. 4(a), the ABS levels in the non-
interacting case connect the valence bands to the conduc-
tion bands 6. This is a necessary consequence of Kramer’s
degeneracy and the time-reversal (i.e.. φ→ −φ) proper-
ties of the eigenvalues shown in Fig. 4(a). This leads us
to conclude that interactions are necessary to avoid dissi-
pation in TRS topological Josephson junctions. Next we
argue that spin-conservation breaking is crucial to avoid
dissipation in the TI Josephson junction. To understand
this, consider a Josephson junction built from a Corbino
geometry (shown at Fig. 3b), in which the phase differ-
ence φ between the two sides of the junction is controlled
by threading a flux Φflux = φ

2πΦ0 through the center of
the setup, where Φ0 = h

2e is the SC flux quantum. For
the sake of the argument, we first take out the SC and
FI elements, leaving behind a Corbino disk made of TI.
It is known that if spin is conserved along the polariza-
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Figure 3. (a) A short Josephson junction on a one-
dimensional TI edge. (b) Equivalent construction where now
the phase difference is controlled by threading a flux through
the center of the Corbino disk. (c) The single-particle An-
dreev spectrum for the junction with (blue thin lines) or with-
out (black thick lines) the FI element. (d) The many-body
EΦR with (blue thin lines) or without (black thick lines) the
FI element, where solid (dotted) lines indicate states with
even (odd) parity.

tion axis of the TI, the system exhibits quantized spin
Hall conductance, and by Laughlin’s argument28 thread-
ing a flux quantum has the effect of pumping a pair of
spins with sz = ±1 to opposite edges. This effect still
holds with the introduction of the SC, since s-wave su-
perconductivity preserves sz conservation. In this sce-
nario, the portion of TI edge not in contact with the SC
can provide a finite number of ABSs (say, nA) to ac-
commodate the pumped spins. After threading nA SC
flux quanta (corresponding to an incrementation of φ by
2πnA), the ABSs fail to accommodate all of the pumped
spins, leading to the occupation of the other continuum
modes on the edges, which corresponds to a dissipation in
the Josephson junction. The way to avoid this is to break
sz-conservation which would then destroy the quantized
spin Hall conductance of the system. Threading a flux
quantum would then flip the Fermion parities (FPs) of
the two edges6.

Based on these two observations, we expect that a dis-
sipationless Josephson junction in a TI requires an in-
teraction term that breaks sz-conservation to a junction.
This agrees with what we found in the Josephson junc-
tion coupled with a quantum dot as described above,
where the term JA provides the necessary breaking of
spin conservation, without which dissipation could not
be avoided.
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Figure 4. (a) EΦR for a junction with length L = πvF /∆0.
The solid (dotted) lines are solutions with eigenvalues sz = ±1
(b) Many-body spectrum for the same non-interacting junc-
tion. Black (dotted) lines are states with even (odd) par-
ity. The labels indicate which of the ABSs are occupied. (c)
Many-body spectrum for a junction with sz conserving inter-
actions.

IV. ROLE OF SPIN-ANISOTROPY

To gain further insight into the necessity of breaking
spin conservation to obtain a dissipationless TRS topo-
logical junction, we look into another example, first stud-
ied in Ref.21. Consider an SC-N-SC junction on a TI edge
where the N portion is long enough with multiple ABSs
present. The Hamiltonian is almost identical to our pre-
vious example ( Eq. (4)) except that ∆ is chosen to rep-
resent a long junction as ∆ (x) = ∆0θ

(
|x| − L

2

)
. When

L = πvF /∆, three ABSs are present for all values of φ,
and the single-particle and many-body EΦR are shown
in Fig. 4(a) and 4(b), respectively. The key feature in
Fig. 4(b), which is needed to understand the Josephson
behavior, is the four-fold degeneracy at φ = π. As dis-
cussed in Ref.21, splitting this degeneracy by Coulomb
interactions into to two two-fold Kramer’s degenerate
crossings. However, as seen in Fig. 4(c), the states still
continue to reach the continuum in the absence of spin
conservation breaking interactions. This forbids a dissi-
pationless ac Josephson effect in this case. To understand
this, we note that the four states have different num-
ber of quasiparticles:

{
|0〉 , γ†2 |0〉 , γ†3γ†1 |0〉 , γ†3γ†2γ†1 |0〉

}
,

and therefore have different values of sz. Once the four-
fold degeneracy is lifted we are left with two-fold de-
generacies at level crossings. These crossings are how-
ever between states of different sz. In accordance with
our general arguments presented above, we find that sz-

conserving interaction terms (e.g.
´
dx
(
a†↑a↑ + a†↓a↓

)2

)
in the Hamiltonian cannot split these crossings and the
ground state necessarily reaches the continuum simply
by adiabatic evolution. Adding sz-breaking interactions
like
´
dx
(
a†↑a↑a

†
↓∂xa↑ − a

†
↓a↓a

†
↑∂xa↓

)
+ h.c. , which were

assumed to be comparable to the Coulomb interactions
in Ref.21 are required to split the crossings to avoid dis-
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Figure 5. The path of an adiabatically-followed even-parity
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reversed paths of each other. The crucial point is n 6= 0, as
otherwise |0〉0 would join to |m̃〉2π and |m〉2π simultaneously.

sipation.

V. GENERAL THEOREM FOR
8π-PERIODICITY

The two examples of dissipationless TRS topological
junctions above both exhibit 8π-periodicities. We now
argue that this is directly a consequence of TRS present
in the junction. To see this, consider a TRS junction de-
scribed locally by the Hamiltonian H (φ) where φ is the
phase difference of the constituent SCs. This Hamilto-
nian satisfies

H (φ) = H (φ+ 2π) = ΘH (−φ) Θ−1, (6)

where the first condition follows from the 2π-periodicity
of the phase of SC. The second condition, where Θ is the
time-reversal operator, follows from the time-reversal of
the magnetic flux that creates the superconducting phase
φ. Let us suppose that |n〉φ is the nth excited many-
body state at phase φ satisfying H (φ) |n〉φ = En (φ) |n〉φ
and FP |n〉φ = λn (φ) |n〉φ, where FP is the Fermion
parity operator and En and λn are respectively its energy
and FP eigenvalues with λn (φ) = ±1 when there are
even/odd number of fermions in the system, respectively.
It then follows from Eq. (6) that

En (φ) = En (φ+ 2π) = En (−φ) . (7)

Finally, we stipulate that the FP must switch as φ is
advanced by 2π, i.e.,

λn (φ+ 2π) = −λn (φ) , (8)

which describes the topological property of the TI.
More specifically, threading a flux through the TI
Corbino disk (see Fig. 3b) changes the Z2 “time-reversal
polarization”29, which can be identified with the FP of
each of the edges6. We remark that this property is not
captured by the local Hamiltonian Eq. (6) of the junc-
tion.

The proof of 8π-periodicity for a state with even FP
is illustrated in Fig. 5, and the mathematically rigor-
ous proof is given in the supplemental material. Let us
start with a non-degenerate state |0〉0. Tuning φ forward
and backward by 2π reaches the degenerate states |m〉2π
and |m̃〉−2π (recalling that by Eq. (8) |m〉0 and |m̃〉0 are
odd-parity states and is a Kramers pair at φ = 0). Fur-
ther increasing or decreasing φ by 2π, the state |n〉±4π
is reached. From Eq. (7) we know that |n〉4π 6= |0〉0 be-
cause |0〉0 cannot be adiabatically connected both |m〉2π
and |m̃〉2π at the same time (compare, e.g., light red and
deep blue lines in Fig. 5). The proof for a state with odd
FP proceeds along similar spirits, and is discussed in the
appendix.

In summary, interactions and spin-conservation break-
ing are the two key ingredients that are required to per-
mit a dissipationless ac Josephson effect in a TRS topo-
logical Josephson junction. In this paper, we have given
a general proof that the EΦR of such a dissipationless
TRS topological Josephson junction is 8π-periodic in φ.
The 8π periodicity arises from the combination of the
flip of FP and spin over each 2π period. We have shown
that these ingredients can be incorporated naturally in a
model of a quantum dot coupled to a Josephson junction
on a TI edge.

This work is supported by JQI-NSF-PFC and the
University of Maryland startup grant. HH acknowl-
edge support from AFOSR (FA9550-15-1-0445) and ARO
(W911NF-16-1-0182) during the final stage of this work.
We acknowledge the discussion with Carlo Beenakker.

Note added– During the preparation of the manuscript
we became aware of a related recent-published work by
Peng et al.30.

Appendix A: Low-energy Hamiltonian for the Junction-Dot System

Since the Hamiltonian (1) conserves the parity of electron number, we expand it in odd and even parity subspaces.
We also take the limit U → ∞, which projects out the states where the quantum dot is doubly-occupied. The basis
states for the odd-parity subspace are

{
γ† |↑〉 , γ† |↓〉 , d†↑ |↓〉 , d

†
↓ |↑〉 , d

†
↑ |↑〉 , d

†
↓ |↓〉

}
, where |↑/↓〉 satisfies Sz |↑/↓〉 = ± |↑/↓〉
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and γ |↑/↓〉 = dσ |↑/↓〉 = 0. The Hamiltonian in this basis is

H(o) =



E(φ)
2 0 0 0 tu∗↑ 0

0 E(φ)
2 tu∗↑ 0 0 0

0 tu↑ −E(φ)
2 − J

2 + εd J 0 0

0 0 J −E(φ)
2 − J

2 + εd 0 0

tu↑ 0 0 0 −E(φ)
2 + J

2 + εd JA
0 0 0 0 JA −E(φ)

2 + J
2 + εd


, (A1)

while in the even subspace with basis
{
|↑〉 , |↓〉 , γ†d†↑ |↓〉 , γ†d

†
↓ |↑〉 , γ†d

†
↑ |↑〉 , γ†d

†
↓ |↓〉

}
, the Hamiltonian is expanded as

H(e) =



−E(φ)
2 0 0 −tv↓ 0 0

0 −E(φ)
2 0 0 0 −tv↓

0 0 E(φ)
2 − J

2 + εd J 0 0

−tv∗↓ 0 J E(φ)
2 − J

2 + εd 0 0

0 0 0 0 E(φ)
2 + J

2 + εd JA
0 −tv∗↓ 0 0 JA

E(φ)
2 + J

2 + εd


. (A2)

Finally, we note that at φ = 2nπ, v↓ = u↑ = 0 which enables us to reach the simple forms of eigenstates shown in
Fig. 1(c,d)

Appendix B: Bogoliubov-de Gennes Solution for a Long Topological Junction

Since sz commutes with HBdG, the solutions to HBdGψn = Enψn are labeled by the “spin” index sz = ±1. The
sz = +1 solutions, denoted by ψ(+)

n , have u(+)
n↓ = v

(+)
n↑ = 0 and

u
(+)
n↑ = Anesgn(x)iθEn/2ei

φ(x)
2 +iµ̄x̄−

√
1−Ē2

n||x̄|− L̄2 | (B1a)

v
(+)
n↓ = Ane−sgn(x)iθEn/2e−i

φ(x)
2 +iµ̄x̄−

√
1−Ē2

n||x̄|− L̄2 | (B1b)

for |x| > L
2 , and

u
(+)
n↑ = Ane−iθEn/2eiµ̄x̄+iĒn(x̄+ L̄

2 ) (B1c)

v
(+)
n↓ = AneiθEn/2eiµ̄x̄−iĒn(x̄+ L̄

2 ) (B1d)

otherwise. Here the normalization factor is An =
(

2L+ 2ξ/
√

1− Ē2
n

)−1/2

, and Ē = E
∆0

, µ̄ = µ
∆0

, x̄ = x
ξ = x

vF /∆0
,

L̄ = L
ξ , e

±iθEn = Ēn ± i
√

1− Ē2
n, where Ēn satisfies√
1−

(
En
∆0

)2

cos

(
EnL

vF
− φ

2

)
− En

∆0
sin

(
EnL

vF
− φ

2

)
= 0. (B2)

The sz = −1 solutions ψ(−)
n with energy −En are related to ψ(+)

n by particle-hole conjugation, ψ(−)
n = Ξψ

(+)
n , where

Ξ = syτyK. With the solutions to HBdG we can expand the Hamiltonian in quasiparticle operators as

H0 (φ) =
∑
n

En (φ)

(
γ†nγn −

1

2

)
(B3)

where En are determined from Eq. (B2) and γ†n =
∑
σ=↑/↓

´
dx
(
u

(+)
nσ a†σ + v

(+)
nσ aσ

)
. Since only the branch of solutions

with sz = +1 are summed, the number of quasiparticles in a many-body state coincide with the value of sz for that
state.
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f = 0 2p-2p 4p-4p

0

n

phase

Energy

m

 0

Figure 6. For odd-parity state we define m and n as the states that Kramers pair
{
|00〉 ,

∣∣0̃0

〉}
traverses as a flux quantum is

inserted in either direction. Here again deep-colored and light-colored lines are time-reversed paths of each other. Use Eq. (7)
to shift the light blue and light red lines by 4π, we get the dashed path, completing the full 8π-periodic path that the state
follows.

Appendix C: Mathematically Rigorous Proof of 8π -Periodicity

Let Uφ2,φ1
= e−i

´ φ2
φ1

H(φ)dφ be the operator that adiabatically changes the phase from φ1 to φ2. The conditions

|m〉φ2
= Uφ2,φ1

|n〉φ1
⇔ |n〉φ1

= Uφ1,φ2
|m〉φ2

(C1a)

⇔ |m〉2pπ+φ2
= U2pπ+φ2,2pπ+φ1

|n〉2pπ+φ1
, (C1b)

for all integers p, follows directly from the unitarity of U and Eq. (7).
We first consider the case where the ground state at φ = 0, |0〉0, has even FP, i.e., λ0 (0) = 1 (Fig. 5). Starting

with |0〉0, as the phase is adiabatically tuned to 2π and 4π, the state is brought to the mth and nth excited states
respectively, i.e.

U2π,0 |0〉0 = |m〉2π , (C2a)
U4π,2π |m〉2π = |n〉4π . (C2b)

Now we know m 6= 0 because from Eqs. (8) λ0(2π) = −λ0(0) = −1, i.e. the FP of the ground state at φ = 2π is
odd. The state that |0〉0 transforms into must be even in FP, i.e. λm (2π) = λ0 (0) = 1, and from Eq. (8) we have
λm (0) = −1, i.e. |m〉0 is odd in FP. Since H (0) is TRS, Kramers theorem guarantees that there is an orthogonal
state |m̃〉0 = Θ |m〉0 with the same energy: Em̃ (0) = Em (0). Apply Θ on Eqs. (C2) we have

U−2π,0 |0〉0 = |m̃〉−2π , (C3a)

U−4π,−2π |m̃〉−2π = |n〉−4π . (C3b)

We have thus obtained an energy-phase relation (EΦR) schematically shown in Fig. 5 which is 8π-periodic if n 6= 0
(and assuming no accidental degeneracy En 6= E0). To establish this, we use Eq. (C1) to derive from Eq. (C3b)

U2π,0 |n〉0 = |m̃〉2π , (C4)

which can be compared with Eq. (C2a). Since U0,2π |m〉2π = |0〉0, we know U0,2π |m̃〉2π 6= |0〉0 (as |0〉0 cannot be
adiabatically connected to two states at φ = 2π) and from Eq. (C4) this means n 6= 0. The 8π-periodic EΦR is
therefore established.

The case of λ0 (0) = −1 can be considered in a similar fashion (Fig. 6). Let |0〉0 and
∣∣0̃〉

0
be the Kramers pair of

degenerate ground states at φ = 0. Define |m〉2π and |n〉−2π be respectively the states that |0〉0 transforms into as φ
is tuned from 0 to ±2π, respectively. We have

U2π,0 |0〉0 = |m〉2π , U−2π,0 |0〉0 = |n〉−2π , (C5)

U2π,4π

∣∣0̃〉
4π

= |m〉2π , U−2π,−4π

∣∣0̃〉−4π
= |n〉−2π , (C6)

where the second line is obtained by applying Θ and Eq. (C1b) subsequently on the first line. Finally, we use Eq. (C1b)
to derive, from the last relation above,

U2π,0

∣∣0̃〉
0

= |n〉2π . (C7)
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Upon comparison with the first relation of Eq. (C5), this shows that n 6= m and hence the full 8π-periodic cycle of
EΦR shown in Fig. 6 (with En 6= Em) is established.

∗ Current Affiliation: Department of Physics, Virginia Tech,
Blacksburg, Virginia 24061, USA
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