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Abstract

The possibility of magnetization reversal via a bias mediated perpendicular magnetic anisotropy

is examined theoretically in an antiferromagnet. The numerical analyses based on a Néel vector

formulation as well as the micro-magnetic Landau-Lifshitz-Gilbert simulation reveal that the de-

sired switching can be achieved through the dynamical responses significantly different from the

ferromagnetic counterparts. Instead of the usual precessional trajectories around the applied effec-

tive magnetic field, their motions are rather pendulum-like due to the layered magnetic sublattices

with a strong antiparallel exchange interaction, where the inertial behavior plays a crucial role.

The absence of spiral damping can also lead to faster relaxation by orders of magnitude. With no

reliance on the current driven processes, the investigated mechanism is predicted with a low energy

requirement of only a few aJs per switching operation in the antiferromagnets.
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I. INTRODUCTION

In the early stages of spintronics, the antiferromagnets (AFMs) were exploited almost

exclusively in combination with free ferromagnetic layers. The primary driver is the large

magnetoresistance at these interfaces (i.e., the so-called giant magnetoresistance) that has

since played a significant role in the development of numerous applications such as the

magnetic random access memory [1, 2]. Only recently have they been recognized as an

active spintronic medium with excellent dynamical properties that can in fact claim advan-

tages over the conventional ferromagnetic counterparts [3–5]. Similarly to the ferromagnets

(FMs), the AFMs possess two quasistable states along the easy axis that provide a natural

system to encode or store the binary information−the logical bit. However, the absence (or

near absence) of net magnetization can make its manipulation nontrivial, particularly with

external magnetic fields. An alternative approach for control is to take advantage of the

”effective” field or torque induced via the magnetic interactions with adjacent layers whose

materials are not necessarily magnets [6, 7].

One solution proposed earlier is in the manner of spin transfer torque in FMs exploit-

ing the dynamical origin of AFM magnetization [5, 8–10]. However, the current density

needed to generate sufficient torque remains high even for AFMs [5]. Further, the weak

magnetization tends to extend the transverse electron spin decoherence length, requiring a

thicker layer for the AFMs to rely on the Slonczewski’s mechanism of spin transfer torque

[11]. Other current driven approaches such as spin-orbit torques and staggered spin-orbital

fields appear to require similarly high current densities [12, 13]. A potentially more efficient

approach may be possible via the electrostatic control of perpendicular magnetic anisotropy

(PMA) [14–17]. This effect has been demonstrated in the numerous realizations of magne-

toelectric heterostructures based on the FMs, providing a highly potent means to achieve

magnetization rotation without involving any electrical current (see, for instance, Refs. 18

and 19 as well as the references therein).

In this work, we theoretically explore the feasibility of PMA-mediated switching between

the two quasistable states in the AFMs. The investigation is based on a mono-domain model

of two compensated magnetic sublattices in the Lagrangian approach. The main focus is on

elucidating the basic physical principles of the currentless Néel vector rotation rather than

the analysis of a particular implementation as there can be a wide range of possibilities in
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the actual realization of the electrically controlled PMA [18–21]. For one, the strain may

be used to affect the AFM anisotropy in analogy to FMs. The calculation clearly illustrates

the desired AFM reversal by the temporal modulation of the PMA. Further, a detailed

analysis reveals the magnetization dynamics significantly different from those of the FM

counterparts, enabling much faster and energy efficient switching.

II. AFM DYNAMICS UNDER PMA

The process under consideration is akin to the dynamical spin reversal that is a well

established procedure in the spin echo experiment via a π pulse in the rotating frame of

reference [22]. Interestingly, a similar concept has been extended to switch the nano-magnets

[23, 24]. For a FM, applying the PMA along the z axis [Ka(t)] in the form of a single

pulse can induce the effective field Heff = −ẑmz2Ka(t)/ |M|, exerting a torque to rotate M

(m = M/ |M|) on the x-y plane normal to the PMA [the blue curve in Fig. 1(a)] provided

that its strength can overcome the in-plane axial anisotropy (for instance, along the y axis).

Unlike the magnetic resonance, Heff depends on the instantaneous state of M as shown

above. Accordingly, the magnetization executes a flip under the condition γ
∫

|Heff | dt ≃ π,

where γ is the gyromagnetic ratio and approximate conservation of mz is assumed for the

pulse duration. The non-zero mz needed for the magnetization switching can be induced by

a weak external magnetic field [24]. Or the naturally occurring thermal broadening around

the equilibrium state (e.g., mx = ±1, mz = 0) can provide the necessary component at

sufficiently high temperatures [25].

At the first glance, a corresponding effect of PMA-induced reversal seems infeasible in

AFMs since the effective fields cannot drive the characteristic Néel vector L to precess

around it. To illustrate this statement, let us consider an AFM with two sublattices whose

magnetizations MA and MB have an antiparallel orientation at the equilibrium state; i.e.,

MB = −MA and L = 2MA. When the PMA is applied, one could conclude that precisely

antiparallel effective magnetic fields would arise at each sublattice since a strong AFM

exchange interaction supposes mB,z = −mA,z at the initial state. The resulting torques on

A and B sublattices compensate each other, preventing their rotation on the x-y plane while

maintaining the AFM alignment.

However, even a weak asymmetrical perturbation can lift the reversal symmetry between
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MA and MB, producing fast mutual precession in the exchange fields that are no longer

collinear to the respective sublattice magnetization. At the introduction of the PMA, two

gyration axes (thus, the sublattice magnetizations) quickly adjust toward the bistable en-

ergy minima along the z direction while maintaining the nearly antiparallel orientation via

the strong AFM coupling. Hence, MA and MB are energetically favored to precess in the

different (±z) hemispheres. A more detailed pictorial description of this process is provided

in Fig. 1(b), where the time evolution of the magnetization trajectories is traced by con-

sidering the interplay of the PMA effective field and the exchange field. Once the PMA

along the z axis is turned on, the sublattice magnetizations initially with MA = M1 and

MB = −M1 start to reorient on the x-y plane toward the +y direction acquiring the same

y components for both sublattices (MA=M1 → M2). This breaks their antiparallelism; the

resulting exchange fields (e.g., H23) exert mutual rotations of MA and MB to restore (but

not perfectly) the antiparallel alignment by shifting or buckling the mA,z and mB,z compo-

nents further in the opposite (±z) directions (e.g., MA=M2 → M3). The actual trajectory

is determined as the aggregate of infinitesimal horizontal rotations (the PMA effect) and

vertical motions (the exchange field). The dominant exchange field keeps the magnetization

vectors essentially on the x-z plane [see the red solid curve in Fig. 1(b), M1 → M7].

While the above picture may be overly simplistic, it nevertheless provides a number

of valuable insights. The most obvious is that AFM dynamics are determined not only

by the PMA-mediated effective field as in FM, but also by the strong interlayer exchange

field. As such, the rotation toward the direction of the applied effective field (i.e., the z

axis) can occur without explicit involvement of dissipation unlike in the FMs subjected

to precession around it. In fact, strong damping could actually hinder rapid reorientation

of the magnetization vectors in the AFMs. Furthermore, the anticipated pendulum-like,

semicircular trajectories on the x-z plane suggest the notion of total magnetic energy, thus

raising an interesting question about the ”kinetic” energy or equivalent in addition to the

potential energy corresponding to the anisotropy.

As it turns out, such a degree of freedom is indeed required to describe the AFM dynamics

and can be expressed in terms of the velocity of the Néel vector L̇(t) [ d
dt
L = d

dt
(MA −MB)].

More specifically, the trajectory of the Néel vector is determined not only by its instantaneous

position L(t) (thus, Heff) but also by the velocity L̇(t). This means that the vector L(t)

tends to continue its path even after the external driving force is turned off. The underlying
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implication is that a properly tailored Ka(t), with the aid of the inertial motion, may realize

robust or reliable 180◦ inversion between two magnetic energy minima of an AFM [along the

±x axis; see the red curve in Fig. 1(a)]. Taking into account that the AFM vectors avoid the

hard y axis on the equatorial x-y plane unlike the FM counterparts (e.g., the red vs. blue

curves), the strength of the PMA required for the switching may be substantially smaller.

III. THEORETICAL MODEL

For a detailed analysis of the PMA induced AFM dynamics sketched qualitatively above,

a mono-domain model of two compensated magnetic sublattices is solved by following the

Lagrangian formulation developed earlier [26, 27]. While the Lagrangian phenomenology

can in principle be derived from the microscopic Hamiltonian of localized spin moments

with a few additional assumptions [28], we follow the symmetry approach that has been

supported by numerous experimental evidences since its introduction [27]. This treatment

conveniently allows the Lagrangian L to be expressed solely in terms of the AFM Néel vector

L so long as the AFM magnetization M (=MA + MB) mediated by the misalignment of

sublattice magnetizations is relatively small. Accordingly, the length of the Néel vector |L|
(= ML ≃ |MA| + |MB|) can be approximately expressed as an integral of the motion and

the AFM magnetization acquires a dynamical origin M = Hex

γML

n× ṅ at zero magnetic field,

where n = L/ML and Hex is the exchange field acting between the sublattices [26, 29].

At zero external magnetic field, the Lagrangian

L =
ML

2

2ω2
ex

ṅ2 −W (n). (1)

determines the evolution of the AFM vector. Here, ω2
ex = γ2HexML and W (n) is the density

of the anisotropy energy, the magnitude of which can be dependent on the shape of the nano-

magnet as well as its interfacial characteristics [30]. Combining this inherent contribution

with the electrically induced PMA along the z axis, the total anisotropy can be expressed

as

W (n,t) =
1

2
{Kxn

2
x +Kyn

2
y + [Kz +Ka(t)]n

2
z}, (2)

where Kx, Ky and Kz are the values attributed to the structure without external perturba-

tion and Ka(t) is the electrically mediated PMA as defined earlier. For simplicity, the cubic

and higher-order terms are neglected in Eq. (2). Moreover, Ky can be set to zero without the
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loss of generality when n2 = 1; this merely amounts to the renormalization Kx −Ky → Kx

and Kz −Ky → Kz. Then, the magnetic relaxation toward the local minimum of W (n, t)

can be incorporated into the kinetic equation by way of a dissipation or damping function

R =
δrML

2

2ω2
ex

ṅ2, (3)

which can be given in terms of the homogeneous line width δr of AFM resonance. The

correspondent Lagrange equation augmented with the dissipation [Eq. (3)] describes the

evolution of the AFM vector in the form of a Langevin second-order differential equation

n×
[

n̈+ ω2
ex

∂

∂n

W (n,t)

M2
L

+ δrṅ

]

= 0. (4)

Similar expressions have been obtained earlier exceptW (n,t), which now explicitly represents

the time-dependent PMA [9]. This second-order nature highlights the dependence on the

velocity dn
dt

(or d
dt
L) mentioned above.

To proceed further, it is convenient to represent Eq. (4) via polar and azimuthal angles

of vector n(t) = (sin θ cosϕ, sin θ sinϕ, cos θ) and introduce dimensionless time t → ωrt in

terms of the zero-field AFM resonance frequency ωr = γ
√
2HexHan. Here, Han represents

the effective anisotropy field (= |Kx|/1
2
ML). Then, the corresponding expressions take the

form

θ̈ = sin 2θ

[

1

2
ϕ̇2 + ξz + ξa(t)− ξx cos θ

]

− λθ̇; (5)

ϕ̈ sin2 θ = −θ̇ϕ̇ sin 2θ + ξx sin
2 θ cos 2ϕ− λϕ̇ sin2 θ; (6)

where ξx = Kx/2|Kx|, ξz = Kz/2|Kx|, ξa(t) = Ka(t)/2|Kx|, and λ = δr/ωr.

To solve these coupled equations, appropriate initial conditions (defined as θ0, ϕ0, θ̇0

and ϕ̇0 for the respective parameters) need to be specified. Note that the minimum of

the AFM anisotropy energy at t = 0 (i.e., θ0 = π/2 and ϕ0 = 0) is just one particular

realization among the possible configurations at a non-zero temperature T . Similarly, the

initial ”velocities” θ̇0 and ϕ̇0 are also distributed according to the ”kinetic energy” with a

dispersion around the ambient thermal energy kBT . To account for all of the physically

possible n(t) and ṅ(t), the effect of thermal fluctuation in the initial AFM orientation may

need to be considered. The desired distribution P (q) can be introduced in terms of the

Hamilton function that represents the total energy E of the AFM with volume V0 in the

phase space q [= (θ, ϕ, θ̇, ϕ̇)] (i.e., the coordinates of n and ṅ). More specifically, the explicit
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form for E is obtained directly from the Lagrangian [Eq. (1)] as

E

V0
= ṅ

∂L

∂ṅ
− L. (7)

Then one can arrive, after some algebra, at the following:

E(q) = EM

(

4θ̇2 + 4ϕ̇2 sin2 θ + ξx sin
2 θ cos2 ϕ+ ξz cos

2 θ
)

, (8)

where EM = MLHanV0. Finally, the usual canonical expression leads to the equilibrium dis-

tribution function P (q) = N exp
[

−E(q)
kBT

]

with a normalization factor N ; i.e.,
∫

P (q)dq = 1.

The range of typical initial conditions can be obtained in terms of the root-mean-square

value 〈∆qi〉 =
√

q2i , where q2i =
∫

q2i P (q)dq. The problem is simplified when the relatively

small dispersion ∆q [= (π
2
−∆θ,∆ϕ,∆θ̇,∆ϕ̇)] around the energy extremum q0 = (π

2
, 0, 0, 0)

is taken into consideration. The estimates give
〈

∆θ̇
〉

= 〈∆ϕ̇〉 =
√

kBT/8EM , 〈∆θ〉 =
√

kBT/2EM |ξx − ξz|, 〈∆ϕ〉 =
√

kBT/2EMξx. The increase of dispersion 〈∆θ〉 with a reduc-

tion in the difference ξx − ξz is not surprising when considering that the x axis ceases to be

the easy axis as ξx − ξz → 0. Then, the x-z plane instead becomes the easy plane with a

much broader initial distribution.

IV. RESULTS AND DISCUSSION

Utilizing the formulation described above, the solutions of Eqs. (5) and (6) can be ob-

tained under electrically induced PMA [i.e., ξa(t)] and initial conditions q(t = 0). For the nu-

merical results, we exploit the simplest case of an easy-axis AFM (assuming Kx = −2.5×105

erg/cm3, Kz = 0) and adopt the typical AFM zero-field resonance frequency fr (= ωr/2π)

of 150 GHz along with the sublattice magnetization ML/2 of 200 Oe. These parameters

correspond to the effective fields Han = 1250 Oe and Hex = 1.1 MOe according to the sim-

ple models considered. The quantity of the magnetic energy EM is linearly proportional to

the volume V0 (assumed to be 60×60×2 nm3) whose magnitude would provide nonvolatility

at room temperature (≈ 40kBT ). The PMA applied in the form of a rectangular pulse

with amplitude Ka = −4 × 105 erg/cm3 and duration ∆t is assumed at t = 0 that alters

the easy axis to be essentially along the z direction. Thus, the full set of the parameters

ξx = −0.5, ξa(t) = −0.8 [only for t ∈ (0,∆t)], and the damping factor λ = 0.4 determines

the Néel vector evolution in terms of the expressions given above and the dimensionless time
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ωrt. The corresponding broadening around the energy minimum E(q0) is estimated to be

〈∆ϕ〉 ≃ 〈∆θ〉 ≃ 5◦,
〈

∆θ̇
〉

≃ 〈∆ϕ̇〉 ≃ 0.06 at room temperature, which is used to determine

the typical initial conditions of the AFM magnetization accounting for the effect of thermal

fluctuations. An alternative approach, on the other hand, requires repetitive sampling over

the four dimensional parameter space q [according to the distribution function P (q)] with

sufficiently fine coverage. As the current analysis is focused on the prevalent behaviors of

the system rather than the deviation from the norm, the adopted treatment utilizing the

likely initial state is expected to adequately describe the AFM response to the applied PMA

at finite temperature. A detailed examination of thermal variation/noise in the switching

dynamics is beyond the scope of this investigation.

Figure 2 show the results of AFM dynamics simulation for four different values of pulse

duration ∆t. Following the discussion given above, the initial state of the Néel vector is

chosen slightly away from the equilibrium orientation along with the non-zero velocities to

account for the thermal broadening (i.e., θ = 85◦, ϕ = 5◦, θ̇ = ϕ̇ = 0.06). As shown in

Fig. 2(a), the cases in either extreme of ∆t can be readily understood. The Néel vector

aligns, after some oscillations, along the z axis with a long PMA pulse (thus, a 90◦ rotation;

curve 2), while an insufficient duration leads to the relaxation back to the initial orientation

as expected (e.g., ∆t = 3 ps; curve 1). In comparison, the outcome of the dynamics is

seemingly more complex in the intermediate regime [Fig. 2(b)]. Here, a shorter pulse leads

to the 180◦ flip as desired (6 ps; curve 3), whereas a somewhat longer pulse is predicted

with a botched reversal resulting in an about-face instead (9 ps; curve 4). The clue for this

behavior can actually be found from the temporal dynamics under a long pulse shown in

Fig. 2(a). At t = 6 ps, the Néel vector has passed the potential minimum at nz=1, nx=0 and

is moving toward the nx=−1 direction. On the other hand, time t = 9 ps is after the Néel

vector has changed the trajectory and is now heading to the positive nx territory. Thus, the

”moment of inertia” at the time when the PMA pulse is cut off appears to be crucial near

the nz=0 point (i.e., the potential apex without the PMA) in determining the final resting

place (nx=+1 or −1) in the subsequent AFM relaxation. These dynamics indeed resemble

a pendulum-like back-and-forth oscillation on the x-z easy plane instead of the FM-like

precession around the z axis, confirming the qualitative picture provided earlier (Fig. 1).

Accordingly, the desired 180◦ reversal can be realized deterministically by optimizing the

PMA pulse duration. The window of operation for ∆t is also expected to be cyclic, when
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considering the oscillatory dynamics pattern.

For validation of the results, it is interesting to compare the AFM dynamics predicated

by the present approach with those of micro-magnetic simulation as shown in Fig. 3. In the

latter treatment [31], an AFM is considered as the foliated FM layers with AFM interactions

between them. In turn, each FM layer consists of small FM cells driven by local exchange

fields according to the Landau-Lifshitz-Gilbert (LLG) equation [32]. In this calculation, we

choose the FM cell sizes of 0.5×0.5×0.5 nm3 with the cube face area Ac = 0.25 nm2. In

addition, the required inter- (intra-)layer exchange constants are set at J = −(+)5 × 10−7

erg/cm that, according to an approximate expression |J | = 1
2
MLHexAc, match well with

the AFM exchange field estimate discussed above in the Néel vector description (Hex = 1.1

MOe). The numerical values for the characteristic parameters (such as V0, Kx, ML, Ka, and

λ) also remain the same, which give the Gilbert damping constant α = λ
√

Han/Hex = 0.01

and the zero-field resonance frequency of around 150 GHz. One additional provision is that

the magnetization in each FM layer at t = 0 (i.e., the initial condition) is canted slightly

(e.g., ∓5◦) from the minimum state of mx = ±1 with net zero total magnetization to mimic

the thermal broadening effect discussed earlier. The corresponding conditions for the Néel

vector model are θ = 85◦, ϕ = 5◦, θ̇ = 0, ϕ̇ = 0, for which the initial velocity is set to

zero (i.e., L̇ = 0 at t = 0). This is to be consistent with the LLG treatment (that contains

no such dependence) and thus differs from those used in Fig. 2. The simulation results

clearly illustrate that both approaches predict essentially the identical responses in the

AFM dynamics despite the major differences in the underlying assumptions. Even the non-

coherent dynamics of the FM cells in the micro-magnetic simulation consistently indicate

the fast, pendulum-like switching of the magnetization vectors in the AFMs avoiding the

hard y axis.

With the feasibility of the phenomenon illustrated as described above, we examine in

greater detail the conditions necessary for the successful PMA induced reversal. Figure 4

provides a correspondent phase diagram of the AFM response in terms of the pulse duration

and the amplitude. The alternating property of the phase diagram in ∆t confirms the cyclic

behavior of the pendulum-like AFM dynamics mentioned earlier. However, the cases with a

long ∆t may become unstable at high temperatures. As illustrated by curve 2 in Fig. 2(a),

the damped oscillation experienced at large t is indicative of the diminished ”kinetic energy”.

Accordingly, the random thermal fluctuations can wield a larger influence than the inertial
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motion in the relaxation process that follows the termination of the PMA pulse (see the

color map in Fig. 4). Other adjustments heretofore undiscussed will also be needed to

accommodate the properties of a specific AFM in the actual implementation. Nevertheless,

the pendulum-like AFM dynamics are expected to provide a robust switching mechanism

under a properly tailored PMA pulse. Particularly, the dark colored regions of the phase

space with a large energy barrier ∆E (against the random thermal motions) can ensure

the desired dynamical response with high fidelity. This tends to require a strong PMA and

a relatively short ∆t. The large barrier can also alleviate the impact of the initial state

variation discussed earlier.

V. SUMMARY

In this work, an effective mechanism of AFM switching is illustrated. In contrast to

the spin transfer torque [5, 8, 9], the PMA-mediated Néel vector reversal occurs with an

electrostatic field and does not require an electrical current. Accordingly, the energy con-

sumption for a single device operation can be expected in the range of a few aJ [33]. As

for electrical detection, the giant magnetoresistance effect in a heterostructure with a FM of

fixed magnetization may provide a solution [1, 2]. Alternatively, one may utilize the surface

conductance of a topological insulator that is sensitive to the magnetization direction of the

proximate AFM sublattice at the interface. Apart from evident application to low-power

memory [34], the strong non-linearity of the response to an input signal may also enable

logic functions with the speed and energy efficiency.
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FIG. 1. (Color online) (a) Schematic illustration of the FM and AFM magnetization vector tra-

jectories (M and L, respectively) in the reversal motion triggered by a PMA-mediated effective

field pulse. For convenience, both M and L are shown in the normalized form. The key difference

is that the FM vector rotates around the equatorial path on the x-y plane (blue), while the AFM

counterpart takes the trace on the x-z plane (red) avoiding the hard y axis. The final relaxation

to the destination (see the dashed curves) after the PMA pulse is terminated can be achieved

much more rapidly in the AFM without the precessional motion. (b) Conceptual depiction of the

interplay between the PMA effective field (green arrows) and the exchange field (blue arrows) on

the sublattice magnetization MA (red arrows). As show, MA evolves from M1 through M7 in

successive precessions around the corresponding PMA field (1→2, 3→4, 5→6 via H12, H34, H56)

as well as the rotations by the resulting exchange field to restore antiparallel alignment between

MA and MB (2→3, 4→5, 6→7 via H23, H45, H67). The red contour indicates the ideal case

trajectory with infinitesimal steps. The conjugate dynamics of MB are not shown for simplicity.
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FIG. 2. (Color online) Temporal evolution of the AFM Néel vector n (= L/|L|) under a PMA

mediated effective field with different pulse durations ∆t; (a) 3 ps (curve 1), >25 ps (curve 2) and

(b) 6 ps (curve 3), 9 ps (curve 4). The solid lines show the x component (nx), while the dashed

lines are for the z component (nz). Due to the hard y axis, the motion in this direction (ny) is

rather insignificant and thus not shown. The calculations are based on the Lagrangian approach

[Eqs. (5) and (6)] with the initial state of the Néel vector slightly canted from the equilibrium

orientation (i.e., θ = 85◦, ϕ = 5◦, θ̇ = ϕ̇ = 0.06)
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FIG. 3. (Color online) Comparison of the Néel vector dynamics obtained with (a) the micro-

magnetic LLG simulation and (b) the present Lagrangian mono-domain approach. Unlike in Fig. 2,

the initial velocity of the Néel vector is set to zero in the Lagrangian approach to be consistent

with the LLG treatment.
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FIG. 4. (Color online) Phase diagram of the AFM response in terms of the pulse duration and

the amplitude. The regions with ”0” and ”π” represent the conditions resulting in the final Néel

vector state of nx = 1 (no change) and nx = −1 (reversal), respectively. The color map illustrates

the stability of the switching response, where ∆E denotes the estimated energy barrier against

a completely random thermal outcome. The darker color corresponds to higher fidelity in the

predicted result.
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