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Yttrium Iron Garnet (YIG) is the ubiquitous magnetic insulator used for studying pure spin
currents. The exchange constants reported in the literature vary considerably between different ex-
periments and fitting procedures. Here we calculate them from first-principles. The local Coulomb
correction (U − J) of density functional theory is chosen such that the parameterized spin model
reproduces the experimental Curie temperature and a large electronic band gap, ensuring an insulat-
ing phase. The magnon spectrum calculated with our parameters agrees reasonably well with that
measured by neutron scattering. A residual disagreement about the frequencies of optical modes
indicates the limits of the present methodology.

I. INTRODUCTION

Yttrium iron garnet (Y3Fe5O12-YIG) is a ferrimag-
netic insulator of particular significance due to its
uniquely low magnetic damping and relatively high Curie
temperature (∼ 570 K). There has been a recent resur-
gence in interest after Kajiwara et al. [1] electrically in-
jected spin waves into YIG and detected (by the inverse
spin Hall effect) their transmission over macroscopic dis-
tances of 1 mm. Short wave length spin waves excited
electrically [2] or thermally [3] can also diffuse over dis-
tances of 40 µm, even at room temperature, demonstrat-
ing the potential of using spin waves as information car-
riers in spintronic applications. The spin Seebeck ef-
fect (SSE) in YIG [4, 5] also garners attention in the
field known as spin caloritronics [6]. Recent results on
the SSE in the related garnet Gadolinium-Iron Garnet
(GdIG) [7] illustrate the importance of understanding the
many mode spin wave spectrum [8].
Most experiments on YIG are interpreted in terms of

a single magnon band with parabolic dispersion and a
single exchange or spin wave stiffness parameter. How-
ever, the magnetic primitive cell contains 20 Fe moments
and gives a complicated spin wave spectrum with many
modes in the THz range [9]. The quantitative quality
of Heisenberg spin models of YIG [10] relies on the ac-
curacy of the derived parameters, such as exchange con-
stants and magnetic moments. Through several decades
of literature there is a plethora of suggested exchange
constants for YIG. All are deduced either from macro-
scopic measurements such as calorimetry, or are fitted
to the neutron scattering data by Plant from 1977 [11].
The triple axis inelastic neutron scattering only resolved
3 of the 20 spin wave branches which has led to a quite a
spread in exchange parameter. The limited experimen-
tal data is insufficient to uniquely fit the exchange pa-
rameters. Moreover, the spin wave spectrum of YIG is
anomalously sensitive to small changes in the exchange
constants. Small changes in the exchange parameters

appear to give dramatically different spectra. Here we
employ computational material science to improve this
unsatisfactory situation.

Different ab initio techniques can be employed to de-
duce Heisenberg exchange parameters. Within density
functional theory (DFT) the Heisenberg Hamiltonian can
be fitted to the calculated total energy to identify the cou-
pling constants. There are two common methods of doing
this. In the ‘real-space’ method, the total energy of a set
of collinear spin configurations with spin flips on different
sites is mapped onto the Hamiltonian [12, 13]. The alter-
native method is to compute the spin wave stiffness from
the total energy of spin spirals by varying the pitch [14].
For simple, one component systems such as Fe, Co, Ni,
both approaches give a good agreement between them
selves and also with experimental data [15, 16]. Here we
have chosen to use the real-space method with collinear
spin configurations due to the simplicity of implementa-
tion when treating the complex crystal structure of YIG.

YIG belongs to the cubic centrosymmetric space group
Ia3d [17, 18]. The primitive BCC unit cell contains 80
atoms. One eighth of it is shown in Fig. 1(a). The mag-
netic structure as determined by neutron diffraction mea-
surements [19] confirms that the spins of the FeO and FeT

ions are locked into an anti-parallel configuration. There
is a net magnetization because of the 3:2 ratio of FeO to
FeT sites in the unit cell, hence YIG is a ferrimagnet.

As a magnetically soft insulator, the magnetism in YIG
can be well described by the Heisenberg model

Etot = E0 −
1

2

∑

i6=j

JijSi · Sj , (1)

where E0 is the total energy excluding spin-spin interac-
tions and Si is a classical spin vector (of unit length) of
the ith Fe atom. The exchange interaction Jij is usually
considered to be short ranged, but in principle the in-
dex is summed over all spins in the crystal. We initially
consider only nearest neighbor (NN) exchange interac-
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FIG. 1. (a) 1/8 of the YIG unit cell. The dodecahedrally
coordinated Y ions (green) occupy the 24c Wyckoff sites, the
octahedrally coordinated FeO ions (blue) occupy the 16a sites,
and the tetrahedrally coordinated FeT ions (yellow) occupy
the 24d sites. The oxygen (red) 96h sites are not confined by
symmetry, while all cation sites are on special crystallographic
positions. (b) The solid and dash lines denote the nearest and
next nearest neighbor exchange interactions. The subscripts
aa, dd and ad are stand for the FeO-FeO, FeT-FeT and FeO-
FeT interactions, respectively.

tions (as done by most previous works); hence there are
three independent exchange constants, Jaa, Jdd, Jad cov-
ering inter- and intra-sublattice interactions as indicated
in Fig. 1(b). Comparing the energy of the model Hamil-
tonian (1) with the total energy calculated ab initio for
different spin configurations which should be degenerate
in energy, we find unacceptably large energy differences
(∼ 2 meV) when only including NN interactions. There-
fore, later in this work we extend the model to include
also next nearest neighbor (NNN) exchange interactions
parameterized by three more exchange constants J ′

aa, J
′
dd

and J ′
ad (also shown in Fig. 1(b)). Previous works which

have included interactions beyond NN [20] suffer from
an increased over-parameterization of the fitting of only
3 spin wave modes in the neutron scattering data. Our
minimal reliance on experimental data puts the justifica-
tion for the inclusion of NNN on a more solid footing.

We disregard the magnetocrystalline anisotropy energy

which for pure YIG is known to be small and in fact is
beyond the accuracy of our methods. The dipolar inter-
actions do not interfere with the exchange energy and can
be added a posteriori. The exchange constants are fitted
to a number of different collinear spin configurations in
which spins are flipped from the ground state. The num-
ber of different configurations must be larger than the
number of adjustable parameters (3 for the NN model
and 6 for the NNN model).

II. EXCHANGE FITTING

We now give a brief outline of how the Heisenberg
Hamiltonian is mapped onto the different spin config-
urations. We consider a spin wave of wave vector k that
induces small oscillations in a spin moment Si on site i
about the collinear ground state.

φk

i (t) = k ·Ri + φα(t). (2)

The total energy Eq. (1) becomes

Eφ
ij(k, θ, t) =E0 −

1

2

∑

i6=j

JijSiSj[cos θi cos θj

+ sin θi sin θj cos(φ
k

i (t)− φk

j (t))].

(3)

The equation of motion for the spin magnetic moments
is

dSi(t)

dt
= −Si(t)×Hi (4)

where Hi = −∂E/∂Si is the effective magnetic field.
Then

dφj

dt
sin θj =

∑

i( 6=j)

JijSi[cos θi sin θj

− cos(φk

i − φk

j ) sin θi cos θj ],

(5)

If θi ≪ 1 or (π−θi) ≪ 1, dφ/dt ≈ ωk. Expanding Eq. (5)
to lowest order leads to

ωkθj =
∑

i( 6=j)

JijSi[Aiθj − cos(k · dij)θiAj ], (6)

where dij = Ri−Rj , and the prefactorAi is +1 for θi ≈ 0
and -1 for θi ≈ π. The frequencies of the normal modes
of this spin system are the eigenvalues of the matrix M,

Mαβ =

(

∑

γ

Jαγ(0)SγAγ

)

δαβ − Jαβ(k)SβAα, (7)

Jαβ(k) =
∑

d

Jαβ cos(k · dij), (8)

where the indices α and β label the 20 different positions
in the unit cell, δαβ is the Kronecker delta, dij = Ri−Rj
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is a vector from an ion in the i sublattice to a nearest
neighbor in the j sublattice, and the sum is over all such
vectors related by symmetry. The eigenvalue problem
can be solved in terms of the real space exchange con-
stants Jαβ calculated from the total energies of collinear
magnetic structures.
To calculate the total energy we use DFT as im-

plemented in the Vienna ab initio simulation package
(VASP.5.3) [21, 22]. The electronic structure is de-
scribed in the local density approximation (LDA) and
the generalized gradient approximation (GGA). Projec-
tor augmented wave (PAW) pseudopotentials [23] with
the Perdew-Wang 91 gradient-corrected functional are
used. A 500 eV plane-wave cutoff and a 6 × 6 × 6
Monkhorst-Pack k-point mesh was found to lead to well
converged results. We use the atomic positions from the
experimental structural parameters (Tab. I) [17, 18].

Wyckoff Position x y z
FeO 16a 0.0000 0.0000 0.0000
FeT 24d 0.3750 0.0000 0.2500
Y 24c 0.1250 0.0000 0.2500
O 96h 0.9726 0.0572 0.1492

TABLE I. Atomic positions in the YIG unit cell. The lattice
constant is a = 12.376 Å.

For the (ferrimagnetic) ground-state structure, the cal-
culated spin magnetic moment of the Fe ions and the
electronic band gap of YIG are shown in Fig. 2(a). The
total moment (including Fe, Y and O ions) per formula
unit is consistently 5 µB, in good agreement with ex-
perimental data [24, 25]. The majority of the moment
within the unit cell is highly localised to the Fe sites.
In the DFT-LDA calculation, the spin moments are -
3.49µB for FeO, 3.47µB for FeT, and the electronic band
gap has the value 0.35 eV, much lower than the value of
2.85 eV found experimentally [26, 27]. Density-functional
theory in its bare form is not good at predicting the en-
ergy gap of insulators. This can be overcome to some
extent by the inclusion of an on-site Coulomb correc-
tion (LDA/GGA+U). In this study the Hubbard U
and Hund’s J parameters for the Fe atoms are deter-
mined [28–30] by DFT-GGA+U calculations with U −J
in the range 0.7 ∼ 5.7 eV. The electronic energy gap as
well as the spin moments increases slightly with U − J .
Even for the largest values of U − J , the moments are
much smaller than expected for pure Fe3+ S = 5/2 state

(µs = g
√

S(S + 1) = 5.916µB), but quite close to those
found from neutron diffraction [31]. However, these au-
thors suggest that the true space group of YIG is R3̄.
Only when they perform the refinement in this setting
do they obtain good agreement with the known net mo-
ment of YIG. The moments obtained are very similar to
those found here and by other ab initio calculations (Ta-
ble II). The difference between the Ia3̄d and R3̄ groups
appears to be sufficiently small to not affect the results

µs (µB)
FeT FeO per formula unit Method Source
5.37 4.11 7.89 neutron (Ia3̄d) Ref. 31
4.01 3.95 4.13 neutron (R3̄)a

1.56 0.62 3.44 LSDA Ref. 32
3.36 3.41 3.26 LDA Ref. 24
3.95 4.06 3.73 GGA+C Ref. 30
3.47 3.49 3.43 LDA this work
4.02 4.12 3.82 GGA+U (3.7 eV)

a Fe sites in the R3̄ space group retain the tetrahedral and
octahedral coordinations.

TABLE II. Comparison of magnetic moments in the litera-
ture. Note that per formula unit includes only the Fe mo-
ments and not the total moment of the unit cell. All ab initio
studies are for the Ia3̄d point group.

much. The electronic energy gap is still smaller than
the experimental value, but an even larger U − J causes
unwanted artifacts such as a negative gap for spin-flip
excitations.

III. EXCHANGE INTERACTIONS

A. Nearest Neighbour

Ten different spin configurations (SC) were used to de-
termine the exchange constants. Considering the NN
model first, with Eaa = JaaSaSa, Edd = JddSdSd and
Ead = JadSaSd, where Sa, Sd are the +/- directions of
FeO, FeT ions, the total energies Eq. (1) are listed in Tab.
III.

TABLE III. Total energies for different spin configurations
(SC) in the NN model. SC (a) is the ground-state structure.
The other configurations are gotten by changing the magne-
tization directions of part of Fe ions.

SC Etot SC Etot

a E0 + 32Eaa + 24Edd + 48Ead f E0 + 32Eaa − 24Edd

b E0 + 32Eaa + 24Edd − 48Ead g E0 − 32Eaa − 24Edd

c E0 + 32Eaa + 8Edd + 32Ead h E0 − 32Eaa − 8Edd

d E0 + 32Eaa − 8Edd + 16Ead i E0 − 32Eaa + 8Edd

e E0 + 16Eaa + 16Edd + 28Ead j E0 − 32Eaa + 24Edd

The exchange constants are the solutions of each of
four linear equations. To minimize the dependence of
the results on the choice of the spin configurations, the
final results were obtained using all the configurations
(a)-(j) listed in Tab. III. The final values, shown in
Fig. 3, were obtained by a least squares fit of the 10
SC’s. In the DFT-LDA/GGA calculations, the exchange
constant Jdd is negative, meaning that this interaction fa-
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FIG. 2. (a) Spin moments of Fe ions (per panel) and band
gap of YIG (lower panel) obtained by computed in the LDA,
GGA, and GGA+U approximations. Symbols mark calcu-
lated values and solid lines are guides for the eye. (b) The
band structures of YIG in the GGA (left) and GGA+U ,
U − J = 5.7 eV (right) calculations.

vors ferromagnetic order. This result contradicts all pre-
vious results in the literature [33, 34] - indicating that the
DFT-LDA/GGA method fails to describe the magnetism
of YIG. However, in the GGA+U method, all three ex-
change constants are positive (antiferromagnetic), Jdd
is an order of magnitude smaller than Jad, while Jaa
is about half of Jdd. The strong Jad inter-sublattice
exchange dominates the smaller intra-sublattice ener-
gies, forcing the ferrimagnetic ground state of the bulk.
All the three exchange constants decrease as U − J in-
creases, because a larger on-site U − J of the Fe atoms
leads to a more localized electronic structure result-
ing in weaker exchange. Previous works assumed that
Jad ≫ Jaa, Jdd, which is required to constrain the fit-
ting problem [9, 20, 33, 34]. Our results show directly
the smallness of the intra-sublattice exchange energies
because of a stronger objective function for the least-

FIG. 3. Calculated exchange constants (in units of meV) by
the DFT-GGA+U method. The error bars denote the square
root of the squared 2-norm of the residual (l2-norm). Ex-
change constants favoring a ferromagnetic alignment are here
denoted negative. (Insert) Calculated exchange constants (in
units of meV) in the DFT-GGA/LDA approximations.

squares fitting procedure.

B. Next Nearest Neighbour

The error bars in Fig. 3 reveal a large covariance in
the fitting of the NN spin model to the different configu-
rations. Even though the errors decrease with increasing
U − J , the variance in the energies is still comparable
to its estimation. This situation can be improved by
extending the NN to the NNN model with additional
parameters J ′

aa, J
′
dd and J ′

ad. The total energies of the
corresponding SC can be rewritten (shown in Tab. IV),
where E′

aa = J ′
aaSaSa, E

′
dd = J ′

ddSdSd, E
′
ad = J ′

adSaSd

and Etot stands for the total energy expression in the
NN model. The exchange constants are obtained from
the set of linear equations for the SC (a)-(g) listed in
the table. SC (h)-(j) are selected to check whether the
results are reasonable. Ecal are the calculated total en-
ergies for U − J = 4.7 eV relative to the ground state
(SC (a)). The energy difference for the different SC is of
the order of 1 ∼ 10 eV which is much larger than the ac-
curacy of the calculation (10−3 eV). ∆ENNN (≪ ∆ENN)
is the difference between the total energies calculated ab
initio and the fitted total energies from the NNN (NN)
spin model and constitutes the energy that has not been
accounted for in our model Hamiltonian. This can be,
for example, from longer ranged exchange interactions or
anisotropies in the system. The difference between the
first-principles total energy and the spin model |∆ENN|
amounts to up to 7.85%, but the NNN model has a signif-
icantly smaller value |∆ENNN| = 0.66%, which we deem
to be acceptable.
In table V we compare our results to other values in the

literature. Almost all of the exchange interactions we cal-



5

culated are lower than obtained from fitting experimen-
tal data. Especially the Jad, the strongest interactions,
is lower than others have suggested, although the NNN
U − J = 3.7 eV is quite close. Lowering U − J gives an
increase in Jad, but at the expense of the size of the mag-
netic moments and the width of the electronic band gap.
One may naively think that lower exchange constants
will give a lower Curie temperature, however because the
intra-sublattice interactions are also antiferromagnetic in
character the situation is more complicated.
Where NNN values are calculated the order of mag-

nitude agrees with attempts by Plant to fit the neutron
scattering data with a NNN model [20].

TABLE IV. Total energies for different SC in the NNN model.
The energies are in units of meV. Etot and E

′

tot are the total
energies for the NN and the NNN models. Ecal are the total
energies calculated ab initio and ∆ENNN (∆ENN) are the dif-
ferences between the fitted total energies from the NNN (NN)
spin model and Ecal. Ecal of the ground-state structure (SC
(a)) is denoted zero.

SC E′
tot Ecal ∆ENNN ∆ENN

a Etot + 24E′
aa + 48E′

dd + 48E′
ad 0.00 0.37 -59.97

b Etot + 24E′
aa + 48E′

dd − 48E′
ad 4225.32 -0.31 -3.69

c Etot + 24E′
aa + 16E′

dd + 32E′
ad 1907.02 0.39 -58.19

d Etot + 24E′
aa + 16E′

dd + 16E′
ad 566.01 0.38 44.42

e Etot + 12E′
aa + 32E′

dd + 32E′
ad 778.86 0.23 5.97

f Etot + 24E′
aa + 48E′

dd 1987.42 -0.21 -36.19
g Etot + 24E′

aa + 48E′
dd 1228.54 0.24 52.29

h Etot + 24E′
aa + 16E′

dd 1848.59 -3.04 43.44
i Etot + 24E′

aa + 16E′
dd 1885.68 -7.62 49.55

j Etot + 24E′
aa + 48E′

dd 2018.23 -13.40 -39.80

Compared with the NN model (as shown in Tab.V),
the values of Jaa, Jdd and Jad in the NNN model became
slightly smaller but still obey Jad ≫ Jdd > Jaa. The
additional interactions J ′

dd and J ′
ad are of the same order

of magnitude as the NN intra-sublattice exchange and are
also antiferromagnetic. Notably, J ′

dd > Jdd interaction.

IV. INTRINSIC PROPERTIES

A. Curie Temperature and Magnetization

We calculate the temperature dependence of the mag-
netization and the Curie temperature (TC) from the spin
models by Metropolis Monte Carlo (MC) simulations on
a 32× 32 × 32 super cell (each unit cell contains 20 spins)
with periodic boundary conditions [37]. The temperature
dependence of the total magnetization, M = Md−Ma, is
shown in Fig. 4, normalized by M(T = 0 K). The TC of
the NN model exchange parameters using different U−J
values are shown in the inset. The experimental value
of TC is 570 K [35, 38]. In the NN model, the larger U

T
c
 !

"

U J  #$"

FIG. 4. The magnetization curves of the NN model (red line)
and the NNN model (blue line) with exchange constants fit-
ted to the ab initio energies for U − J = 4.7 eV for the NN
model and U − J = 3.7 eV for the NNN model. The experi-
mental data [35] are indicated by circles. (Insert) The Curie
temperatures of the NN model fitted to the ab initio results
for different U − J .

gives smaller exchange constants and hence weaker in-
teractions giving a lower TC . This follows intuitively be-
cause of the increased localisation of the wave functions
reducing the exchange and hence also the Curie temper-
ature. With the parameters U − J = 4.7 eV, TC is 540
K, in good agreement with the experimental value. The
magnetization curve of the NNN model is quite similar
to the NN model with a slightly higher TC of 590 K using
the parameters exchange parameters when U − J = 3.7
eV. The finite slope at low temperatures in both models
does not agree with experiments. This deviation is as-
cribed to our disregard of quantum statistics in the sim-
ulations. Nevertheless, at higher temperatures the cal-
culated shapes of the magnetization and TC agree well
with experiments.

B. Spin wave spectrum

Next we calculate the spin wave spectrum from our pa-
rameterized Heisenberg model. We choose the exchange
constants with the parameter U −J = 4.7 eV for the NN
model and the parameter U − J = 3.7 eV for the NNN
model. The analytic results of the spin-wave spectrum
Eq. (7) are shown in Fig. 5. The experimental data from
Refs. 11 and 20 are for 83 K. Strictly speaking only the
low temperature results should be compared with theory.
Dispersion relation of the acoustic mode – The slopes

of the lowest acoustic mode of the NN model and the
NNN model both agree well with the neutron scattering
data (Fig. 5(a)). The spin-wave stiffnessD is governed by
the second derivative at the Γ-point. D = 77×10−41 J·m2

and 85 × 10−41 J · m2 for the NN and NNN models, re-
spectively. The values reported in the literature obtained
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(meV)
Jad Jdd Jaa J ′

ad J ′
dd J ′

aa method reference
3.10 1.40 0.96 - - - molecular field approximation Ref. 35
3.90 0.78 0.78 - - - magnetization fit Ref. 9
3.40 0.69 0.69 - - - neutron spectrum fit* Ref. 11
2.60 1.00 0.56 - - - molecular field approximation Ref. 36
3.20 0.45 0.00 0.23 0.14 0.75 neutron spectrum fit* Ref. 20
3.40 1.20 0.33 - - - neutron spectrum fit* Ref. 34
3.176 0.223 0.112 - - - ab initio GGA+U (U − J = 3.7 eV) this work
2.917 0.213 0.090 0.218 0.228 0.005
2.584 0.160 0.091 - - - ab initio GGA+U (U − J = 4.7 eV)
2.387 0.154 0.072 0.163 0.179 0.004

TABLE V. Comparison of exchange constants in the literature. (*) all fits to neutron data use the same data from Plant [11].
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FIG. 5. Spin-wave spectrum in the first Brillouin zone for the
NN model (red dots) derived from ab initio calculations with
U − J = 4.7 eV and the NNN model (blue dots) where U −

J = 3.7 eV and compared to the available neutron scattering
data (black circles) [11]. (a) The entire spin wave spectrum.
(b) Comparison of the shape of the parabolic optical mode
the results are shifted by +3.35 THz for the NN model and
+2.40 THz for the NNN model and compared to the 83 K
experimental data. The directions in k-space use the standard
labels of bcc reciprocal lattice.

by different experimental methods [34, 35, 39] vary from
D = 42× 10−41 J ·m2 to 109× 10−41 J ·m2.
High frequency modes – As shown in Fig. 5(a), the

spectra of both models in the range of 8 THz ∼ 11
THz have a similar structure. However, the modes of
the NNN model are more separated, especially at the
Γ-point, which we ascribe to J ′

dd. At high frequencies
(above 12 THz), the modes of the NNN model have much
higher frequency compared to the corresponding ones of
the NN model.
Spin wave gap – The (exchange) gap between two low-

est (acoustic and optical) modes at the Γ-point of the
NN model is about 5 THz, while the one of the NNN
model is 0.945 THz higher due to the larger Jad in the
latter, but is still smaller than the experimental gap of
about 8 THz at 83 K. The comparison of the frequency-
shifted second lowest mode with the experimental data
are shown in Fig. 5(b). The slope of the NNN model is a
little steeper than that of the one of the NN model, and
they are both in good agreement with the experimental
data.
In conclusion, we report exchange constants of YIG

computed from first principles but with an adjustable
U − J constant to increase the density functional band
gap. We found that NNN interactions are required for a
good fit of total energies by a Heisenberg model. Our re-
sults reproduce the experimental Curie temperature well.
In addition, we obtain a spin-wave spectrum in which
the lowest acoustic mode agrees very well with the avail-
able neutron scattering data. However the lowest optical
mode energy appears to be underestimated, emphasizing
the need for more studies of the temperature dependent
spin wave spectrum.
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