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Abstract

Lead chalcogenides such as PbS, PbSe, and PbTe are of interest for their exceptional thermo-

electric properties and strongly anharmonic lattice dynamics. Although PbTe has received the

most attention, PbSe has a lower thermal conductivity and a non-linear temperature dependence

of thermal resistivity despite being stiffer, trends that prior first-principles calculations have not

fully reproduced. Here, we use ab-initio calculations that explicitly account for strong anhar-

monicity and a computationally efficient stochastic phase space sampling scheme to identify the

origin of this low thermal conductivity as an anomalously large anharmonic interaction, exceeding

in strength that in PbTe, between the transverse optic and longitudinal acoustic branches. The

strong anharmonicity is reflected in the striking observation of an intrinsic localized mode that

forms in the acoustic frequencies. Our work shows the deep insights into thermal phonons that can

be obtained from ab-initio calculations that do not rely on perturbations from the ground state

phonon dispersion.
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I. INTRODUCTION

Lead chalcogenides have been studied for decades due to their superior thermoelectric1

performance and strongly anharmonic lattice dynamics1–4. For applications, these materi-2

als are established as champion thermoelectrics with high performance stemming from the3

intrinsically low thermal conductivity and favorable electronic structure5–8. Scientifically,4

they are of interest because they fail to follow the conventional phonon picture in which5

anharmonicity is treated as a perturbation of the phonon dispersion at zero temperature.6

In particular, in PbTe the strong anharmonic interaction between the transverse optical7

and longitudinal acoustic branches has been shown to result in an avoided crossing that8

has been observed using inelastic neutron scattering measurements9. Other measurements9

have uncovered an unusual double peak in the spectral function10–12 and softening of the10

transverse optical mode near the ferroelectric transition13–16 that again reflects the strong11

anharmonicity. These strong anharmonic interactions lead to low thermal conductivity and12

large Grüneisen parameters17. PbTe has been studied with several ab-initio approaches18–23,13

which have provided important insights but have been unable to predict key features such14

as stiffening of transverse optical mode and nonlinear thermal resistivity with temperature15

increase.16

PbS and PbSe have also received attention as they possess similar electronic24–26 and17

thermal properties27,28 to those of PbTe. However, the thermal conductivity of PbSe ex-18

hibits an unusual anomaly. Considering the typical metrics of thermal conductivity such as19

atomic masses, cutoff phonon frequencies, and acoustic-optical gap, one would expect that20

PbS should possess the highest thermal conductivity while PbTe should have the lowest.21

Indeed, prior ab-initio calculations that use the ground state phonon dispersion predict this22

trend22,23. However, experimentally the lowest thermal conductivity is achieved by PbSe, fol-23

lowed by PbTe and then PbS with the highest value. That previous ab-initio studies21–23 fail24

to predict the correct trend and the temperature dependence of thermal resistivity suggest25

that a key element is missing in the conventional approach to calculate thermal conductivity26

from first principles.27

In this paper we use the temperature dependent effective potential method29–31 (TDEP) to28

study the lattice dynamics of PbS, PbSe and PbTe. TDEP identifies effective force constants29

that best describe the potential surface at a given temperature and thus does not assume30
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the 0 K dispersion, as was the case in prior studies. We show that TDEP can successfully31

reproduce both the absolute values and trends of the thermal conductivity of each of these32

highly anharmonic compounds. Importantly, our calculations identify the origin of the low33

thermal conductivity of PbSe as an exceptionally strong anharmonic interaction that is34

reflected in the formation of an intrinsic localized mode in the acoustic frequencies. This35

work shows the powerful insights that can be obtained from first principles calculations that36

do not rely on perturbations to the zero temperature phonon dispersion.37

II. METHODS38

We employ TDEP to calculate the thermal properties of PbS, PbSe, and PbTe. Tra-39

ditional ab-initio approaches to calculate thermal conductivity use the finite difference su-40

percell approach32 or density-functional perturbation theory33,34 to determine harmonic and41

anharmonic force constants at 0 K. In the former method, forces are recorded as atoms are42

sequentially perturbed from their equilibrium locations at 0 K. In the latter method, the43

force constants are determined from the analytical derivatives of the potential energy. Al-44

though these methods have been very successful for a large number of crystals35–39, they are45

not suitable for solids that exhibit substantial changes in phonon dispersions with temper-46

ature; in other words, for highly anharmonic solids. In the present case, lead chalcogenides47

are well-known to exhibit both softening and stiffening with temperature, depending on48

the particular mode, and as a consequence the traditional ab-initio approach is unable49

to reproduce key features of the phonon dispersion and thermal conductivity temperature50

dependence17,40.51

In TDEP, rather than calculating the force constants based on the equilibrium structure52

at 0 K, we sample the Born-Oppenheimer (BO) surface of a supercell at a given temperature53

and map it to a model potential energy of the following form:54

U = U0 +
1

2!

∑
ijαβ
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ij u
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i u
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γ
k , (1)

where ui is the displacement of atom i and αβγ are Cartesian components, and Φ are the55

second and third order effective interatomic force constants (IFCs). The IFCs are denoted56

as effective since they are identified as the force constants that best describe the potential57

surface at each temperature. U0 is the reference energy of the model system defined for each58
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temperature.59

A TDEP calculation consists of thermostatting a supercell and subsequently recording60

the forces and displacements versus time. The forces are calculated from first-principles.61

The force constants that best explain these force-displacement datasets are then obtained62

with a least-squares algorithm. In the previous papers ab initio molecular dynamics was63

used to sample of the BO surface17,29–31,40,41.64

In this work, we instead use an efficient stochastic sampling approach to prepare a sim-

ulation cell in uncorrelated thermally excited states42. These snapshots can be created

independently from each other and directly yield the necessary force-displacement datasets.

To implement this stochastic sampling, for a cell of Na atoms with mass mi we use a har-

monic normal mode transformation to generate positions {ui} and velocities {u̇i} consistent

with a canonical ensemble. The appropriate distribution of atomic positions and velocities

are given by,

ui =
3Na∑
s=1

εis〈Ais〉
√
−2 ln ξ1 sin 2πξ2 (2)

u̇i =
3Na∑
s=1

ωsεis〈Ais〉
√
−2 ln ξ1 cos 2πξ2 , (3)

where ω2
s and εis are eigenvalues and eigenvectors corresponding to mode s; ξn represent65

uniform random variables between (0,1) producing the Box-Muller transform to normally66

distributed random numbers and 〈Ais〉 are the thermal average of the normal mode ampli-67

tudes42:68

〈Ais〉 =

√
~(2ns + 1)

2miωs
≈ 1

ωs

√
kBT

mi

, (4)

where ~ω � kBT denotes the classical limit and the approximate amplitudes are valid. The69

classical limit has previously been used by West and Estreicher 42 and Souvatzis et al. 43 and70

the non-approximate distribution by Errea et al. 44 , among others.71

Seeding the calculations to generate the first set of displacements requires the harmonic72

force constants, which are not available since they are the quantity to be calculated. Prior73

work has obtained the force constants using conventional density-functional perturbation74

theory phonon calculations or Born-Oppenheimer molecular dynamics, a tedious and ex-75

pensive calculation. Here, we overcome this limitation in the following manner. Consider a76
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pair potential U(r) with two simple requirements:77

∂U(r)

∂rij
=0

∂2U(r)

∂r2ij
=
η

r4ij
,

(5)

that is, the pair potential has zero first derivative at pair distances (rij) of the equilibrium78

crystal and positive second derivatives that decay quickly with distance. These requirements79

force the crystal to be stable in this configuration. The IFCs can be calculated analytically80

from pair potentials, and in this case are given by,81

Φij(r) = − η

r6


r2x rxry rxrz

rxry r2y ryrz

rxrz ryrz r2z

 , (6)

where r is the vector between atom i and j. This procedure gives a set of IFCs and thus82

a normal mode transformation that depends on a single parameter η. This parameter83

is determined by numerically matching the zero-point energy of the phonons to a Debye84

model,85

1

Na

∑
i

~ωi(η)

2
=

9kBTD
8

. (7)

Using Eqs. (6) and (7) we obtain a set of force constants defined by a Debye temperature.86

These phonons have the symmetry of the original crystal by construction and span the87

correct frequency range and can thus be used to seed stochastic calculations. The initial88

seed is used to calculate new IFCs by fitting the force-displacement dataset with the model89

potential energy of Eq.(1), that in turn are used to generate new stochastic configurations90

until convergence. The assumption of the specific analytical form of the pair potential in91

eq. (5) is made to generate the initial thermalized configurations without requiring ab initio92

molecular dynamics, decreasing the computational expense. We chose this form for its93

simplicity and because the fast decay with distance does not introduce any spurious finite94

size effects. However, the method that is used is iterative, and the final results are not95

affected by the initial guess.96

Once the snapshots are created by the trial force constants, we perform a series of first-97

principles simulations to obtain a set of force-displacement data sets. This data is used98

to obtain IFCs, which in turn are used to generate new snapshots. This procedure is re-99

peated until self-consistency. In our case, three iterations were enough to converge the IFCs100
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within 0.05 meV/Å2. For each iteration we choose a number of snapshots to ensure a fully101

determined system of equations, or one equation per independent IFC, and to smooth out102

numerical noise and capture anharmonic effects. For this system, 50 snapshots proved suf-103

ficient. The phonon and transport properties are calculated using the IFCs from the 50104

snapshots of the third iteration.105

It is worth noting that the entire self-consistency cycle used 3× 50 supercell calculations.106

A conventional finite-difference approach to calculate the third order IFCs would have used a107

similar number of supercell calculations. Through our stochastic sampling method, we have108

thus included high orders of anharmonicity at essentially zero additional computational cost109

compared to the traditional approach.110

In this work we use with the projector augmented wave (PAW) method45 as implemented111

in the Vienna Ab initio Simulation Package (VASP)46–49. Exchange-correlation was treated112

using the AM05 functional50,51, and the plane wave energy cutoff was set to 600 eV. Brillouin113

zone integrations were sampled using 3× 3× 3 Monkhorst-Pack52 mesh of k-points.114

We perform calculations on a temperature-volume grid consisting of 5 temperatures and115

5 volumes. We choose the five temperatures as T= {100, 300, 600, 800, 1000} K, and the116

five volumes linearly spaced within ±3.3% around the 0 K equilibrium volume, shifted by117

the experimental thermal expansion at each temperature. At each temperature, we mini-118

mize Helmholtz free energy F (T, V ) to find the equilibrium volume. After determining the119

equilibrium volume, the irreducible components of the IFCs were interpolated to this vol-120

ume. We used a triangulation-based natural neighbor interpolation to avoid discontinuities,121

although testing with a bilinear interpolation showed no difference.122

We employed a 5 × 5 × 5 (250 atom) supercell for each compound. We found that the123

phonon dispersions are extremely sensitive to finite size effects. For the harmonic and cubic124

IFCs we truncated the force constant cutoffs at 11 and 6 coordination shells, respectively,125

to ensure the convergence of the phonon spectra and thermal conductivity. The detailed126

procedure for extracting the second and the third order IFCs from the set of forces and127

displacements while including the symmetry constraints has been described in Refs.29–31.128

The thermal conductivity is calculated by solving the full Boltzmann transport equation129

(BTE) using an iterative method34 on a 35× 35× 35 q-point grid on which the momentum130

conservation is exactly fulfilled. For the energy conservation we employed the tetrahedron131

approach53. Thermal conductivity was converged with respect to q-grid density to within132
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0.01%. Anharmonic phonon-phonon interactions along with isotopic scattering54 from the133

natural distribution are included in the iterative solution of BTE. We obtain the diagonal134

components of the thermal conductivity tensor as,135

καα =
1

V

∑
qs

Cqsv
2
αqsταqs , (8)

where vαqs and ταqs are the phonon group velocity and phonon lifetime of mode qs along α136

direction, respectively. Cqs is the specific heat per mode.137

III. RESULTS138

A. Thermal conductivity139

We first calculated the thermal resistivity, or the inverse of thermal conductivity, of PbS,140

PbSe and PbTe. Intuitively, the compound with the lightest element and highest frequen-141

cies, PbS, would be expected to have the highest thermal conductivity, while PbTe would be142

expected to have the lowest as the softest and heaviest of the compounds. However, exper-143

imentally PbSe has the lowest thermal conductivity, a feature that previous computational144

studies have failed to reproduce.145

The lattice thermal resistivity for three compounds calculated with TDEP is plotted146

as a function of temperature in Fig. 1. We first note that the thermal conductivity for147

three compounds is very sensitive to the volume as was previously found for PbTe17–19. We148

plot thermal resistivity with ±1% variation of the lattice parameter obtained from DFT in149

Fig. 1a), observing a factor of two variation in thermal resistivity. The ±1% variation of150

volume is a rigid shift of the V (T ) curves obtained from the free-energy minimization.151

Figure 1b) shows the calculated thermal resistivity versus temperature along with ex-152

perimental data. Our calculations are in good agreement with experimental data between153

100 and 600 K55,60 at volumes corresponding to a rigid +1% increase of lattice parameter154

(Fig. 1b) at each temperature, which corresponds to the experimental lattice parameter.155

Prior works have also found that a small modification of the lattice parameter was neces-156

sary to match experimental data17,35. This factor is an intrinsic uncertainty in the DFT157

calculations61. In any case, the trends are unaffected by the choice of lattice parameter, and158

so the following analysis will be performed for the +1% case.159
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FIG. 1. (Color online) a) Thermal resistivity of PbS, PbSe and PbTe as a function of temperature

with ±1% variation of the lattice parameter. b) Thermal resistivity of PbS, PbSe and PbTe (lines)

for +1% lattice constant. Experimental data (symbols) for PbS, PbSe and PbTe are taken from

the Ref.55 between 300 and 700 K. Experimental data at low temperatures for PbS are taken from

Ref.56–58; for PbSe from Ref.56,59 and for PbTe from Ref.56,60.

We observe that our calculation is able to reproduce two key trends. Firstly, we reproduce160

the strongly nonlinear behavior of the thermal resistivity with temperature. The change in161

slope of thermal resistivity around 350 K is unattainable with computational methods that162

derive quantities from 0 K calculations. The origin of the kink in thermal resistivity has163

already been explained as a decrease in scattering phase space with temperature due to164

8



Mean free path (nm)

T=300 K

(d)(c)(b)

0T
he

rm
al

 r
co

nd
uc

tiv
ity

 (
W

/m
K

)

0.5

1.0

1.5

2.0

2.5 (a)
acoustic
optic

PbSe
PbTe
PbS

PbSe

Mean free path (nm)

PbTe

Mean free path (nm)

PbS

Mean free path (nm)
100 101 102 103 104 100 101 102 103 104 100 101 102 103 104 100 101 102 103 104

FIG. 2. (Color online) (a) Cumulative thermal conductivity as a function of mean free path at

T=300 K for PbS, PbSe and PbTe. The vertical dashed lines indicates where 50% of thermal

conductivity is accumulated. Cumulative thermal conductivity for (b) PbS, (c) PbSe, and (d)

PbTe decomposed per branch. The grey region gives the contribution from the acoustic branches

while the yellow region gives the contribution from the optical modes. In PbSe and PbTe 50% of

contribution to the thermal conductivity comes from the phonons with mean free paths smaller

than 5 nm.

the stiffening of TO mode17. Secondly, our calculation correctly predicts the high thermal165

resistivity of PbSe in comparison to PbS and PbTe, which was not predicted by previous166

studies21–23. This trend is unexpected because PbTe is heavier and softer than PbSe yet167

its thermal resistivity is consistently lower than that of PbSe over the entire temperature168

range.169170

To gain more insight into the phonon transport properties, we calculate the cumulative171

thermal conductivity versus mean free path at T=300 K. Figure 2a) shows cumulative ther-172

mal conductivity as a function of mean free path for PbS, PbSe and PbTe. In both PbSe173

and PbTe 50% of contribution to the thermal conductivity comes from phonons with mean174

free paths smaller than 4-5 nm. Further, we analyze the contributions to the total thermal175

conductivity accumulated from each branch for each compound as shown in Figs. 2b), c)176

and d). In all three cases, optical modes contribute a significant portion (≈ 25% in both177

PbSe and PbTe, and ≈ 20% in PbS) to the total thermal conductivity compared to the178

optic mode contribution in, for example, Si, which is around 5%62,63. Although the cumula-179

tive thermal conductivity distributions provide useful insights, the explanation of why the180

thermal conductivity of PbSe is lower than in PbTe remains unclear.181
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FIG. 3. (Color online) Left panels: spectral function (logarithmic intensity scale) along the high

symmetry directions for PbS (left), PbSe (middle) and PbTe (right) at (a) 300 K, (b) 600 K and

(c) 1000 K. Right panels: total spectral thermal conductivity and spectral thermal conductivity

for the longitudinal acoustic mode versus frequency.

B. Spectral function S(q, E)182

To proceed, we next calculate the spectral function S(q, E), which describes the spectrum183

of lattice excitations with energy E = ~Ω that are not necessarily independent plane-waves.184

Starting with many-body perturbation theory, we calculate the frequency-dependent self-185

energy1,64 Σ(Ω) = ∆(Ω) + iΓ(Ω), where the imaginary (Γ(Ω)) part is186

Γqs(Ω) =
∑
s′s′′

~π
16

V

(2π)3

∫∫
BZ

∣∣∣Ψqq′q′′

ss′s′′

∣∣∣2 ∆qq′q′′×

[
(nq′s′ + nq′′s′′ + 1)δ(Ω− ωq′s′ − ωq′′s′′)

+2(nq′s′ − nq′′s′′)δ(Ω− ωq′s′ + ωq′′s′′)
]
dq′dq′′,

(9)
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and the real part is obtained via a Kramers-Kronig transformation of the imaginary part:187

∆(Ω) =
1

π

∫
Γ(ω)

ω − Ω
dω. (10)

The imaginary part of the self energy contains a sum over all possible three-phonon interac-188

tions between mode s and s′s′′. nqs are the Bose-Einstein occupation numbers for phonons189

with frequency ωqs at wave vector q. The delta functions in Eq. (9) ensure that energy and190

momentum are conserved. Ψqq′q′′

ss′s′′ are the three-phonon matrix elements.191

From the self-energy we get the spectrum of possible excitations at energy E:192

S(q, E) ∝
∑
s

2ωqsΓqs(Ω)(
Ω2 − ω2

qs − 2ωqs∆qs(Ω)
)2

+ 4ω2
qsΓ

2
qs(Ω)

(11)

This spectral function, or phonon lineshape, is shown in Fig. 3. For the S(q, E) calculations193

we used a 35×35×35 q-grid consistent with the thermal conductivity calculations. The194

tetrahedron method was used for numerical evaluation of the self-energy in Eq. (9). The195

S(q, E) of PbS is typical of a weakly anharmonic solid with Lorentzian broadening of single196

peaks. PbTe is more anharmonic than PbS and our calculation successfully reproduces the197

double peak structure observed previously9,11.198

The S(q, E) of PbSe, however, is quite unusual. We observe the formation of a dispersion-199

less optical mode in the acoustic phonon frequencies as well as a kink in the dispersion of the200

LA branch. This mode has signatures of an intrinsic localized mode (ILM), also known as a201

discrete breather, that occurs due to strong anharmonicity65,66. ILMs have been previously202

experimentally observed in NaI in the acoustic-optical phonon gap67. In PbSe, the mode203

appears in the acoustic frequencies and reflects extremely large anharmonic scattering of the204

LA branch. The effect of this strong anharmonic interactions can be observed in the strong205

decrease in spectral thermal conductivity for the LA mode as in Fig. 3. It is interesting to206

note that considerable focus has been placed on a similar anharmonic interaction in PbTe9,16207

yet it does not exhibit an ILM.208

C. Lineshape at Γ209

To understand the origin of the ILM, we analyze the cubic IFCs responsible for the210

strength of the thee phonon interactions. We have considered three-body interactions within211

the first six coordination shells, and sequentially set the irreducible IFCs to zero while212
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FIG. 4. (Color online) Phonon lineshapes for (a) PbS, (b) PbSe and (c) PbTe at 600 K at Γ. The

arrows indicate the main and the secondary peaks with the original force constants. By setting the

strongest three-body interaction to zero, in all cases the lineshapes revert to the narrow Lorentzian

peaks. Comparing the lineshapes between PbSe and PbTe, we observe the split peak, but the

secondary peaks differ. In PbTe the peak is broader and weaker than the main peak, but in PbSe

it is much sharper and with equal intensity to the main peak, corresponding to an intrinsic localized

mode. In (d) we show the impact of the secondary peak on scaled spectral thermal conductivity for

the longitudinal mode. The dip in spectral thermal conductivity in PbSe is three times larger in

magnitude than in PbTe, which is ≈ 15% and 5% of the maximum spectral thermal conductivity

for the LA mode, respectively.
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recalculating the lineshape at the Γ-point. We identified two force constants, corresponding213

to the nearest neighbor cubic interactions of degenerate triplets (PbXPb or PbXX, where X214

is S, Se or Te) in the [100] direction, that strongly influence the lineshape. These two force215

constants are linked, since any displacement of a nearest neighbor Pb-X pair will involve both216

force constants, which have opposite signs and are related via the translational invariance217

condition. In Figs. 4a), b) and c) we show the phonon lineshapes at Γ when both cubic IFCs218

are set to zero. The lineshapes become Lorentzian, typical of a weakly anharmonic solid,219

indicating that this interaction is responsible for the unusual lineshapes.220

The double peak structure in the case of PbTe has already been reported in Refs.9,11. In221

PbSe we find the similar behaviour of the TO mode except that the anharmonic interaction222

is even stronger and results in a secondary peak, the ILM, with the same intensity as the223

first. In PbS we identify only the anharmonic broadening of the single peak. Removing the224

nearest neighbor cubic interactions corresponding to these force constants result in a factor225

of 10 or more increase in thermal conductivity, indicating that this force interaction is the226

dominant source of scattering. Importantly, in this case the thermal conductivity of PbSe is227

higher than PbTe, indicating that this interaction is the origin of low thermal conductivity228

of PbSe.229

Figure 4d) shows the scaled spectral thermal conductivity for LA mode calculated with230

original force constants that is the most affected by interaction with TO mode in PbSe and231

PbTe. The secondary peak causes the dip in spectral thermal conductivity around 0.2-0.3232

of the scaled frequency. In PbSe the dip is three times larger in magnitude than in PbTe,233

reflecting the strong interaction in PbSe. The dip is not observed in PbS, since the TO-LA234

interaction is weaker.235

We can therefore conclude that the low thermal conductivity of PbSe is related to the236

anomalously large anharmonic interaction between the LA and TO branches. Interestingly,237

though, we have been unable to replicate the ILM and low thermal conductivity in either238

PbS or PbTe by swapping harmonic or cubic IFCs with those of PbSe. This observation239

indicates that the presence of the ILM and unusually low thermal conductivity of PbSe is240

not solely due to a specific interaction but rather the overall interplay of the harmonic and241

anharmonic force constants. The precise origin of the ILM will be the topic of a future work.242

13



(d)

ra
di

al
 d

ist
rib

ut
io

n,
 g

(r)
 (a

.u
.)

displacement (Å)

(a)

displacement in [001] (Å)

di
sp

la
ce

m
en

t 
[0

10
] (

Å
)

displacement (Å) displacement (Å)

displacement in [001] (Å) displacement in [001] (Å)

di
sp

la
ce

m
en

t 
[0

10
] (

Å
)

di
sp

la
ce

m
en

t 
[0

10
] (

Å
)

(b)

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
PbS

-1 0 1 1.50.5-0.5

PbSe

-1 0 1 1.50.5-0.5

PbTe
1.5

1

0.5

0

-0.5

-1
1.5

1

0.5

0

-0.5

-1
1.5

1

0.5

0

-0.5

-1
-1 0 1 1.50.5-0.5

T=300 K

T=600 K

T=1000 K

2.5

2.0

1.5

1.0

0.5

0-1 0 1 1.50.5-0.5 -1 0 1 1.50.5-0.5

300 K 
600 K
1000 K

-1 0 1 1.50.5-0.5

FIG. 5. (Color online) Pair vector distribution of PbS (left), PbSe (middle) and PbTe (right)

projected on the [001] and [010] planes at (a) 300 K, (b) 600 K and (c) 1000 K. Radial distribution

function is shown in (d). There is a strong asymmetry of the peak around the equilibrium position,

indicative of strong anharmonicity, however the centre of mass is positioned exactly at the zero

and no off-centering observed. In a harmonic material these distributions would be Gaussian.
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D. Atomic pair distribution.243

Finally, we confirm the strong cubic nearest neighbor force constants by calculating the244

radial distribution function, also known as the pair correlation function, defined as,245

g(r) =
n(r)

ρ4πr2dr
, (12)

where ρ is the mean particle density, and n(r) the number of particles in an infinitesimal246

shell of width dr. Usually, this quantity is averaged over all atoms in the system. Here we247

project g(r) onto symmetrically equivalent pairs, giving a projected pair distribution:248

gi(r) = ρ4πr2dr
∑
i

δ (|ri| − r) , (13)

where the index i corresponds to a coordination shell. The coordination shell is defined249

from the ideal lattice as the set of pairs that can transform to each other via a space group250

operation. In addition we also calculated the symmetry-resolved histograms of pair vectors,251

a histogram of all the pair vectors accumulated over time from Born-Oppenheimer molecular252

dynamics. The simulations were carried using Born-Oppenheimer molecular dynamics with253

thermalized configurations as a starting point at equilibrium volumes at 300, 600 and 1000 K254

for 22 ps with a time step of 2 fs with the same settings as discussed in the Sec. II. The255

temperature was controlled using a Nosé thermostat68.256

The radial distribution function and pair vector distributions for the first coordination257

shell are shown in Figs. 5a), b) and c). The displacements become more asymmetric with258

temperature increase. The asymmetry is clearly seen when the distributions are integrated to259

the projected pair distribution functions in Fig. 5d). The strong asymmetry of the peak only260

proves that the displacements of these materials are affected by anharmonic force constants.261

Our calculation clearly shows that the center of mass of the distributions is exactly at the262

equilibrium pair distance. We conclude, in line with Keiber et al. 69 , that Pb is not off-center263

in PbSe, similarly to the case of PbTe.264

IV. CONCLUSIONS265

We used TDEP with an efficient scheme to generate stochastic thermalized configurations266

to investigate the thermal properties of PbS, PbSe and PbTe, and particularly the unusually267
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low thermal conductivity of PbSe. Our calculation successfully reproduces the nonlinear268

thermal resistivity with temperature trend as well as the low thermal conductivity of PbSe,269

in contrast to prior ab-initio calculations. By computing the phonon spectral function,270

we identified an intrinsic localized mode in PbSe in the acoustic frequencies that reflects an271

extremely strong anharmonic interaction between the LA and TO branches. Our work shows272

the deep insights into thermal phonons that can be obtained from ab-initio calculations273

that are not confined to the perturbative limit of anharmonicity from the ground state274

dispersion. In addition, we demonstrate that this accuracy can be gained with minimal275

additional computational cost compared with traditional methods.276
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