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We analyze the effects of an applied magnetic field on the phase diagram of a weakly-correlated
electron system with imperfect nesting. The Hamiltonian under study describes two bands: electron
and hole ones. Both bands have spherical Fermi surfaces, whose radii are slightly mismatched due
to doping. These types of models are often used in the analysis of magnetic states in chromium and
its alloys, superconducting iron pnictides, AA-type bilayer graphene, borides, etc. At zero magnetic
field, the uniform ground state of the system turns out to be unstable against electronic phase
separation. The applied magnetic field affects the phase diagram in several ways. In particular, the
Zeeman term stabilizes new antiferromagnetic phases. It also significantly shifts the boundaries of
inhomogeneous (phase-separated) states. At sufficiently high fields, the Landau quantization gives
rise to oscillations of the order parameters and of the Néel temperature as a function of the magnetic
field.

PACS numbers: 75.10.Lp, 75.50.Ee, 75.50.Cc, 71.20.Gj

I. INTRODUCTION

Fermi surface nesting is a very popular and impor-
tant concept in condensed matter physics1. The exis-
tence of two fragments of the Fermi surface, which can be
matched upon translation by a certain reciprocal lattice
vector (nesting vector), entails an instability of a Fermi
liquid state. A superstructure or additional order param-
eter related to nesting vector is generated due to the in-
stability. The nesting is widely invoked for the analysis of
charge density wave (CDW) states2,3, spin density waves
(SDW) states4,5, mechanisms of high-Tc superconductiv-
ity6–8, fluctuating charge/orbital modulation in magnetic
oxides9, chromium and its alloys10–13, etc.

It is important to emphasize that in a real material
the nesting may be imperfect, i.e. the Fermi surface frag-
ments can only match approximately. One of the earliest
studies of imperfect nesting was performed by Rice13 in
the context of chromium and its alloys (see also the re-
view articles Refs. 14,15).

The notion of nesting and related concepts were
broadly employed in the recent studies of iron-based pnic-
tides16–22. For example, Ref. 16 argued that the devia-
tion from the perfect nesting lifts degeneracy between
several competing magnetically ordered states. The in-
fluence of the imperfect nesting on the phase coexistence
was discussed in Ref. 19.

Many theoretical investigations assume from the out-
set the homogeneity of the electron state. This assump-
tion may be violated in systems with imperfect nesting.
Indeed, it was demonstrated that the imperfect-nesting
mechanism can be responsible for the nanoscale phase
separation in quasi-one-dimensional metals23, chromium

alloys24, iron-based superconductors25, and in doped
bilayer graphene26–28. Several experiments on pnic-
tides29–35 and chalcogenides36–38 support the possibility
of phase separation (see also review article [39]).
In similar context of imperfect nesting, studies of spin

and charge inhomogeneities are currently active in the
physics of low-dimensional compounds.40–42 Other types
of inhomogeneous states (“stripes”, domain walls, impu-
rity levels) were also discussed in the literature in the
framework of analogous models23,43,44. Moreover, it was
shown that the possibility of SDW ordering in systems
with itinerant charge carriers results in very rich and
complicated phase diagrams involving phase-separation
regions45,46.
An applied magnetic field B alters the quasiparticle

states, changing the nesting conditions. In the present
paper, we explore the physical consequences of the ap-
plied magnetic field for weakly-correlated electron sys-
tems with imperfect nesting. In a generic situation, the
magnetic field enters the Hamiltonian both via the Zee-
man term, and via the substitution p̂ → p̂+(e/c)A. The
Zeeman term lifts the degeneracy with respect to the spin
projection. Both electron and hole Fermi surface sheets
become split into two spin-polarized components. As a
result, two different SDW order parameters correspond-
ing to spin projections parallel and antiparallel to the
direction of B can be constructed. When the electron-
hole symmetry between the electron and hole pockets is
absent, the effects of the Zeeman term is especially pro-
nounced. In particular, new antiferromagnetic (AFM)
phases, both homogeneous and inhomogeneous, appear
in the phase diagram. The boundaries between different
phases exhibit strong dependence on B. For example,
such effects were found in the analysis of the magnetic
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phase diagram of doped rare-earth borides47.
We also study separately phenomena caused by the

Landau quantization. In the range of high magnetic
fields, Landau quantization leads to characteristic oscilla-
tions of the SDW order parameters and of the Néel tem-
perature as a function of B. However, these oscillations
are most clearly pronounced in the case of symmetric
electron and hole pockets. Otherwise, the nesting and,
hence, the SDW ordering would be completely destroyed
by the magnetic field before any detectable oscillations
would occur. Similar oscillatory effects are well-known
in the context of quasi-one-dimensional compounds48–53.
However, the role of the magnetic field in nesting-related
phenomena in the usual three-dimensional materials has
received only limited attention11,54.
This paper is organized as follows. In Section II, we

formulate the model. Section III deals with the effects
related to the Zeeman term. Phenomena occurring due
to the Landau quantization are treated in Section IV.
A discussion of the results is given in Section V. Some
details of the calculations are presented in the Appendix.

II. MODEL

A. Hamiltonian

The model under study is schematically illustrated in
Fig. 1. It describes two bands: an electronic band (a)
and a hole band (b). The hole Fermi surface coincides
with the electron Fermi surface after a translation by a
reciprocal lattice vector Q0. The quasiparticles inter-
act with each other via a short-range repulsive potential.
Formally, the Hamiltonian is represented as

Ĥ = Ĥe + Ĥint , (1)

where Ĥe is the single-electron term, and Ĥint corre-
sponds to the interaction between quasiparticles.
Regarding the single-electron term, we assume a

quadratic dispersion for both bands and use the Wigner–
Seitz approximation. Specifically, in the electron band,
the wave vector k is confined within a sphere of finite
radius centered around zero, and in the hole band, such
sphere is centered around Q0. The kinetic energies of
these states are spread between the minimum values (de-

noted by εa,bmin) and maximum values εa,bmax, see Fig. 1.
Thus, the energy spectra for the electron and hole pock-
ets, measured relative to the Fermi energy µ, have the
form (~ = 1)

εa(k) =
k2

2ma
+ εamin − µ, εamin < εa < εamax, (2)

εb(k+Q0) = − k2

2mb
+ εbmax − µ, εbmin < εb < εbmax.

The nesting conditions mean that for some µ = µ0, the
Fermi surfaces of the a and b bands coincide after a trans-
lation by the vector Q0, and both Fermi spheres are

 b
min

 b
max a

max

B

 k

Q0

 a
min

FIG. 1: (Color online) Band structure of the electron model
in an applied magnetic field. The magnetic field lifts the
degeneracy of the electron-like (a) and hole-like (b) bands with
respect to the electron spin. The red arrows indicate the
interband coupling giving rise to the order parameters. The
splitting into Landau levels is not shown.

characterized by the single Fermi momentum kF . Using
Eqs. (2), we readily obtain

k2F =
2mamb

ma+mb

(
εbmax−εamin

)
, µ0=

mbε
b
max+maε

a
min

ma+mb
. (3)

Below, we will measure the momentum of the b band from
the nesting vector Q0, that is, we replace εb(k +Q0) →
εb(k) in Eq. (2). For perfect electron–hole symmetry,
when ma = mb = m and εbmax = −εamin, we obtain µ0 =
0.
In an applied uniform dc magnetic field B, the single-

electron part of our model can be written as

Ĥe =
∑

ασ

∫
d3xψ†

ασ(x)Ĥασψασ(x) , (4)

and [see Eqs. (2)]

Ĥaσ =

(
p̂+ e

cA
)2

2ma
+ σgaωa + εamin − µ,

Ĥbσ = −
(
p̂+ e

cA
)2

2mb
+ σgbωb + εbmax − µ. (5)

In these equations, α = a, b, p̂ = −i∇ is the momentum
operator, σ = ±1 is the spin projection, ωα = eB/cmα

are the cyclotron frequencies for the electron and hole
bands, and gα are the corresponding Landé factors. We
assume that the magnetic field is directed along the z axis
and choose the Landau gauge for the vector potential,
A = (−By, 0, 0).
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The second term in Eq. (1) describes the interaction
between electrons and holes. For treating the SDW insta-
bility, it is sufficient to keep only the interaction between
the a and b bands. The neglected intraband contribu-
tions can only renormalize the parameters. We also as-
sume that this interaction is a short-range one. Thus, we
can write

Ĥint=V
∑

σσ′

∫
d3xψ†

aσ(x)ψaσ(x)ψ
†
bσ′ (x)ψbσ′ (x) . (6)

The coupling constant V is positive, which corresponds
to repulsion.

B. Single-electron spectrum in a magnetic field

Let us start with a brief discussion of the properties of
the single-electron Hamiltonian. When the magnetic field
is zero, the single-electron spectrum consists of two bands
of free fermions with two-fold spin degeneracy. In a non-
zero applied magnetic fieldB, the operator ψασ(x) can be
expressed as a series expansion in terms of eigenfunctions
of Hamiltonian (4),

ψασ(x) =
∑

pn

ei(pxx+pzz)

√
V2/3lB

χn

(
y − pxl

2
B

lB

)
ψpnασ , (7)

where ψpnασ is the annihilation operator for an electron
in band α with 2D momentum p = (px, pz) and spin pro-
jection σ at the Landau level n, V is the system volume,
lB =

√
c/eB is the magnetic length,

χn(ξ) =
1√

2nn!
√
π
e−ξ2/2Hn(ξ) , (8)

and Hn(ξ) is the Hermite polynomial of degree n. In this
basis, the Hamiltonian can be expressed as

Ĥe =
∑

pnασ

εασ(pz, n)ψ
†
pnασψpnασ , (9)

where the single-particle eigenenergies are

εaσ(pz, n) = ωa

(
n+

1

2
+ σga

)
+

p2z
2ma

+ εamin − µ,(10)

εbσ(pz, n) = −ωb

(
n+

1

2
− σgb

)
− p2z

2mb
+ εbmax − µ.

The spectrum consists of four bands (see Fig. 1) since
the Zeeman term (the term, proportional to σ) lifts the
degeneracy with respect to the electron spin.

C. Energy scales

The energy spectrum of the model is characterized by
two single-particle energy scales. The first is the Fermi

energy εFα = k2F /2mα, and the second is ωα, which is
the distance between the Landau levels in band α. Fur-
thermore, we assume that εFa ≈ εFb and ωa ≈ ωb. The
energy scale associated with the interactions will be char-
acterized by the value of a spectral gap ∆0. The latter
parameter is defined as follows. When µ ≈ µ0, the nest-
ing between the two sheets of the Fermi surface is nearly
perfect. It is known that, under such condition, the inter-
action between the electron- and hole-like bands opens a
gap ∆(T,B) in the electron spectrum. The value of the
gap at zero temperature T = 0 and zero magnetic field
B = 0 will be denoted as ∆0 = ∆0 = ∆(0, 0).
Below we consider the case ∆0 ≪ εFα, which corre-

sponds to a weak electron-hole coupling. We also clas-
sify the magnetic field as low if ωα . ∆0, and high if
ωα & ∆0. The Landau quantization is of importance in
the high-field range, whereas at low fields, it can be ne-
glected. In the regime of low magnetic fields considered
in the next Section III, we neglect any corrections asso-
ciated with the small ratio ωα/εFα, while for ωα & ∆0

(this regime is considered in Section IV), we take into ac-
count these corrections in the leading order, which turns
out to be of the order of (ωα/εFα)

1/2.

III. ELECTRON-HOLE COUPLING: LOW

MAGNETIC FIELD

A. Main definitions

At low magnetic fields, we can neglect the effect of the
Landau quantization on the electron spectrum and take
into account only the Zeeman splitting. In this approxi-
mation, the single-electron Hamiltonian (9) has the form

Ĥe =
∑

kασ

εασ(k)ψ
†
kασψkασ , (11)

where ψ†
kασ and ψkασ are the creation and annihilation

operators of an electron in band α with (3D) momentum
k and spin projection σ, while the electron spectra now
read

εaσ(k) =
k2 − k2F
2ma

+ σgaωa − δµ ,

εbσ(k) = −k
2 − k2F
2mb

+ σgbωb − δµ , (12)

where δµ = µ− µ0.
If the applied magnetic field is zero, the commensurate

SDW order parameter can be written as

∆ =
V

V
∑

kσ

〈
ψ†
kaσψkbσ̄

〉
, (13)

where σ̄ means −σ. This order parameter is degenerate
with respect to spin. If B 6= 0, this degeneracy is lifted
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and we introduce a two-component order parameter cor-
responding to the nesting vectors shown by the arrows in
Fig. 1

∆↑=
V

V
∑

k

〈
ψ†
ka↑ψkb↓

〉
, ∆↓=

V

V
∑

k

〈
ψ†
ka↓ψkb↑

〉
. (14)

The mean-field spectrum of the model has a form

Eσ
1,2(k) =

εaσ(k) + εb−σ(k)

2
±

√

∆2
σ +

(
εaσ(k)− εb−σ(k)

2

)2
.

(15)
Using these spectra, we can write the grand potential of
the system in the mean-field approximation as a sum of
two “decoupled” terms Ω = Ω↑ + Ω↓, where “partial”
grand potentials are equal to

Ωσ = V
[
∆2

σ

V
− T

∑

s=1,2

∫
d3k

(2π)3
ln
(
1+e−Eσ

s
(k)/T

)]
. (16)

The order parameters are found by minimizing Ω with
respect to ∆σ.

B. SDW order parameters

The case when the electron and hole bands are per-
fectly symmetric is, of course, the simplest. In such a
situation, however, the effect of weak magnetic fields
on the electron spectrum is zero, as it will be evident
below. Thus, we should introduce some electron-hole
asymmetry to obtain non-trivial results in the low-field
range. Qualitatively, a particular source of the asym-
metry is not of importance. Here, we assume for sim-
plicity that ma = mb = m (hence, ωa = ωb = ωH and
εFa = εFb = εF ), but ga 6= gb. It is also assumed that
the difference ga − gb is of the same order as ga and gb.
We rewrite Eqs. (12) in the following convenient form

εaσ(k) =

(
k2

2m
− EFσ

)
− µσ,

εb−σ(k) = −
(
k2

2m
− EFσ

)
− µσ, (17)

where the following notation is used

g =
ga + gb

2
, ∆g =

ga − gb
2

,

EFσ =
k2F
2m

− σgωH , µσ = δµ− σ∆gωH . (18)

As we stated above, in the low-field range, we neglect
corrections of the order of ωH/EF , since ωH ≪ ∆0 ≪
EF . Then, we take into account only terms of the order
of ωH/∆0. Expanding the spectra in Eqs. (17) near the
Fermi momentum, we obtain

εaσ(k) ≈ vF δk + σgωH − µσ , (19)

εb−σ(k) ≈ −vF δk − σgωH − µσ ,

where δk = |k| − kF and vF = kF /m.
Substituting Eqs. (19) in Eqs. (15) and (16) and per-

forming integration, we obtain the expression for grand
potential

Ω

V = 2NF

∑

σ


−∆2

σ

2

(
ln

∆0

∆σ
+

1

2

)
+ (20)

∞∫

0

dξ ln
[
fF (
√
∆2

σ + ξ2 − µσ)fF (
√
∆2

σ + ξ2 + µσ)
]

,

where fF (ǫ) = 1/[1 + exp (ǫ/T )] is the Fermi function,
and ∆0 is the SDW gap at zero field, temperature, and
doping (µ = µ0)

∆0 ≈ εF exp (−1/V NF ), NF =
k2F

2π2vF
. (21)

From the minimization conditions ∂Ω/∂∆σ = 0, we de-
rive equations for the order parameters

ln
∆0

∆σ
=

∞∫

0

dξ
fF (
√

∆2
σ+ξ

2+µσ)+fF (
√
∆2

σ+ξ
2−µσ)√

∆2
σ + ξ2

.

(22)
The electron density is

N =
1

V
∑

ksσ

fF [E
σ
s (k)] . (23)

The parameter N0 corresponds to the ideal nesting, δµ =
0, in the absence of the magnetic field, B = 0. We define
the doping level as X = N−N0. The equation for X can
be written in the form

X

NF
=
∑

σ

∞∫

0

dξ
[
fF (
√
∆2

σ+ξ
2−µσ)−fF (

√
∆2

σ+ξ
2+µσ)

]
.

(24)
The derivation of this equation is straightforward (the
details can be found in Ref. 24). The value of X can also
be considered as a shift from the position of ideal nest-
ing. In our terms, “zero doping” really means “perfect
nesting”.
For further calculations, it is convenient to introduce

the following dimensionless variables

x=
X

NF∆0
, ν=

δµ

∆0
, b=

∆gωH

∆0
, δσ=

∆σ

∆0
. (25)

In this notation, we rewrite Eqs. (22) and (24) as

ln
1

δσ
=

∞∫

0

dξ

ησ
[fF (ησ+ν−σb)+fF (ησ−ν+σb)] , (26)

x =

∞∫

0

dξ
∑

σ

[fF (ησ−ν+σb)−fF (ησ+ν−σb)] ,



5

where ησ =
√
δ2σ + ξ2. We also introduce the dimension-

less grand potential

ϕ =
π2vF
k2F∆

2
0

Ω

V . (27)

Using notation Eqs. (25), we rewrite Eq. (20) in the di-
mensionless form

ϕ =
∑

σ

ϕσ =
∑

σ



−δ

2
σ

2

(
ln

1

δσ
+

1

2

)
+ (28)

t

∞∫

0

dξ ln [fF (ησ + ν − σb)fF (ησ − ν + σb)]




 ,

where t = T/∆0.
We need to consider the system at fixed doping rather

than at fixed chemical potential. Such a choice is better
suited for describing usual experimental conditions. To
work at fixed x, we should calculate the system’s free
energy f = ϕ + νx. To do this, we solve the system
of equations (26) at a given doping level x. Then, we
calculate ϕ and f using the obtained values of δσ and ν.
In the paramagnetic state, δ↑ = δ↓ = 0, we readily find

from Eqs. (26) and (28) that the chemical potential is
proportional to the doping ν = x/2, and

ϕ = −ν2 − b2 − π2t2

3
,

f =
x2

4
− b2 − π2t2

3
. (29)

The properties of the ordered phases will be discussed
below.

C. Homogeneous phases at zero temperature

First, let us discuss the homogeneous phases allowed
by our mean-field scheme. In what follows, we will limit
ourselves to the case T = 0.
The task is simplified by the fact that in the mean-field

approach, our system becomes “decoupled” and consists
of two independent subsystems, labeled by the index σ.
The order parameters of these subsystems are mutually
independent [see Fig. 1, Eqs. (14) and (16)]. For such a
situation, the thermodynamic phases of the system are
characterized by a pair of order parameters (∆↑,∆↓).
At zero temperature, we can replace the Fermi func-

tions in the equations above by the Heaviside step func-
tion fF (ε) → Θ(−ε). After this substitution, the inte-
grations in Eqs. (26) and (28) are easily performed and
we obtain explicitly

δσ =
√
2|νσ| − 1 =

√
1− 2|xσ| ,

xσ = −∂ϕσ

∂ν
= sgn(νσ)(1 − |νσ|) , x =

∑

σ

xσ,

ϕσ =
1

4
− |νσ|+

ν2σ
2
, (30)
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FIG. 2: (Color online) Dimensionless free energies f for the
phases AF1, AF2, and PM (for definition, see the text) versus
doping x calculated for b = 0.6 (upper panel) and b = 1.2
(lower panel). All other homogeneous phases have larger free
energies at any doping level. Thin solid (black) lines show
the free energies of the phase-separated states found by the
Maxwell construction.

where νσ = ν − σb is a measure of the de-nesting in
subsystem σ. Equations (30) are valid, when |νσ| > δσ
and δσ 6= 0. This state is metallic with a well-defined
Fermi surface and we will refer to it as AFmet

σ .
When |νσ| < δσ, we derive from Eqs. (26) and (28) that

δσ = 1, xσ = 0, and ϕσ = −1/4. This is an insulating
state with the gap in the electron spectrum. We will
denote it as AFins

σ .
In the paramagnetic state, δσ = 0 (further referred to

as PMσ), we obtain xσ = νσ and ϕσ = −ν2σ/2.
The model is symmetric with respect to the sign of

doping and the direction of the magnetic field (up to the
replacement σ → −σ). So, we can consider only the case
of electron doping, x ≥ 0, and b ≥ 0.
Thus, we have nine possible homogeneous phases:

(AFins
↑ , AFins

↓ ), (AFmet
↑ , AFmet

↓ ), (PM↑, PM↓), (AFins
σ ,

AFmet
−σ ), (AFins

σ , PM−σ), and (AFmet
σ , PM−σ), where

σ =↑, ↓. We compared the free energies of these phases
and found that only three of them can correspond to



6

the ground states of the system (b > 0): AF1=(AFins
↑ ,

AFmet
↓ ), AF2=(AFins

↑ , PM↓), and PM=(PM↑, PM↓).
The plots of free energies of these phases versus doping
x are shown in Fig. 2. The phase diagram in the (x, b)
plane for the homogeneous phases is shown in the upper
panel of Fig. 3. Note that the phases AF1, AF2, and
PM are metallic if x 6= 0: one subsystem (σ =↓) for AF1
and AF2, and both subsystems for the PM phase have a
Fermi surface.

D. Phase separation

The phase diagram discussed above was calculated ne-
glecting the possibility of phase separation. However,
the shape of the f(x) curves implies such a possibility
near the transition lines between the homogeneous states
[see solid (black) lines in Fig. 2]. Indeed, the compress-
ibility of the AF1 phase is negative, ∂2f/∂x2 < 0 (see
Fig. 2), in the whole doping range where this phase ex-
ists. Thus, the homogeneous phase AF1 is unstable, and
the separation into the AF1 phase with x = 0 and AF2
phase occurs in the system. Let us refer to this phase-
separated state as PS1. The range of doping where the
phase-separated state is the ground state can be found
using the Maxwell construction55. The analysis shows
that the PS1 phase corresponds to the ground state of
the system if b < bc2 = 1/

√
2 and 0 < x < 1/

√
2.

Other regions of the phase diagram, where an inhomo-
geneous phase is the ground state, appear in the vicinity
of the line separating the AF2 and PM states. The cor-
responding inhomogeneous phase will be referred to as
PS2. The phase PS2 corresponds to the ground state of
the system within the doping range 2b + 1/

√
2 < x <

2b +
√
2, for any value of b, and also within the range

2b −
√
2 < x < 2b − 1/

√
2, if b > bc2. The resulting

phase diagram of the model is shown in the lower panel
of Fig. 3.

IV. ELECTRON–HOLE COUPLING: HIGH

MAGNETIC FIELD

For higher magnetic field, we predict the existence of
oscillations of the SDW order parameter due to the Lan-
dau quantization. This phenomenon is similar to the
well known de Haas–van Alphen effect, manifesting it-
self in the oscillations of the magnetic moment in met-
als56. To outline the general effects and to avoid excessive
mathematical difficulties, we restrict our consideration to
the case of ideal nesting at zero magnetic field and ideal
electron–hole symmetry, that is, x = 0 (the grand po-
tential coincides with the free energy), ma = mb = m,
∆g = 0, εamax = εbmax ≡ εmax, and ε

a
min = εbmin ≡ εmin.

Using Eqs. (7) and (8), we rewrite the interaction part

0 0.5 1.0 1.5 2.0 2.5
0

0.5

1.0 PM

PM

AF2

 

 

b

x

AF1

0 0.5 1.0 1.5 2.0 2.5
0

0.5

1.0 PS2

PS2

PM

PM

AF2

 

 

b

x

PS1

FIG. 3: (Color online) Phase diagram of the electron model
at low fields and zero temperature, calculated neglecting the
effect of the Landau quantization. In the upper panel, only
homogeneous states are shown. The high-b boundary of the
AF1 phase is given by the equation b = (x+

√

4x2
− 4x+ 2)/2,

while all other boundaries are straight lines. The phase dia-
gram in the lower panel takes into account the possibility of
phase separation. Thin dashed curves in the lower panel re-
trace the phase boundaries from the upper panel. The phase
PS1 lies within the boundaries b < 1/

√

2 and x < 1/
√

2.
At zero magnetic field the critical doping separating the PS2
and PM phases is equal to x =

√

2. The definitions of ho-
mogeneous phases are given in Subsection IIIC. The phase-
separated states are defined in Subsection IIID.

of Hamiltonian (6) in the form

Ĥint =
∑

σσ′

∑

nmn′m′

∑

pp′q

Vnmn′m′(px, px−q, p′x, p′x−qx)×

ψ†
pnaσψp′n′aσψ

†
p′−qm′bσ′ψp−qmbσ′ , (31)

where we introduce the matrix elements

Vnmn′m′(px, px−qx, p′x, p′x−qx) =
V

V2/3lB

+∞∫

−∞

dξ ×

χn(ξ − lBpx)χm[ξ − lB(px − qx)]×
χn′(ξ − lBp

′
x)χm′ [ξ − lB(p

′
x − qx)] . (32)
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Let us remind that p, p′, and q in Eq. (31) are 2D mo-
menta having x and z components.
In the mean-field approximation we apply the following

replacement in the interaction Hamiltonian

ψ†
pnaσψp′n′aσψ

†
p′−qm′bσ′ψp−qmbσ′ → (33)

δq0

[
ηnm↑(p)η

∗
n′m′↑(p

′) + ηnm↓(p)η
∗
n′m′↓(p

′)−
(
ηnm↑(p)ψ

†
p′m′b↓ψp′n′a↑ + ηnm↓(p)ψ

†
p′m′b↑ψp′n′a↓

)
−

(
η∗n′m′↑(p

′)ψ†
pna↑ψpmb↓ + η∗n′m′↓(p

′)ψ†
pna↓ψpmb↑

)]
,

where we assume that mean values 〈ψ†
pnaσψp′mbσ̄〉 = 0 if

p 6= p′ and introduce the notation

ηnmσ(p) = 〈ψ†
pnaσψpmbσ̄〉 = 〈ψ†

pmbσ̄ψpnaσ〉∗. (34)

Substitution (33) makes the total Hamiltonian
quadratic in the electron operators. As a result, we are
able to calculate the electron spectrum and the grand
potential of the system. Minimization of the grand po-
tential with respect to ηnmσ(p) would give us the infinite
number of integral equations for the functions ηnmσ(p).
This procedure can be substantially simplified if we as-
sume that the functions ηnmσ(p) are independent of the
momentum px. In other words, we assume here that
the electron–electron interactions do not lift the degen-
eracy of the Landau levels, Eq. (10), with respect to the
momentum px. Making these assumptions, we effectively
restrict the class of variational mean-field wave functions,
from which the approximate ground state wave function
is chosen. Without the latter simplifications, the calcu-
lations become poorly tractable. Once this approxima-
tion is accepted, we obtain the following relation for the
mean-field interaction Hamiltonian

ĤMF
int =

∑

pxσ

[
4πV 1

3 l2B∆
2
σ

V
−
∑

pzn

(
∆σψ

†
pnbσ̄ψpnaσ+ h.c.

)]
,

(35)
where the SDW order parameters ∆σ now have the form

∆σ =
V

2πV1/3l2B

∑

pzn

ηnnσ(pz) . (36)

Thus, similar to the case of low magnetic fields considered
in the previous Section, we have two variational param-
eters to minimize the grand potential.
We diagonalize the total mean-field Hamiltonian Ĥe+

ĤMF
int and derive the expression for the grand potential

of the system at zero doping (perfect nesting)

Ω = V1/3
∑

px,σ

{
4πl2B∆

2
σ

V
− (37)

2T
∑

n

∫
dpz
2π

ln

[
2 cosh

(√
∆2

σ+ε
2
σ (pz, n)

2T

)]}
,

where

εσ(pz, n) = ωH

(
n+

1

2

)
+

p2z
2m

− EFσ . (38)

In Eq. (37), the summation over n and the integration
over pz are taken within the range determined by the
inequalities εmin < εσ(pz, n) < εmax.
The summation over n in Eq. (37) can be replaced

by the integration over the 2D momentum p = (px, py),
when the distance between Landau levels is smaller than
the SDW band gap (ωH ≪ ∆0). In this case we have

n→ p2l2B
2

,
1

l2B

∑

n

. . .→
∫
d

(
p2

2

)
. . . =

∫
dpxdpy
2π

. . .

As a result, Eq. (37) is replaced by Eq. (16), where the
integration is performed over 3D momentum. This justi-
fies the assumption made in the previous Section that we
can neglect the effect of the Landau level quantization at
low fields.
Minimization of the potential Ω gives the equation for

the gap

1

4π2l2B

∑

n

∫
dpz

tanh
(√

∆2
σ+ε

2
σ (pz, n)/2T

)

√
∆2

σ+ε
2
σ (pz, n)

=
2

V
.

(39)
We introduce the density of states

ρB(E)=
1

4π2l2B

∑

n

∫
dpzδ

[
E − ωH

(
n+

1

2

)
− p2z

2m

]
,

(40)
and rewrite Eq. (39) in the form

εmax−EFσ∫

−EFσ

dε ρB(ε+ EFσ)
tanh

(√
∆2

σ+ε
2/2T

)

√
∆2

σ + ε2
=

2

V
. (41)

The density of states exhibits equidistant peaks at en-
ergiesE = ωH(n+1/2). This results in the oscillatory be-
havior of the order parameters ∆σ on the magnetic field
similar to the de Haas–van Alphen effect56. In the limit
ωH/εF ≪ 1, one can calculate the density of states ana-
lytically. Details of the calculations are presented in the
Appendix, where for ρB(E) we derive expression (A.9).
Substituting this expression into Eq. (41) at T = 0, we
obtain

ln

(
∆σ

∆0

)
+

√
ωH

2εF
× (42)

∞∑

l=1

(−1)l√
l

cos

(
2πlEFσ

ωH
− π

4

)
K0

(
2πl∆σ

ωH

)
= 0 ,

where K0(z) is the Macdonald function of zeroth order.
We solve this equation numerically. Since the Macdon-
ald functions decay exponentially at large values of their
arguments, the series in Eq. (42) converges quickly.
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FIG. 4: (Color online) SDW gaps versus magnetic field calcu-
lated at different ratios ∆0/εF and different values of g speci-
fied in the plots; ∆↑ is shown by the (red) solid line with open
circles, while ∆↓ by the (blue) solid line without symbols.

The calculated parameters ∆σ(B) for different g are
shown in Fig. 4. We see that both order parameters
∆σ(B) oscillate when the magnetic field is varied. The
amplitudes of the oscillations increase when the ratio
∆0/εF grows (that is, the interaction increases). The
oscillations of ∆↑ and ∆↓ have the same phases, if g is
an integer, and different phases otherwise.

It is seen in Fig. 4 that the order parameters oscil-

late about some mean value ∆̃σ, which is quite robust

0 5 10
0.6

0.8

1

T N
 /T

N
 0

Magnetic field  H /TN0

g = 1.5
TN0 /  F = 0.03

1.2

FIG. 5: (Color online) Dependence of the Néel temperatures
on the magnetic field; TN↑ is shown by (red) dashed line, while
TN↓ by (blue) solid one. Parameters are specified in the plot.

against the growth of B. This stability, however, is a

consequence of the perfect nesting. The value of ∆̃σ de-
creases with B if we take into account either doping or
electron–hole asymmetry. When the doping or asymme-
try is high, the SDW order disappears before pronounced
oscillations arise.

Note also that the SDW phase is stable at low tem-
peratures since when T → 0 the free energy of the
magnetically-ordered phase is lower than the PM one.
This can be checked directly.

In addition to the behavior of the order parameters,
the temperatures of the phase transitions also oscillate
as a function of the magnetic field. Note that for B 6= 0,
there are two transition temperatures, TNσ, where, as
usual, σ =↑, ↓. These temperatures can be calculated
using Eq. (39) by taking the limit ∆σ → 0. This gives
the equation

∫
dε ρB(ε+ EFσ)

tanh(ε/2TNσ)

ε
=

2

V
. (43)

Using the density of states (A.9), we obtain

ln
TNσ

TN0
=

√
ωH

2εF

∞∑

l=1

(−1)l√
l

cos

(
2πlEFσ

ωH
− π

4

)
×

ln

[
tanh

(
π2lTNσ

ωH

)]
, (44)

where TN0 is the Néel temperature at zero field, which
is related to the SDW gap according to the BCS-like for-
mula TN0

∼= 0.567∆0. The results of these calculations
are shown in Fig. 5.
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V. DISCUSSION

In this work, we investigated the effect of an applied
magnetic field on weakly-correlated electron systems with
imperfect nesting. Such study may be relevant for recent
experiments on doped rare-earth borides47. We found
that, when the cyclotron frequency ωα is comparable to
the electron energy gap, ∆0, the magnetic field effects
must be taken into account.
The magnetic field enters the model Hamiltonian via

two channels: (i) the Zeeman term, and (ii) orbital (or,
diamagnetic) contribution. At low field, ωα < ∆0, and
not too small Landé factors gα, one can neglect the lat-
ter contribution and take into account only the Zeeman
term. We investigated the combined effects of both terms
in the limit of ideal electron–hole symmetry and ideal
nesting.
Our study demonstrated that in the presence of the

Zeeman term, the number of possible homogeneous
magnetically-ordered phases significantly increases, com-
pared to the case of B = 0. In Subsection III C, we de-
fined as many as nine possible states with different sym-
metries. If necessary, this list may be increased by taking
into account incommensurate SDW phases13 and phases
with “stripes”23,43. Of this abundance, only two ordered
homogeneous phases could serve as a ground state of our
model.
When inhomogeneous states are included into con-

sideration, even the zero-temperature phase diagram
becomes quite complex. We would like to remind a
reader that, theoretically, the phase separation is a very
robust phenomenon. Its generality goes beyond the
weak-coupling nesting instabilities of a Fermi surface:
the phase separation is found in multi-band Hubbard
and Hubbard-like models, where the nesting is not cru-
cial57–61. It is therefore important to account for its pos-
sibility both theoretically, and experimentally.
However, phase separation is not universal: the simpli-

fications of our approach, and the contributions, which
we have intentionally omitted (Coulomb interaction, lat-
tice effects, realistic shape of the Fermi surface, disorder,
etc), can restore the stability of homogeneous states for
a given set of model parameters. For example, the long-
range Coulomb repulsion, caused by the charge redistri-
bution in inhomogeneous state, suppresses the phase sep-
aration62–64. Therefore, on experiments the inhomoge-
neous states may occupy fairly modest part of the phase
diagram, as seen, for example, in Refs. 33,40. The fi-
nal location of the segregated region on the phase dia-
gram is affected by the Zeeman energy, as our calcula-
tions demonstrated.
The orbital contribution to the Hamiltonian leads to

the Landau quantization of the single-particle orbits. As
a result, we have demonstrated that both order parame-
ters and the Néel temperatures oscillate as the magnetic
field changes. This behavior is associated with the oscil-
latory part of the single-particle density of states, which
emerges due to the Landau quantization. The same os-

cillations of the density of states are also the cause of
the de Haas–van Alphen effect. Yet another related phe-
nomenon, the so-called field-induced SDW, is known to
occur in quasi-one-dimensional materials48–53.

Pronounced oscillations of both ∆σ and TNσ develop
at sufficiently large magnetic fields. This circumstance
makes their experimental observation a delicate issue. In-
deed, the results of Section IV were obtained under the
assumption of perfect electron–hole symmetry. In a more
realistic case, this symmetry is broken, and the magnetic
field may cause a transition into a phase with a different
order parameter, or destroy the SDW completely before
an observable oscillatory trend sets in.

We demonstrated that in electron systems with imper-
fect nesting the applied magnetic field leads to a signif-
icant increase in the number of possible ordered states.
It also affects the inhomogeneous, phase-separated states
of the system. At higher fields, the Landau quantization
causes oscillations of the SDW order parameters and of
the corresponding Néel temperatures.
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Appendix: Density of states and the equation for the

gap

Here, we derive the explicit expression for the density
of states given by Eq. (40). The main idea is to divide
the density of states into monotonic and oscillatory parts
(a similar approach is used, e.g., in Chapter 6 of Ref. 56).
To do this, we first take the integral over pz in Eq. (40),
which gives

ρB(E) =
1

4π2l2B

√
2m

ωH

N0∑

n=0

1√
n+ a

, (A.1)

where

N0 =

[
E

ωH
− 1

2

]
, a =

E

ωH
− 1

2
−N0 , (A.2)

and [. . . ] denotes the integer part of a real number. The
parameter a, by its definition, is the fractional part of
E/ωH − 1/2. Using formulas from the theory of Euler
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integrals,

1√
x
=

1√
π

∞∫

0

ds√
s
e−xs, 2

√
x=

1√
π

∞∫

0

ds

s3/2
(
1− e−xs

)
,

we write the sum in Eq. (A.1) in the form

N0∑

n=0

1√
n+ a

= 2
√
N0 + a+ F (N0 + a) + g(a) , (A.3)

where

F (N0 + a) =
1√
π

∞∫

0

ds√
s

(
1

s
+

1

1− es

)
e−(N0+a)s,

g(a) =
1√
π

∞∫

0

ds√
s

(
e−as

1− e−s
− 1

s

)
. (A.4)

In the limit ωH/εF ≪ 1 one has

F (N0 + a) ≈ 1

2
√
N0 + a

+O

(
1

N
3/2
0

)
.

Substituting all these expressions into Eq. (A.1) and ex-
panding it in powers of ωH/εF ≪ 1, we obtain

ρB(E) ∼= ρ0(E) +
(2m)3/2

√
ωH

8π2
g[a(E)] +O

(
ω2
H

ε2Fσ

)
,

(A.5)
where

ρ0(E) =
(2m)3/2

√
E

4π2
(A.6)

is the density of states at zero magnetic field.
The second term in the right-hand side of Eq. (A.5)

oscillates as B changes, since a is an oscillating function
of B, see Eq. (A.2). We expand the function g(a) in a
Fourier series

g(a) =

+∞∑

l=−∞

gle
2iπla, gl =

∫ 1

0

e−2iπlag(a) , (A.7)

where the coefficients of the series can be calculated an-
alytically

g0 = 0, gl =
1− isgn(l)

2

1√
|l|

(l 6= 0) . (A.8)

Keeping the leading corrections, we can write

ρB(E) ∼= ρ0(E) +
ρ0(εF )

4

√
ωH

εF
× (A.9)

∞∑′

l=−∞

1−isgn(l)√
|l|

(−1)l exp

(
2iπlE

ωH

)
,

where the prime at the summation sign implies that the
term with l = 0 has to be omitted. Now, we substitute
Eqs. (A.5) – (A.8) in Eq. (39) and obtain the equation for
the order parameter in the form

2

V
=

εmax−EFσ∫

−EFσ

dε√
∆2

σ + ε2

{
ρ0(ε+ EFσ) +

ρ0(εF )

4

√
ωH

εF
×

∞∑′

l=−∞

1−isgn(l)√
|l|

(−1)l exp

(
2iπl(ε+ EFσ)

ωH

)}
. (A.10)

As a consistency check, let us consider the limit of
vanishing magnetic field. In this case only the first term
in the integral above survives, and one obtains

εmax−EFσ∫

−EFσ

dε
ρ0(ε+ EFσ)√

∆2
σ + ε2

∼= 2ρ0(εF ) ln
2
√
εF (εmax − εF )

∆σ
.

(A.11)
Thus, at zero magnetic field we have

1

V
= ρ0(εF ) ln

2
√
εF (εmax − εF )

∆0
. (A.12)

Assuming that the Fermi level lies near the center of
the electron or hole bands (εF ∼ εmax/2), we reproduce
Eq. (21) for the ∆0.

The integration of the second term in Eq. (A.10) can
be extended over all real values of ε from −∞ to +∞.
Taking this integral, we arrive finally to the formula (42)
for the gap equation. Equations (44) for the Néel tem-
peratures can be obtained in a similar manner.
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